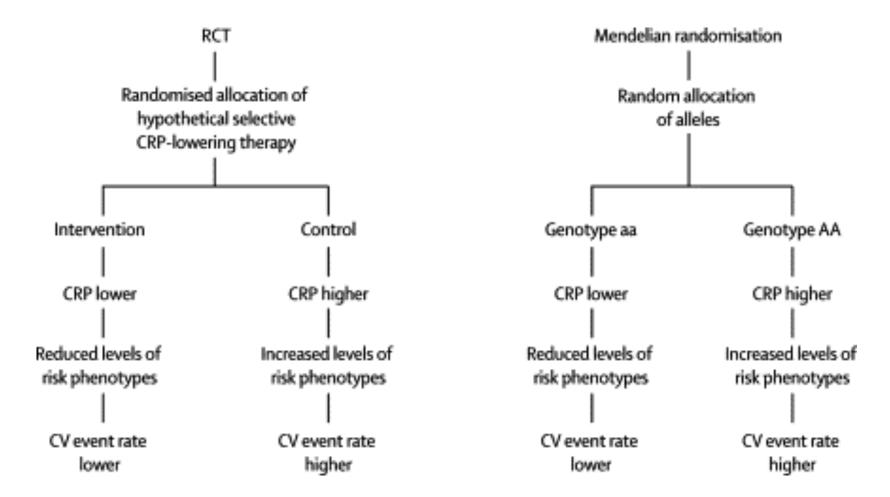
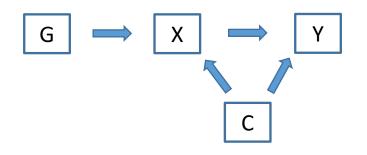

Mendelian Randomization

Drawback with observational studies


The power of genetics

Mendelian Randomization

- Basic principle: "genetic variants which mirror the biological effects of a modifiable environmental exposure and alters disease risk should be associated with disease risk to the extent predicted by their influence on exposure to the risk factor."
- The random allocation of genetic variants from parents to offspring means these variants will generally be unrelated to other factors which affect the outcome.
- Furthermore, associations between the genotype and the outcome will not be affected by reverse causation because disease does not affect genotype


Possible effects of C-reactive protein (CRP) on cardiovascular (CV) events. Expected outcome from hypothetical randomized clinical trial of selective CRP-lowering intervention, and from Mendelian randomization analysis, if CRP were causal in developing CV.

Hingorani & Humphries, Lancet 2005

Three key assumptions in MR analysis

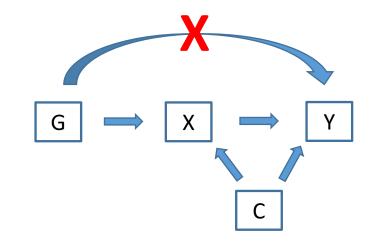
- 1. G (SNP or a combination of multiple SNPs) is robustly associated with X (risk factor)
- 2. G is unrelated to any confounders C, that can bias the relationship between G and Y (outcome). In other words, there are no common causes of G and Y (e.g. population stratification)
- 3. G is related to Y only through its association with X (i.e. no pleiotropy)

Assumption 1: G is robustly associated with X

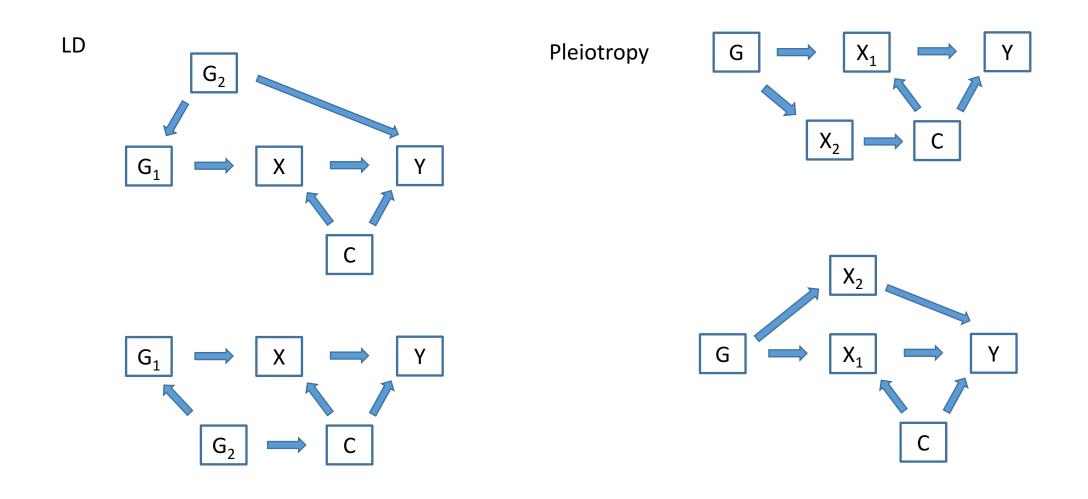
• Under certain conditions, the relative bias of the instrument variable (IV) estimate is ~1/F. A "weak" IV has been defined as having F<10, where

$$F = \frac{R^2(n-1-k)}{(1-R^2)k}$$

R² is variance in X explained by the IV(s), n is sample size and k is number of IVs


