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INTRODUCTION: Across human societies and
in both sexes, some 2 to 10% of individuals
report engaging in sex with same-sex part-
ners, either exclusively or in addition to sex
with opposite-sex partners. Twin and family
studies have shown that same-sex sexual be-
havior is partly genetically influenced, but
previous searches for the specific genes in-
volved have been underpowered to detect ef-
fect sizes realistic for complex traits.

RATIONALE: For the first time, new large-
scale datasets afford sufficient statistical
power to identify genetic variants associated
with same-sex sexual behavior (ever versus
never had a same-sex partner), estimate the

UK Biobank 23andMe
(N=408,995) (N=68,527)
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proportion of variation in the trait accounted
for by all variants in aggregate, estimate the
genetic correlation of same-sex sexual behav-
ior with other traits, and probe the biology
and complexity of the trait. To these ends, we
performed genome-wide association discov-
ery analyses on 477,522 individuals from the
United Kingdom and United States, repli-
cation analyses in 15,142 individuals from
the United States and Sweden, and follow-
up analyses using different aspects of sexual
preference.

RESULTS: In the discovery samples (UK
Biobank and 23andMe), five autosomal loci
were significantly associated with same-sex

Phenotypic complexity and heterogeneity

sexual behavior. Follow-up of these loci sug-
gested links to biological pathways that involve
sex hormone regulation and olfaction. Three of
the loci were significant in a meta-analysis
of smaller, independent replication samples.
Although only a few loci passed the stringent
statistical corrections for genome-wide multi-
ple testing and were replicated in other sam-
ples, our analyses show that many loci underlie
same-sex sexual behavior in both sexes. In
aggregate, all tested genetic variants accounted
for 8 to 25% of variation in male and female
same-sex sexual behavior, and the genetic
influences were positively
but imperfectly corre-
Read the full article lated t.)etween th.e SEXES
at http:/dx.doi. [genetic correlation co-
org/10.1126/ efficient (r5) = 0.63; 95%
science.aat7693 confidence intervals, 0.48
to 0.78]. These aggregate
genetic influences partly overlapped with
those on a variety of other traits, including
externalizing behaviors such as smoking,
cannabis use, risk-taking, and the personality
trait “openness to experience.” Additional
analyses suggested that sexual behavior, at-
traction, identity, and fantasies are influenced
by a similar set of genetic variants (r, > 0.83);
however, the genetic effects that differentiate
heterosexual from same-sex sexual behavior
are not the same as those that differ among
nonheterosexuals with lower versus higher
proportions of same-sex partners, which sug-
gests that there is no single continuum from
opposite-sex to same-sex preference.

CONCLUSION: Same-sex sexual be-
havior is influenced by not one or a
few genes but many. Overlap with
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genetic influences on other traits pro-
vides insights into the underlying bi-
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and analysis of different aspects of
sexual preference underscore its
complexity and call into question
the validity of bipolar continuum
measures such as the Kinsey scale.
Nevertheless, many uncertainties re-
main to be explored, including how
sociocultural influences on sexual pref-
erence might interact with genetic
influences. To help communicate our
study to the broader public, we orga-
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Biological nized workshops in which represen-
processes tatives of the public, activists, and
. researchers discussed the rationale, re-
1:._ co(r:‘ree'l‘::i'gns sults, and implications of our study.
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Communication to lay audience

various traits; and indicate that sexual preference is a complex, heterogeneous phenotype.
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Large-scale GWAS reveals insights
into the genetic architecture of
same-sex sexual behavior
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Twin and family studies have shown that same-sex sexual behavior is partly genetically
influenced, but previous searches for specific genes involved have been underpowered. We
performed a genome-wide association study (GWAS) on 477,522 individuals, revealing
five loci significantly associated with same-sex sexual behavior. In aggregate, all tested
genetic variants accounted for 8 to 25% of variation in same-sex sexual behavior, only
partially overlapped between males and females, and do not allow meaningful prediction of
an individual’s sexual behavior. Comparing these GWAS results with those for the
proportion of same-sex to total number of sexual partners among nonheterosexuals
suggests that there is no single continuum from opposite-sex to same-sex sexual behavior.
Overall, our findings provide insights into the genetics underlying same-sex sexual
behavior and underscore the complexity of sexuality.

cross human societies and in both sexes,

some 2 to 10% of individuals report en-

gaging in sex with same-sex partners,

either exclusively or in addition to sex with

opposite-sex partners (I-4). The biological
factors that contribute to sexual preference are
largely unknown (5), but genetic influences are
suggested by the observation that same-sex sex-
ual behavior appears to run in families (6) and is
concordant more often in genetically identical
(monozygotic) twin pairs than in fraternal twin
pairs or siblings (7).

