Risk Prediction and **Population Screening** Session 12

https://theconversation.com/mixed-ancestry-genetic-research-shows-a-bit-of-native-american-dna-could-reduce-risk-of-alzheimers-disease-159118

Mixed-ancestry genetic research shows a bit of Native American DNA could reduce risk of Alzheimer's disease

July 14, 2021 8.23am EDT

Alzheimer's, like many diseases, has a genetic component. Tek Images/Science Photo Library via Getty Images

4	Email
y	Twitter
f	Facebook
in	LinkedIn
8	Print

Since the human genome was first mapped, scientists have discovered hundreds
 of genes influencing illnesses like breast cancer, heart disease and Alzheimer's disease. Unfortunately, Black people, Indigenous people and other people of color are <u>underrepresented in most genetic studies</u>. This has resulted in a <u>skewed and incomplete understanding</u> of the genetics of many diseases.

We are two researchers who have been working to <u>find genes</u> that affect <u>people's</u> <u>risk</u> for various diseases. Our team recently found a genetic region that appears to be <u>protective against Alzheimer's disease</u>. To do this, we used a method called admixture mapping that uses data from people with mixed ancestry to find genetic causes of disease.

Course survey:

https://si.biostat.washington.edu/user/login

HOME / PROSPECTIVE STUDENTS / PROGRAMS ~ / FAQ / STUDENT RESOURCES ~ / PEOPLE ~

INSTITUTE FOR PUBLIC HEALTH GENETICS

UW School of Public Health

Public Health Genetics is a dynamic and evolving field established to tackle the challenges of using genomic information to improve population health.

https://iphg.biostat.washington.edu/

Apply for Autumn 2021

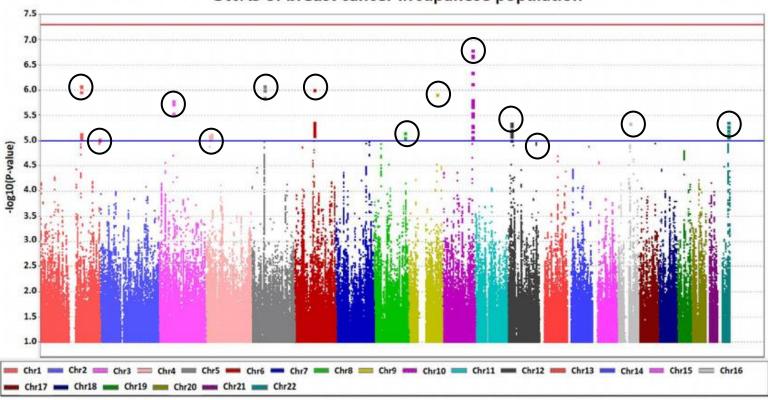
The Institute for Public Health Genetics is accepting applications for its MS, MPH, and PhD programs for Autumn 2021 enrollment. Applications are reviewed on a rolling basis, based on available space in the program, through July 15, 2021.

Please visit our prospective students page for information on the application process and review the Graduate School's COVID-19 Admissions FAQs# for information on how the admissions process is impacted.

a second to the second se

ANNOUNCEMENTS

- Apply for Autumn 2021. Apply today.
- RSVP for an upcoming information session.
- Questions about the program? Contact us: phgadmit@uw.edum.
- Please contact the graduate program if you are interested in our Certificate


Genetic contribution to disease is complex

Only 1-10% of disease is thought to be driven by rare, high impact variants. If you have these variants, you have a very high chance of developing the disease, but those variants account for a small amount of overall people with the disease

- BRCA1 in breast cancer
 - \circ 45% lifetime risk with the variant
 - only 5-10% of breast cancer is linked to *BRCA1*
- LDLR in Familial hypercholesterolemia
 - 66% risk of heart disease
 - only 2% of people with heart disease

What about the rest of disease?

GWAS of breast cancer in Japanese population

Small contributions of many genetic locations

Each variant in itself is inherited, but the specific combinations can be different, making it look like a disease is not family-based.