• Weak IVs can lead to biased effect estimates (in the direction of the observed X-Y association) in the presence of confounding of the X–Y relationship.

Assumption 2: No confounding


- G is independent of factors (measured and unmeasured) that confound the X-Y relation
- Since G is randomized at birth and thus is independent of non-genetic confounders and is not modified by the course of disease, the one main concern here is population stratification – i.e. if ancestry is related both to G and Y.
- If you have individual-level data, you can test for this (e.g. PCA)

Assumption 3: No pleiotropy

- This assumption is the trickiest
- Assumes that G is only associated with Y via X and thus the association between G and Y is fully mediated by X and not through any unmeasured factor(s). Needs to be true for SNPs in LD too

Scenarios invalidating assumption 3

Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies¹

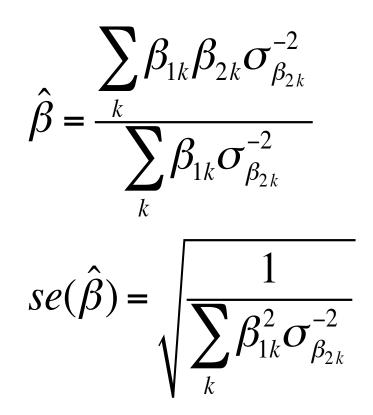
TADI DI A

Philip C Haycock,²* Stephen Burgess,³ Kaitlin H Wade,² Jack Bowden,^{2,4} Caroline Relton,² and George Davey Smith²

Study design	Test	Comments
G-X + G-Y	Implies $X \rightarrow Y$	No estimation of magnitude of causal effect
One-sample MR	Various hypotheses	Requires individual-level data; lower power; MR estimates are biased toward the confounded observational association by weak instruments
Two-sample MR	Various hypotheses	Individual-level or summary data; greater power (due to greater potential sample sizes); MR estimates are biased toward the null by weak instruments
Bidirectional MR	$X \rightarrow Y$ and $Y \rightarrow X$	Assesses causation in both directions
Two-step MR	$X \rightarrow M \rightarrow Y$	Tests mediation in a causal pathway
G×E	X → Y (relation is dependent on environment variable)	Able to detect direct effects (a violation of assumption 2 of MR)

¹G×E, gene-environment interaction; G-X, SNP-exposure association; G-Y, SNP-outcome association, M, mediator; MR, Mendelian randomization; SNP, single nucleotide polymorphism; X, hypothesized exposure; Y, outcome variable of interest.

Haycock et al, Am J Clin Nutr 2016


Individual-level data in one sample

- Access to SNPs, risk factor, and outcome for all participants
- The causal effect of X on Y can be estimated using 2-stage least-squares (2SLS) regression:
- 1. $X = a + \gamma G$
- 2. $Y = c + \beta X^*$, where X^* are the genetically predicted exposure levels as measured in (1)
- The causal estimate is given by β
- Can be implemented in R using the "ivpack" package
- Weak instruments cause bias towards the observed confounded association

Summary data from two samples

- The G-X and the G-Y associations are estimated in two different samples.
- Assumes no overlap among samples and that the two populations are similar (ethnicity, age, sex, etc.)
- Here, bias due to weak IVs will be towards the null
- Note: The G-X and G-Y associations need to be coded using the same effect allele

Summary data from two samples

 β_{1k} is the mean change in X per allele for SNP k, β_{2k} is the mean change in Y per allele for SNP k, σ_{2k}^{-2} is the inverse variance for the G-Y association.

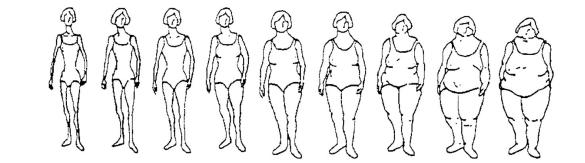
Meta-analysis of associations between height and risk of breast cancer in prospective cohort studies.