With respect to genetic influences, several
questions arise. First, what genes are involved
and what biological processes do they affect?
Previous reports of genetic variants associated
with sexual orientation (8-10) were based on
relatively small samples and did not meet cur-
rent standards of genome-wide significance

(P < 5 x 10®). Identification of robustly asso-
ciated variants could enable exploration of the
biological pathways and processes involved in
development of same-sex sexual behavior. One
hypothesis suggests that sex hormones are in-
volved (11-13), but little direct genetic or biological
evidence is available. Second, to what extent are
genetic influences the same or different for fe-
males and males; behavior, attraction, and iden-
tity; and heterosexuality and different same-sex
sexual behaviors (such as bisexuality)?

In order to identify genetic variants associated
with same-sex sexual behavior and explore its
genetic architecture and underlying biology, we
performed a genome-wide association study
(GWAS) of same-sex sexual behavior. Analyses
were conducted in the UK Biobank from the
United Kingdom and a cohort of research par-
ticipants from 23andMe, predominantly located

in the United States, and replications were per-
formed in three other smaller studies. This study
is part of a preregistered research plan (Open
Science Framework; https://osf.io/357tn), and we
explain our deviations from that plan in (74).

Phenotypic characterization

The UK Biobank study comprises a sample of
~500,000 genotyped UK residents aged 40 to
70 years (tables S1 and S2) (14). Our primary
phenotype of interest is a binary, self-reported
measure of whether respondents had ever had
sex with someone of the same sex (here termed
“nonheterosexuals”) or had not (here termed
“heterosexuals”) (Box 1).

In the UK Biobank sample, 4.1% of males and
2.8% of females reported ever having had sex
with someone of the same sex (tables S1and S2),
with higher rates among younger participants
(Fig. 1A). This binary phenotype follows from
previous work proposing that sexual preference
is taxonic rather than dimensional in structure,
with individuals reporting exclusively opposite-
sex preference differing from individuals report-
ing any same-sex preference (15). However, the
binary variable also collapses rich and multi-
faceted diversity among nonheterosexual individ-
uals (15), so we explored finer-scaled measurements
and some of the complexities of the phenotype,
although intricacies of the social and cultural
influences on sexuality made it impossible to
fully explore this complexity. The 23andMe
sample comprised 23andMe customers who
consented to participate in research and chose
to complete a survey about sexual orientation
(from many possible survey topics). Individuals
who engage in same-sex sexual behavior may be
more likely to self-select the sexual orientation
survey, which would explain the unusually high
proportion of individuals who had had same-
sex sexual partners in this sample (18.9%) (table
S3) (14).

We also performed replication analyses in
three smaller datasets (74): (i) Molecular Genetic
Study of Sexual Orientation (MGSOSO) (n =
2308 U.S. adult males), in which respondents
were asked about their sexual identity; (ii)
Add Health (n = 4755 U.S. young adults), in
which respondents were asked whether they
ever had same-sex intercourse and whether they
were romantically attracted to the same sex; and
(iii) Child and Adolescent Twin Study in Sweden
(CATSS) (n = 8093 Swedish adolescents), in which
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Box 1. Phenotype and sample definition and limitations.

In this study, we use the term “same-sex sexual behavior,” which is defined as having ever
had sex with someone of the same sex. Detailed descriptions of the variables used in the
different cohorts can be found in the supplementary materials (14).

To aid in readability throughout the manuscript, in some places we refer to individuals who
have ever had sex with someone of the same sex as “nonheterosexuals,” whereas we refer to
individuals who have never had sex with someone of the same sex as “heterosexuals.”

We acknowledge that the grouping phrase “nonheterosexuals” has the potential to present
messages of othering (that is, undesirable marginalization of another person or group on the
basis of their sexual expression)—by defining an “outgroup” in reference to an “ingroup” and
implying that “nonheterosexual behavior” may have a negative connotation, whereas “hetero-
sexual behavior” may have a positive one. We wish to make clear that our choice of language is
not meant to forward messages of othering on the basis of sexual behavior.