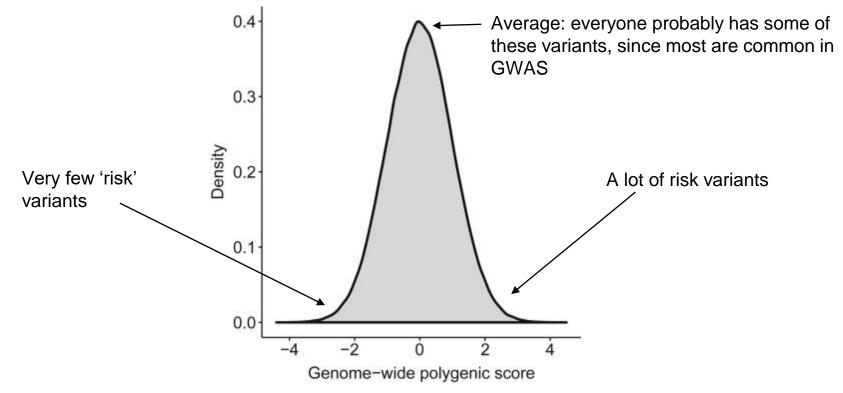
Each increases risk a small amount: odds ratio 1.01-1.5

All together, these variants influence overall risk of an outcome: Polygenic Risk

Based on what variants an individual has: Polygenic Risk Score (also referred to as genetic risk score, polygenic score, genome-wide score)