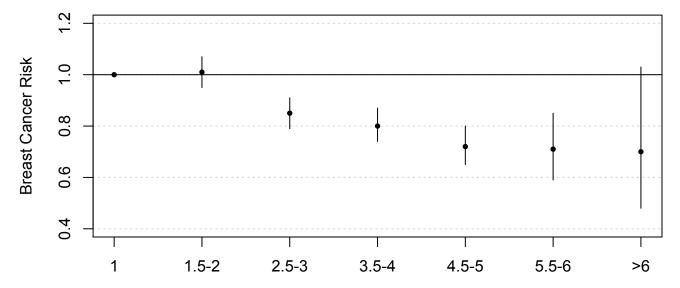
Author (published year)	Total samples (N)	Events (n)		RR (95% CI) per 10 cm increase
Measured height				
Kabat (2013)	88 256	4 2 2 4	│ -∰-;	1.12 (1.06 to 1.17)
Wormser (2012)	522 257	3 926	- ≣ ÷	1.13 (1.07 to 1.18)
Kabat (2013)	144 701	6798	₩	1.14 (1.10 to 1.18)
Kaaks (1998)	11 480	275		1.14 (0.92 to 1.41)
Ritte (2013)	306 600	9 307		1.18 (1.15 to 1.22)
Tornberg (1988)	46 570	1 182		1.21 (1.10 to 1.34)
Mellemkjaer (2012)	23 864	1 209		1.23 (1.13 to 1.35)
Ahlgren (2004)	117 415	3 340	∎	1.23 (1.16 to 1.31)
Wiren (2014)	297 156	6161		1.23 (1.18 to 1.29)
Tretli (1989)	567 333	8 4 2 7		1.24 (1.19 to 1.29)
Vatten (1992)	25 967	291	- <u>+</u>	1.25 (1.13 to 1.39)
Macinnis (2004)	13 598	357		1.27 (1.07 to 1.52)
Tulinius (1997)	11 580	439		1.31 (1.10 to 1.55)
Freni (1996)	7 622	182		- 1.36 (1.02 to 1.81)
De Stavola (1993)	6706	168	· · · · · · · · · · · · · · · · · · ·	1.38 (1.21 to 1.57)
Subtotal	2 191 105	46286	\diamond	1.20 (1.17 to 1.23)
Self-reported height				
Sonnenschein (1999)	8416	259		1.08 (0.90 to 1.30)
White (2012)	19815	835	+ • •	1.09 (0.98 to 1.21)
Kabat (2014)	192 514	9 1 6 9		1.09 (1.06 to 1.13)
Lacey (2009)	70 575	2 0 8 5	+	1.11 (0.98 to 1.26)
Canchola (2012)	52 642	2 321		1.12 (1.05 to 1.20)
van den Brandt (2000)	337 819	4 385		1.12 (1.07 to 1.18)
Michels-Blanck (1996)	428 653	2 2 2 2 6		1.12 (1.05 to 1.21)
Green (2011)	1 297 124	39 299		1.17 (1.15 to 1.19)
McCullough (2005)	409 093	4 265	-==	1.19 (1.12 to 1.26)
Weiderpass (2004)	99717	733		1.22 (1.00 to 1.34)
Baer (2006)	108 829	1 3 1 5		1.23 (1.12 to 1.36)
Subtotal	3 025 197	66 892	\diamond	1.14 (1.11 to 1.17)
All studies combined	5216302	113 178	P _{heterogeneity} < .001 I-squared = 61%	1.17 (1.15 to 1.19)

Ben Zhang et al. JNCI J Natl Cancer Inst 2015;107:djv219

Table 3.Association of height and breast cancer risk in women

	Meta-analysis o	f prospective s	tudies	Breast Cancer Association Consortium						
	Observat	ional estimate		Instrumental va	riable estimate		Observation	al estimate		
Breast cancer group	N/events	RR (95% CI)*	Ρ	Case patients/ control subjects	OR (95% CI)*	Ρ	Case patients/ control subjects	OR (95% CI)*	Ρ	
All women combi	ned									
All case patients	5216302/113178	1.17 (1.15 to 1.19)	<.001	46325/42482	1.22 (1.13 to 1.32)	<.001	30248/20458	1.13 (1.10 to 1.16)	<.001	
By menopausal st	tatus									
Premenopausal	2801907/15439	1.16 (1.12 to 1.21)	<.001	10209/9053	1.29 (1.07 to 1.56)	.007	8959/6225	1.11 (1.05 to 1.17)	<.001	
Postmenopausal	3111070/63606	1.17 (1.14 to 1.21)	<.001	23069/19355	1.32 (1.17 to 1.49)	<.001	20197/13311	1.14 (1.10 to 1.18)	<.001	
P interaction By ER status			.79			.86			.35	
ER-positive	433810/7947	1.18 (1.13 to 1.23)	<.001	27074/42482	1.26 (1.14 to 1.38)	<.001	19953/20458	1.16 (1.12 to 1.20)	<.001	
ER-negative	433810/1845	1.00 (0.87 to 1.13)	.95	7288/42482	1.02 (0.87 to 1.18)	.84	4810/20458	1.05 (1.00 to 1.10)	.07	
P interaction			.02			.02			.002	