Throughout this manuscript, we use the terms “female” and “male” rather than “woman”
and “man.” This is because our analyses and results relate to biologically defined sex, not to
gender.

As is common in genetic analyses, we dropped individuals from our study whose biological
sex and self-identified sex/gender did not match. This is an important limitation of our analyses
because the analyses do not include transgender persons, intersex persons, and other important
persons and groups within the queer community. We hope that this limitation will be addressed
in future work.
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Fig. 1. Descriptive statistics regarding same-sex sexual behavior in the UK Biobank.

(A) The percentage of participants in the UK Biobank who reported having had at least one
same-sex sexual partner (y axis) increased with participants’ year of birth (x axis). (B) Among
participants reporting at least one same-sex partner, those with a greater proportion of
same-sex partners (x axis) have a larger reproductive disadvantage (lower birth-year adjusted
number of children) (y axis). Vertical bars represent 95% Cls.
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participants reported the degree of attraction to
the same versus opposite sex.

We observed in the UK Biobank that individ-
uals who reported same-sex sexual behavior had
on average fewer offspring than those of indi-
viduals who engaged exclusively in heterosexual
behavior, even for individuals reporting only a
minority of same-sex partners (Fig. 1B). This
reduction in number of children is comparable
with or greater than for other traits that have
been linked to lower fertility rates (fig. S1) (14).
This reproductive deficit raises questions about
the evolutionary maintenance of the trait, but we
do not address these here.

Genetic architecture of same-sex
sexual behavior

We first assessed whether same-sex sexual be-
havior clustered in families in a manner con-
sistent with genetic influences on the phenotype.
Among pairs of individuals in the UK Biobank
related at full cousin or closer [as identified by
genomic similarity (74); n pairs = 106,979], more
closely related individuals were more likely to be
concordant in terms of same-sex sexual behav-
ior. By modeling the correspondence of related-
ness among individuals and the similarity of
their sexual behavior, we estimated broad-sense
heritability—the percentage of variation in a trait
attributable to genetic variation—at 32.4% [95%
confidence intervals (CIs), 10.6 to 54.3] (table S4;).
This estimate is consistent with previous estimates
from smaller twin studies (7).

To identify genetic variants [largely single-
nucleotide polymorphisms (SNPs)] associated
with same-sex sexual behavior, we performed a
GWAS in the UK Biobank study (n = 408,995
individuals) (74). To increase power and gen-
eralizability of our results, we also performed a
GWAS in the cohort from 23andMe using an
equivalent variable (individuals who reported
having had sex with “Other sex only” versus the
other options on a seven-point scale regarding
participants’ sexual partners) (n = 68,527 indi-
viduals, of which 12,933 reported same-sex sex-
ual behavior) (table S3) (14). We estimated the
genetic correlation (16) between different heri-
table traits to determine the degree of consist-
ency of genetic influences on same-sex sexual
behavior in the two studies, which was high
[genetic correlation coefficient () = 0.87; 95%
CIs, 0.67 to 1.06] (table S5) (14). Genetic corre-
lations between same-sex sexual behavior and
28 different traits were largely similar in the UK
Biobank and 23andMe (fig. S2) (14), although a
few differences were observed; for example, in
females, the genetic correlations between same-
sex sexual behavior and anorexia were in oppo-
site directions in the UK Biobank (r, = -0.36; 95%
CIs, -0.60 and -0.09) and 23andMe data (rg =
0.36; 95% CIs, 0.08 to 0.65; Wald test P value
for differences = 0.0001). Overall, these results
indicate that the genetic influences on same-sex
sexual behavior in the two samples is similar,
although there is some suggestion of pheno-
typic heterogeneity. We meta-analyzed the two
sample sets using MTAG (I7), which models
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Fig. 2. Manhattan plot for a GWAS of same-sex sexual behavior. Diamonds (red) represent genome-wide significant signals from analysis of males and
females combined, and triangles represent genome-wide significant signals that are female (pointing up, blue) or male (pointing down, green) specific.

their genetic correlation to determine the meta-
analytic weights, yielding a total sample size of
477,522 individuals (26,827 individuals report-
ing same-sex sexual behavior).