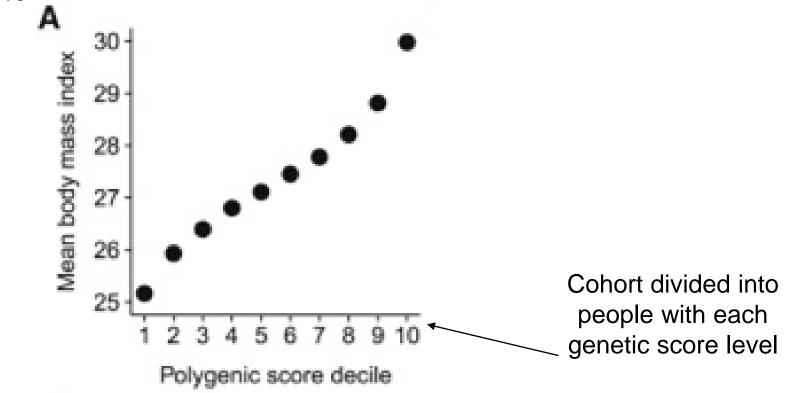
Many SNPs, small cumulative impacts

~80 loci explain ~20% of coronary artery disease heritability

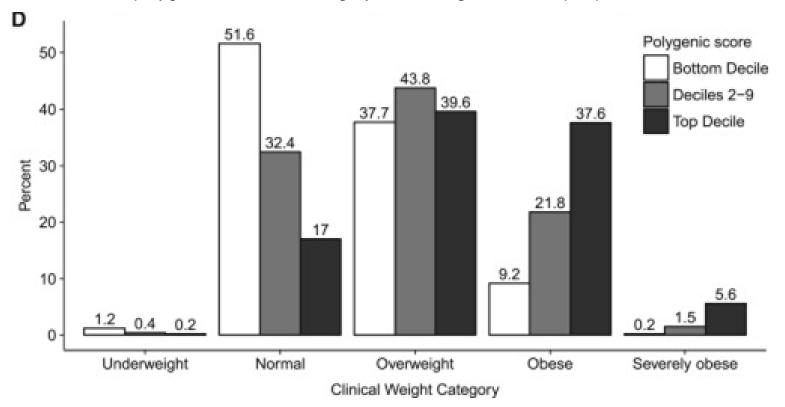

~100 loci explain ~20% of type 2 diabetes heritability

~150 loci explain ~20% of familial breast cancer

~100 loci explain ~33% of familial prostate cancer


~20 loci explain ~30% of Alzheimer disease heritability

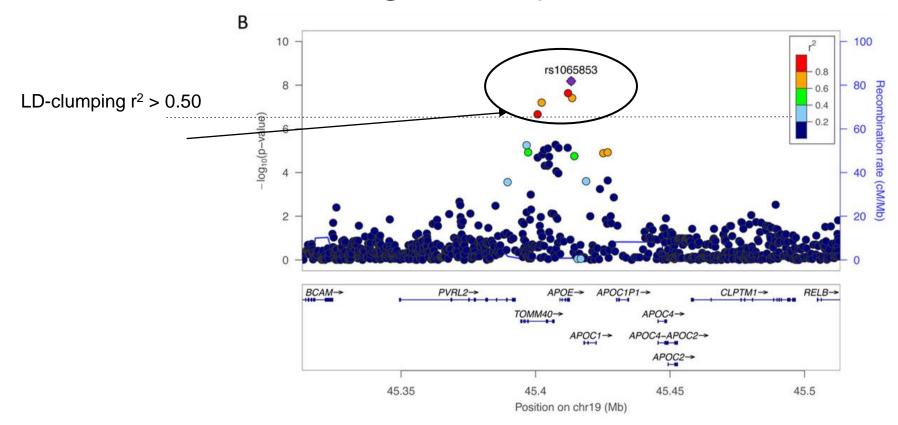
Population polygenic risk score distribution


Consider that polygenic score in risk of outcome

Polygenic risk score for BMI

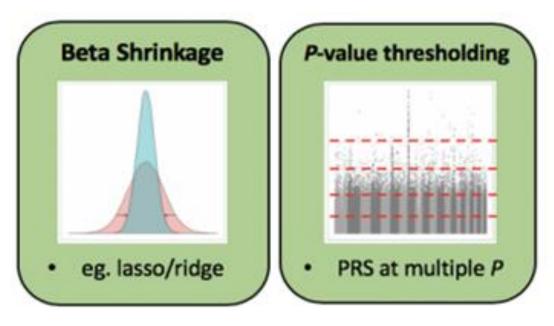
Polygenic risk scores are still probabilistic

Based on polygenic risk score category, what weight score do people have?


How do we calculate polygenic risk scores?

1) Start with our GWAS and the individual estimates for each SNP

	CHR	SNP	BP	BETA	SE	R2	Р
1	20	rs1418258	11799	0.031600	0.02845	4.353e-04	0.2669
2	20	rs6086616	16749	-0.012000	0.02998	5.650e-05	0.6891
3	20	rs6039403	17094	-0.001804	0.02754	1.520e-06	0.9478
4	20	rs6135141	22347	0.008119	0.02927	2.720e-05	0.7815
5	20	rs1935386	35416	0.010570	0.02786	5.090e-05	0.7043
6	20	rs6051659	39508	0.044900	0.03596	5.506e-04	0.2120


BMI study started with 2.1 million SNPs for 300,000 individuals

2) Account for linkage disequilibrium in SNPs

3) Determine which SNPs to include in the score

Various methods: penalized regression LASSO, p-value thresholding

Threshold iterated to optimize prediction: 1x 10⁻⁵

4) Generate score model

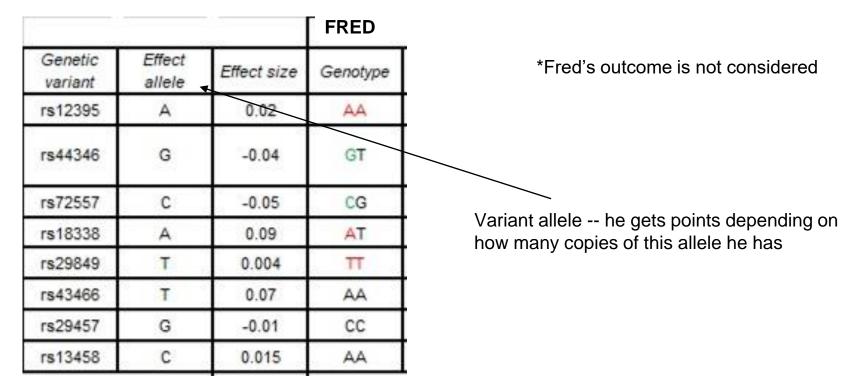
BMI as the outcome

	SNP	estimate	error	p-value			
	rs441084	1.20	0.89	5x10 ⁻⁶			
	rs8783	0.50	0.22	8x10 ⁻⁸			
	rs4699	-0.24	0.19	6x10 ⁻⁷			
SNPs in additive form Loading value from GWAS output							

Score Formula =

each loading value multiplied by number of alleles for that SNP, summed across each SNP

Note: what is the reference allele?


