The **derivative** of a function y = f(x), evaluated at a point $x = x_0$, provides the instantaneous rate of change of f(x) at $x = x_0$, that is, the slope of the tangent line to the curve y = f(x) at $x = x_0$. It is denoted in many ways - for example, as $y'(x_0)$, $f'(x_0)$, $\frac{dy}{dx}(x_0)$, $\frac{df}{dx}(x_0)$, or $\frac{d}{dx}f(x)|_{x=x_0}$.

Mathematical definition:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Basic properties and rules:

Let f(x) and g(x) be two functions, and let c be any constant.

- (Constant multiplier rule) $\frac{d}{dx}\left(cf(x)\right) = c\frac{d}{dx}\left(f(x)\right)$
- (Derivative of a constant is zero) $\frac{d}{dx}(c) = 0$
- (Addition rule) $\frac{d}{dx}(f(x) \pm g(x)) = \frac{d}{dx}f(x) \pm \frac{d}{dx}g(x)$
- (Product rule) $\frac{d}{dx}(f(x)g(x)) = f(x)\frac{d}{dx}g(x) + g(x)\frac{d}{dx}f(x)$
- (Quotient rule) $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)\frac{d}{dx}f(x) f(x)\frac{d}{dx}g(x)}{[g(x)]^2}$
- (Chain rule) $\frac{d}{dx}\left(f(g(x))\right) = \frac{d}{du}f(u)|_{u=g(x)}\frac{d}{dx}g(x)$
- (Power rule) $\frac{d}{dx}(x^c) = cx^{c-1}$
- (Monotonicity) If $f'(x) \ge 0$ (or $f'(x) \le 0$) on an interval I, then f(x) is non-decreasing (or non-increasing) on I. If f'(x) > 0 (or f'(x) < 0) on an interval I, then f(x) is increasing (or decreasing) on I.

Derivatives of exponential and logarithmic functions:

Let a be a positive constant.

$$\frac{d}{dx}\left(a^{x}\right)=\ln\left(a\right)\,a^{x}$$
 and so, setting $a=e,$ we obtain $\frac{d}{dx}\left(e^{x}\right)=e^{x}$.

$$\frac{d}{dx}\left(\log_a x\right) = (\ln\left(a\right)\,x)^{-1}$$
 and so, setting $a=e,$ we obtain $\frac{d}{dx}\left(\ln x\right) = 1/x$.

Recall the following facts:

1)
$$\ln x = \log_e x$$
, 2) $\log_a b = c$ is equivalent to $a^c = b$, 3) $\log_a b^c = c \log_a b$, 4) $\log_a (bc) = \log_a b + \log_a c$ and 5) $\log_a (b/c) = \log_a b - \log_a c$.

An **antiderivative** of a function f(x) is any function F(x) such that $\frac{d}{dx}F(x) = f(x)$. Note that if $F_0(x)$ is such a function, then so is $F_c(x) = F_0(x) + c$ for any real number c. The class of all antiderivatives of a function f(x) is referred to as the (indefinite) integral of f(x). It is denoted by $\int f(x)dx$.

The (definite) integral of f(x) over [a, b] is defined as F(b) - F(a) (often denoted as $F(x)|_{x=a}^{b}$), where F(x) is any antiderivative of f(x), and it is denoted by $\int_{a}^{b} f(x)dx$. Note that the definition yields the same result no matter the antiderivative chosen.

As with the derivative, the integral also is interpretable geometrically. Indeed, the definite integral of f(x) over [a, b] gives the (signed) area of the region bounded by the x - axis and the curve y = f(x), between x = a and x = b.

Basic properties and rules:

Let f(x) and g(x) be two functions, and let a, b and c be constants. Let F(x) be an antiderivative of f(x).

- (Constant multiplier rule) $\int cf(x)dx = c \int f(x)dx$ and $\int_a^b cf(x)dx = c \int_a^b f(x)dx$
- (Addition rule)

$$\int (f(x) \pm g(x)) dx = \int f(x) dx \pm \int g(x) dx \text{ and } \int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$

- (Null integral) $\int_a^a f(x)dx = 0$
- (Reversal of integral) $\int_a^b f(x)dx = -\int_b^a f(x)dx$
- (Partition of integral) $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$
- (Positivity) If $f(x) \ge 0$ for $a \le x \le b$, then $\int_a^b f(x) dx \ge 0$.
- (Dominance) If $f(x) \geq g(x)$ for $a \leq x \leq b$, then $\int_a^b f(x) dx \geq \int_a^b g(x) dx$.
- (Power rule) $\int x^a dx = x^{a+1}/(a+1)$

Antiderivatives of exponential functions:

Let a be a positive constant.

$$\int a^x dx = a^x / \ln(a)$$
 and so, setting $a = e$, we obtain $\int e^x dx = e^x$.

Integration by substitution:

Method that ravels back together the result of a chain rule differentiation - i.e. the integration analog of the chain rule.

Suppose f(x) and g(x) are two functions, and that F(x) is an antiderivative of f(x). Then, we have that $\int f(g(x))g'(x)dx = F(g(x))$. Thus, if your integrand is a simple function to integrate but its argument is a more complicated function AND the derivative of this more complicated function is present (up to a constant multiple), then integration by substitution may be applicable.

A useful extra - the Gamma function:

We define the Gamma function as $\Gamma(\alpha) = \int_{x=0}^{\infty} e^{-x} x^{\alpha-1} dx$, for $\alpha > 0$. This function is also defined on the negative integers and at zero, but we do not require this additional fact. The Gamma function satisfies a fundamental property, namely that $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$. It follows then that for any integer $n \ge 1$, we have $\Gamma(n) = (n-1)! = (n-1)(n-2)...1$. This equation turns out very useful when calculating moments of several distributions (such as the exponential and Gamma distributions).