After standard quality control checks (table S6)
(14), we identified two genome-wide significant
signals for same-sex sexual behavior (rs11114975-
12@21.31 and rs10261857-7q31.2) (Fig. 2 and tables
S7 and S8). We discuss these SNPs further in the
section “In-silico follow-up of GWAS results.” To
assess differences in effects between females and
males, we also performed sex-specific analyses.
These results suggested only a partially shared
genetic architecture across the sexes; the across-
sex genetic correlation was 0.63 (95% Cls, 0.48
to 0.78) (table S9). This is noteworthy given that
most other studied traits show much higher
across-sex genetic correlations, often close to
1 (I18-21). Through the sex-specific analyses,
we identified two additional signals in males
(rs28371400-15q21.3 and rs34730029-11q12.1),
which showed no significant association in
females, and one in females (rs13135637-4p14:),
which showed no significant association in males.
Overall, three of the SNPs replicated at a nominal
P value in the meta-analyzed replication datasets
(Wald test P = 0.027 for rs34730029, P = 0.003
for rs28371400, and P = 0.006 for rs11114975)
(table S10), despite the much smaller sample
size (MGSOSO, Add Health, and CATSS; total
sample size = 15,156 individuals, effective sam-
ple size = 4887 individuals).

The SNPs that reached genome-wide signif-
icance had very small effects (odds ratios ~1.1)
(table S7). For example, in the UK Biobank, males
with a GT genotype at the rs34730029 locus had
0.4% higher prevalence of same-sex sexual be-
havior than those with a TT genotype (4.0 ver-
sus 3.6%). Nevertheless, the contribution of all

Ganna et al., Science 365, eaat7693 (2019)
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Fig. 3. SNP-based versus family-based heritability estimates for same-sex sexual behavior
compared with a variety of other traits. Heritability, h%; same-sex sexual behavior, red dot; other
traits, gray dots. The estimates for all traits are provided in table S23. Horizontal bars represent
95% Cls for the SNP-based estimate, and vertical bars represent 95% Cls for the family-based
estimate. Dashed and solid lines represent the observed (obtained by linear regression) and
expected relationship between family-based and SNP-based heritability, respectively.

measured common SNPs in aggregate (SNP-
based heritability) was estimated to be 8 to 25%
(95% Cls, 5 to 30%) of variation in female and
male same-sex sexual behavior, in which the
range reflects differing estimates by using dif-
ferent analysis methods or prevalence assump-
tions (table S11) (74). The discrepancy between
the variance captured by the significant SNPs
and all common SNPs suggests that same-sex

30 August 2019

sexual behavior, like most complex human traits,
is influenced by the small, additive effects of
very many genetic variants, most of which
cannot be detected at the current sample size
(22). Consistent with this interpretation, we
show that the contribution of each chromo-
some to heritability is broadly proportional to
its size (fig. S3) (14). In contrast to linkage studies
that found substantial association of sexual
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Fig. 4. Genetic correlations of same-sex sexual behavior with various preselected traits and
disorders, separately for males and females. Males, green; females, blue. Yellow asterisks denote
the genetic correlations that were experiment-wise significant (P < 8.9 x 107%; references,
definitions, and full results can be found in table S19). Wald test P values for the genetic correlations
are reported above each dot. Horizontal bars represent 95% Cls.

orientation with variants on the X-chromosome
(8, 23), we found no excess of signal (and no
individual genome-wide significant loci) on the
X-chromosome (fig. S4:).

To test whether these aggregate estimates of
genetic effects correlate with sexuality in other
samples, we constructed polygenic scores for
same-sex sexual behavior (14, 24). These poly-
genic scores were significantly associated with
sexual identity in MGSOSO (Wald test, P = 0.001)
and same-sex attraction in the Add Health (P =
0.017) and CATSS (P = 3.5 x 107°) studies (tables
S12, S13, and S14). In CATSS, polygenic scores
were also significantly associated with sexual at-
traction in participants at age 15 years (P = 6.4 x
107%), suggesting that at least some of the genetic
influences on same-sex sexual behavior manifest
early in sexual development. The purpose of these
analyses is to further characterize the genetic
influences on same-sex sexual behavior and not