4) Generate score model

BMI as the outcome

SNP	estimate	error	p-value
rs441084	1.20	0.89	5x10 ⁻⁶
rs8783	0.50	0.22	8x10 ⁻⁸
rs4699	-0.24	0.19	6x10 ⁻⁷

Score = 1.20*(#alleles rs441084) + 0.50 *(#alleles rs8783) - 0.24*(#alleles rs4699)

Calculate polygenic risk score for Fred

Calculate polygenic risk score for Fred

			FRED	l l
Genetic variant	Effect allele	Effect size	Genotype	Effect
rs12395	А	0.02	AA	+.02 (x2)
rs44346	G	-0.04	GT	-0.04
rs72557	С	-0.05	CG	-0.05
rs18338	А	0.09	AT	0.09
rs29849	Т	0.004	Π	+.004 (x2)
rs43466	Т	0.07	AA	
rs29457	G	-0.01	CC	
rs13458	С	0.015	AA	

*Fred's outcome is not considered

Calculate polygenic risk score for Fred

			FRED	Ľ.
Genetic variant	Effect allele	Effect size	Genotype	Effect
rs12395	А	0.02	AA	+.02 (x2)
rs44346	G	-0.04	GT	-0.04
rs72557	С	-0.05	CG	-0.05
rs18338	А	0.09	AT	0.09
rs29849	Т	0.004	Π	+.004 (x2)
rs43466	т	0.07	AA	
rs29457	G	-0.01	CC	
rs13458	С	0.015	AA	
		Polygenic score:	0.0	048

*Fred's outcome is not considered

Zoom poll: Calculate polygenic risk score for Alice

			FRED		
Genetic variant	Effect allele	Effect size	Genotype	Effect	Genotype
rs12395	А	0.02	AA	+.02 (x2)	π
rs44346	G	-0.04	GT	-0.04	π
rs72557	С	-0.05	CG	-0.05	CC
rs18338	А	0.09	AT	0.09	π
rs29849	т	0.004	Π	+.004 (x2)	CT
rs43466	Т	0.07	AA	26	TA
rs29457	G	-0.01	CC		CC
rs13458	С	0.015	AA		CA

5) Use polygenic score in regression model

Is our polygenic score associated with BMI?

```
lm(BMI~PRS + Age + Sex, data = BMIdata)
```

We put our summary score in the equation instead of a specific SNP

*We use a new dataset to develop this model: Why?

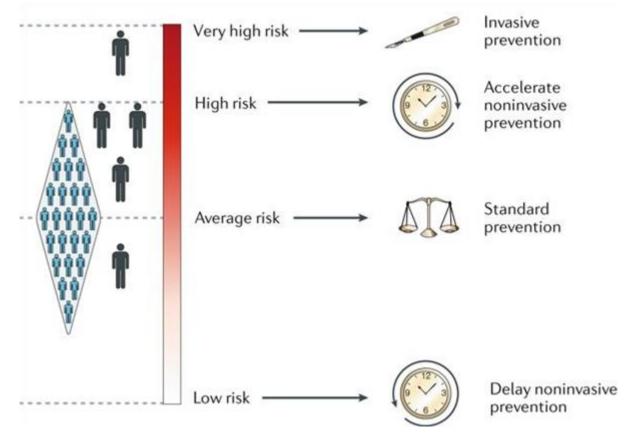
5) Use polygenic score in regression model

Is our polygenic score associated with BMI?

lm(BMI~PRS + Age + Sex, data = BMIdata)

Variable	estimate	error	p-value
Intercept	21.0		
PRS	8.9	0.05	8x10 ⁻⁶
Age	0.02	0.01	0.004
SexF	1.0	0.17	0.006

Why is a polygenic score helpful?


You are born with your genetic variants, so it is one of the earliest and more stable predictors possible. The score can include rare, yet high impact variants and common, low impact variants.

We can identify people early for screening and lifestyle modifications.

Utility still depends on strength of the association and the possible interventions (the more invasive an intervention, the bigger the association needs to be).

Ask: Does it allow useful stratification of patients into risk groups?

Polygenic scores as another data point

Racial/ethnic ancestry in polygenic scores

Why would a polygenic risk score developed in a European cohort be unreliable for a person who does not have recent European ancestors?

Zoom chat

Freakonomics Radio:

impact and utility of polygenic risk score for lipids

23:00-23:40; 27:30-28:20

http://freakonomics.com/podcast/23andme/

Implementing population screening

How do allele frequencies intersect with actionability and economics to make implementation decisions?

Determine how population allele frequencies affect implementation decisions for population screening

Zoom breakout.

Zoom breakout: population screening