Ganna et al., Science 365, eaat7693 (2019)

to predict same-sex sexual behavior on the in-
dividual level. In all cases, the variance explained
by the polygenic scores was extremely low (<1%);
these scores could not be used to accurately
predict sexual behavior in an individual.
Overall, these findings suggest that genetic
influences on same-sex sexual behavior are
highly polygenic and are not specific to the
discovery samples or measures. All the SNPs
measured, when combined, do not capture the
entirety of family-based heritability (8 to 25%
from GWAS versus 32% from family-based meth-
ods). In this, same-sex sexual behavior is similar
to many other complex traits; the ratio between
family-based heritability and SNP-heritability es-
timated in the same sample is consistent with
empirical findings for the other 16 traits we
tested (family heritability approximately three
times larger than SNP-heritability) (Fig. 3) (14).
There are many possible reasons for this dis-

30 August 2019

crepancy, including, but not limited to, variants
not captured by genotyping arrays, nonadditive
genetic effects, and phenotypic heterogeneity.

In silico follow-up of GWAS results

To explore the biological processes that may in-
fluence same-sex sexual behavior, we performed
cell- and tissue-type enrichment analyses using
the GWAS discovery dataset (14, 25). We did not
find clear evidence of enrichment for any par-
ticular cell or tissue (fig S5). However, we did find
that genes near variants associated with same-
sex sexual behavior are more likely than chance
to be highly constrained [having unusually low
prevalence of loss-of-function variants, suggest-
ing stronger evolutionary constraint (14, 26)],
even after controlling for expression in the brain
(table S15).

At the level of individual loci, we investigated
biological pathways by integrating information
from expression quantitative trait loci (eQTL)
analyses (27), phenome-wide association study
(PheWAS) (table S16) (28), and gene-based anal-
ysis by using MAGMA (14, 29). A full report
can be found in table S17. Here, we highlight
findings relating to the two SNPs associated
with male same-sex sexual behavior: rs34730029
and rs28371400. First, the locus encompassing
rs34730029-11q12.1 contains a number of olfac-
tory receptor genes (several of which were signi-
ficantly associated with same-sex sexual behavior
in a gene-based test) (fig. S6 and table S18). This
SNP is correlated [linkage disequilibrium, coef-
ficient of determination (R%) = 0.70] with a
missense variant (rs6591536) in OR5A1 that has
been reported to have a substantial effect on
the sensitivity to certain scents (30). Second,
rs28371400-15q21.3 had several indications of
being involved in sex hormone regulation: The
allele positively associated with same-sex sexual
behavior is associated with higher rate of male
pattern balding [in which sex-hormone sensi-
tivity is implicated (31)] and is located ~20 kb
upstream of the 7CFI2 gene. TCFI12 is the pri-
mary heterodimerization partner for 7CF21, a
transcription factor essential for normal develop-
ment of the gonads in mice (32), and is involved in
the downstream actions of the SRY gene (which is
responsible for the initiation of male sex determi-
nation) in humans (33).

Genetic correlations with other traits

Next, we explored the genetic correlations be-
tween same-sex sexual behavior and 28 other
relevant traits chosen before the analyses, using
summary statistics from other GWASs (Fig. 4
and table S19) (14). In particular, we included
mental health traits because they are substantially
heritable (34), and previous population surveys
have shown elevated risk of adverse mental
health outcomes (such as depression, anxiety, or
substance use) in sexual minority populations,
including individuals engaging in same-sex sexual
behavior (35, 36).

We found several personality traits (loneliness
and openness to experience), risky behaviors
(smoking and cannabis use) and mental health
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Fig. 5. Complexity and heterogeneity of genetic influences. (A) Genetic correlations between the main phenotype (same-sex sexual behavior;
heterosexuals versus nonheterosexuals) and proportion of same-sex to total sexual partners among nonheterosexuals, in the UK Biobank and 23andMe
samples. (B) Scatterplot showing genetic correlations of the main phenotype (x axis) and the proportion of same-sex to total partners among
nonheterosexuals (y axis) with various other traits (table S21). (C) Genetic correlations among different sexual preference items in the 23andMe sample.

disorders, but not physical traits, to be signifi-
cantly genetically correlated with same-sex sexual
behavior. We found in both sexes that same-sex
sexual behavior was positively genetically corre-
lated with several psychiatric or mental health
traits [for example, depression, 7, = 0.44 in fe-
males (95% ClIs, 0.32 and 0.55), 7z = 0.33 in
males (95% CIs, 0.22 and 0.43); schizophrenia,
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7y = 0.17 in females (95% CIs 0.08 and 0.35),
7 = 0.13 in males (95% Cls, 0.05 and 0.26); all
Wald test P < 0.001]. We emphasize that the
causal processes underlying these genetic cor-
relations are unclear and could be generated
by environmental factors relating to prejudice
against individuals engaging in same-sex sexual
behavior, among other possibilities, which we
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discuss in (74). Some associations were sex spe-
cific. In particular, the genetic correlations with
bipolar disorder, cannabis use, and number of
sexual partners were significantly higher in fe-
males than in males (Wald test P = 0.001, 1.47 x
107, and 3.13 x 107° respectively) (table S19).
Last, given the potential roles of sex hormones
in sexual behaviors, we directly explored whether
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Box 2. Communication and interpretation.

The topic explored in this study is complex and intersects with sexuality, identity, and
attraction and potentially has civil and political implications for sexual minority groups.

Therefore, we have

Engaged with science communication teams,

Engaged with LGBTQIA+ advocacy groups nationally and within our local institutions, and

Tried to make clear the many limitations and nuances of our study and our phenotypes.

We wish to make it clear that our results overwhelmingly point toward the richness and
diversity of human sexuality. Our results do not point toward a role for discrimination on the
basis of sexual identity or attraction, nor do our results make any conclusive statements about
the degree to which “nature” and “nurture” influence sexual preference.

there is a genetic correlation with serum sex-
hormone-binding globulin (SHBG) levels (37),
which are thought to be inversely related to
bioactive testosterone and estrogen in females
and males, respectively (38). There was a sig-
nificant correlation in females (r; = 0.25, Wald
test P = 0.03) but not in males (r; = 0.10, Wald
test P = 0.32).

Complexity and heterogeneity

To maximize our sample size and increase the
power to detect SNP associations, we defined
our primary phenotype as ever or never having
had a same sex partner. Such a measure fails to
capture the multifaceted richness and complexity
of human sexual orientation. To explore the
consequences of this simplification, we pursued
genetic analyses across different aspects of sexual
orientation and behavior.

First, within participants reporting same-sex
sexual behavior, we performed a GWAS on the
proportion of same-sex partners to total part-
ners, with a higher value indicating a higher
proportion of same-sex partners (4). In the UK
Biobank, this is measured directly from partic-
ipants’ reported number of same-sex and all
partners, whereas in 23andMe, we used partic-
ipants’ raw responses to the item “With whom
have you had sex?”, which in individuals report-
ing same-sex sexual behavior could be “other
sex mostly,” “other sex slightly,” “equal,” “same
sex slightly,” “same sex mostly,” or “same sex
only.” The UK Biobank and 23andMe variables
were heritable (table S20A) and genetically cor-
related with each other (7, = 0.52 and 95% Cls, -
0.16 to 1.20 for females; r, = 0.73 and 95% ClIs,
0.18 to 1.27 for males) (Fig. 5A and table S20C),
so we used MTAG to meta-analyze across the
two studies for subsequent analyses.

We found little evidence for genetic correla-
tion of the proportion of same-sex to total part-
ners among individuals reporting same-sex
sexual behavior (nonheterosexuals) with the
binary same-sex sexual behavior variable [, =
-0.31 (95% CIs, -0.62 to 0.00) for females and
rg = 0.03 (95% CIs, -0.18 to 0.23) for males]
(table S20B). Further, this phenotype showed a
markedly different pattern of genetic correla-
tions with other traits, as compared with cor-
responding genetic correlations with the binary
same-sex sexual behavior variable (Fig. 5B and

” « ”» «,
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table S21). These findings suggest that the same-
sex sexual behavior variable and the proportion
of same-sex partners among nonheterosexuals
capture aspects of sexuality that are distinct on
the genetic level, which in turn suggests that
there is no single continuum from opposite-sex
to same-sex sexual behavior. Interpretations of any
one set of results in our study must consider this
complexity.

With this in mind, we examined the possi-
bility of different genetic variants distinguishing
heterosexual behavior from differing proportions
of same-sex partners within nonheterosexuals.
To do so, we performed additional GWASs in
the UK Biobank data on the following traits:
those whose partners were (i) less than a third
same-sex, (ii) between a third and two-thirds
same-sex, (iii) more than two-thirds same-sex, and
(iv) exclusively same-sex. Genetic correlations of
the first three categories with the fourth were
0.13, 0.80, and 0.95 (table S22), indicating partly
different genetic variants distinguishing hetero-
sexual behavior from differing proportions of
same-sex partners within nonheterosexuals.

Last, using additional measures from 23andMe,
we showed strong genetic correlations (all 7y =
0.83) (Fig. 5C and fig. S7) of same-sex sexual
behavior with items assessing same-sex attrac-
tion, identity, and fantasies (a full list of items is
provided in table S5), suggesting that these dif-
ferent aspects of sexual orientation are influ-
enced by largely the same genetic variants. The
full set of results of phenotypic and genetic cor-
relations for females, males, and the whole sample
is available in fig. S7 and table S5.

Discussion

We identified genome-wide significant loci asso-
ciated with same-sex sexual behavior and found
evidence of a broader contribution of common
genetic variation. We established that the underly-
ing genetic architecture is highly complex; there is
certainly no single genetic determinant (some-
times referred to as the “gay gene” in the media).
Rather, many loci with individually small effects,
spread across the whole genome and partly over-
lapping in females and males, additively contribute
to individual differences in predisposition to same-
sex sexual behavior. All measured common var-
iants together explain only part of the genetic
heritability at the population level and do not

30 August 2019

allow meaningful prediction of an individual’s
sexual preference.

The knowledge that the variants involved are
numerous and spread across the genome en-
abled us to leverage whole-genome analytic
techniques to explore human sexual behavior
in ways previously impossible. We determined
that the genetic effects that differentiate het-
erosexual from same-sex sexual behavior are
not the same as those that differ among non-
heterosexuals with lower versus higher propor-
tions of same-sex partners. This finding suggests
that on the genetic level, there is no single di-
mension from opposite-sex to same-sex prefer-
ence. The existence of such a dimension, in which
the more someone is attracted to the same-sex the
less they are attracted to the opposite-sex, is
the premise of the Kinsey scale (39), a research
tool ubiquitously used to measure sexual orien-
tation. Another measure, the Klein Grid (40),
retains the same premise but separately mea-
sures sexual attraction, behavior, fantasies, and
identification (as well as nonsexual preferences);
however, we found that these sexual measures
are influenced by similar genetic factors. Overall,
our findings suggest that the most popular mea-
sures are based on a misconception of the un-
derlying structure of sexual orientation and may
need to be rethought. In particular, using sep-
arate measures of attraction to the opposite sex
and attraction to the same sex, such as in the Sell
Assessment of Sexual Orientation (41), would
remove the assumption that these variables are
perfectly inversely related and would enable
more nuanced exploration of the full diver-
sity of sexual orientation, including bisexuality
and asexuality.

Although we emphasize the polygenicity of
the genetic effects on same-sex sexual behavior,
we identified five SNPs whose association with
same-sex sexual behavior reached genome-wide
significance. Three of these replicated in other
independent samples whose measures related
to identity and attraction rather than behavior.
These SNPs may serve to generate new lines of
enquiry. In particular, the finding that one of
the replicated SNPs (rs28371400-15921.3) is
linked to male pattern balding and is nearby
a gene (TCFI12) relevant to sexual differenti-
ation strengthens the idea that sex-hormone
regulation may be involved in the develop-
ment of same-sex sexual behavior. Also, that
another replicated SNP (rs34730029-11q12.1)
is strongly linked to several genes involved in
olfaction raises intriguing questions. Although
the underlying mechanism at this locus is un-
clear, a link between olfaction and reproductive
function has previously been established. Indi-
viduals with Kallmann syndrome exhibit both
delayed or absent pubertal development and an
impaired sense of smell because of the close
developmental origin of fetal gonadotropin-
releasing hormone and olfactory neurons (42).

Our study focused on the genetic basis of same-
sex sexual behavior, but several of our results
point to the importance of sociocultural context
as well. We observed changes in prevalence of
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reported same-sex sexual behavior across time,
raising questions about how genetic and socio-
cultural influences on sexual behavior might in-
teract. We also observed partly different genetic
influences on same-sex sexual behavior in females
and males; this could reflect sex differences in
hormonal influences on sexual behavior (for
example, importance of testosterone versus estro-
gen) but could also relate to different sociocultural
contexts of female and male same-sex behavior
and different demographics of gay, lesbian,
and bisexual groups (43). With these points in
mind, we acknowledge the limitation that we
only studied participants of European ancestry
and from a few Western countries; research in-
volving larger and more diverse samples will
afford greater insight into how these findings
fare across different sociocultural contexts.

Our findings provide insights into the biolog-
ical underpinnings of same-sex sexual behavior
but also underscore the importance of resisting
simplistic conclusions (Box 2)—because the be-
havioral phenotypes are complex, because our
genetic insights are rudimentary, and because
there is a long history of misusing genetic re-
sults for social purposes.

Materials and methods summary
Study samples

We used data from genotyped individuals from
five cohorts (total n = 492,678) who provided self-
report information using different questionnaire-
based measurement scales. Informed consent
was provided from all individuals participating
in the studies, which were approved by their
local research ethic committee.

Genetic association analyses

After standard quality control, we performed
GWAS:s for “same-sex sexual behavior” (defined
as ever versus never having had sex with a same-
sex partner) in the UK Biobank and 23andMe
samples, which we meta-analysed using MTAG
(17). We also conducted GWASs separately by sex.
Genome-wide significant SNPs were replicated
in three independent samples. Also, using
LD-pred (24), we derived polygenic score for
same-sex sexual behavior according to the meta-
analyzed GWAS results and tested the associa-
tion between this polygenic score and same-sex
sexual behavior in three independent samples.
To explore diversity among individuals report-
ing same-sex sexual behavior, we also conducted
GWAS:s in the UK-Biobank and 23andMe sam-
ples (meta-analyzed using MTAG) on the “pro-
portion of same-sex to total number of sexual
partners among nonheterosexuals.”

Heritability estimation

We estimated family-based heritability of same-
sex sexual behavior on the basis of known
familial relationships in the UK Biobank study.
The relatedness between pairs of participants
was estimated by using KING (44). Additive
genetic effects as well as shared and unshared
environmental variance components were esti-
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mated on the basis of the covariance between
different pairs of relatives. Second, heritability
explained by all measured common SNPs (SNP-
based heritability) was estimated by using link-
age disequilibrium (LD) score regression (45) and
transformed to the liability scale (46). Using a
similar approach, we also estimated the SNP-
based heritability per chromosome and evaluated
heritability enrichment across various tissues on
the basis of Genotype-Tissue Expression (GTEx)
gene-expression results (47).

In silico follow-up

The GWAS results for same-sex sexual behavior
were followed up with gene-based tests of as-
sociation in MAGMA (29) and an enrichment
analysis of evolutionarily constrained genes by
using partitioned LD score regression (45) and
MAGMA. We also performed a PheWAS (28) to
examine whether the SNPs we identified for
same-sex sexual behavior have also been asso-
ciated with other phenotypes and eQTL map-
ping (27) to link SNPs with gene expression.

Genetic correlations and phenotypic
heterogeneity

Using cross-trait LD score regression (16), we
estimated the genetic correlations of same-sex
sexual behavior and proportion of same-sex to
total number of sexual partners among non-
heterosexuals with a range of traits, including
mental health, personality, and sexually dimor-
phic traits. To examine heterogeneity of genetic
influences, we looked at the genetic correlations
between sexes, between cohorts, and between
different measures of sexual preference.

Science communication strategy

To communicate the results of the study to the
broader audience, we engaged with different
LGBTQIA+ (lesbian, gay, bisexual, transgender,
queer, intersex, asexual, and other+) and science
communication organizations and created mul-
timedia materials for a lay audience.

Detailed materials and methods can be found
in the supplementary materials (14).
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Large-scale GWAS reveals insights into the genetic architecture of same-sex sexual behavior
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The genetics of sexual orientation

Twin studies and other analyses of inheritance of sexual orientation in humans has indicated that same-sex
sexual behavior has a genetic component. Previous searches for the specific genes involved have been underpowered
and thus unable to detect genetic signals. Ganna et al. perform a genome-wide association study on 493,001 participants
from the United States, the United Kingdom, and Sweden to study genes associated with sexual orientation (see the
Perspective by Mills). They find multiple loci implicated in same-sex sexual behavior indicating that, like other behavioral
traits, nonheterosexual behavior is polygenic.
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