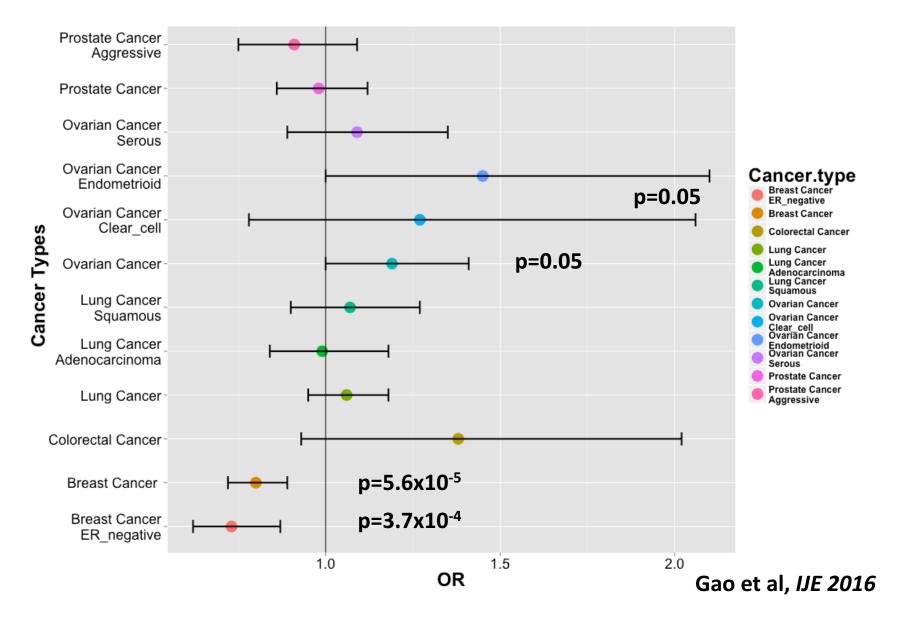

Cancer type (ICD10) and number of c	1	HR (99% CI)	p value
Oral cavity (C00-06) —■—	×	0·81 (0·74–0·89)	<0.000
(7976) —		1·07 (0·91–1·26)	0.26
Oesophageal (C15)	- ₩	1·03 (0·99–1·08)	0·056
(5213)		1·16 (1·09–1·24)	<0·000
Stomach (C16)	- 	1·03 (0·98–1·09)	0·16
(3337)		1·08 (1·00–1·18)	0·013
Colon (C18)	₽	1·10 (1·07–1·13)	<0.000
(13 465)	- ×-	1·11 (1·07–1·15)	<0.000
Rectum (C20)	 -	1·04 (1·00–1·08)	0·017
(6123)		1·05 (0·99–1·12)	0·024
Liver (C22)		1·19 (1·12–1·27)	<0.000
(1859)		1·26 (1·14–1·40)	<0.000
Gallbladder (C23)		1·31 (1·12–1·52)	<0.000
(303)		1·50 (1·21–1·85)	<0.000
Pancreas (C25)	- 	1·05 (1·00–1·10)	0-012
(3851)		1·11 (1·03–1·19)	0-000
Lung (C34) (19 339) -	*	0·82 (0·81–0·84) 0·99(0·93–1·05)	<0.000 0.55
Malignant melanoma (C43)	₽ -	0·99(0·96–1·02)	0·39
(8505) →	←	0·96(0·92–1·00)	0·013
Breast—premenopausal (C50) +		0·89(0·86-0·92) 0·89(0·85-0·94)	<0.000 <0.000
Breast—postmenopausal (C50)	■	1·05 (1·03–1·07)	<0.000
(28 409)	*	1·05 (1·03–1·08)	<0.000
Cervix (C53)	- 	1·10 (1·03-1·17)	0.000
(1389)		1·14 (1·03-1·26)	0.001
Uterus (C54-55)	- 	1·62 (1·56-1·69)	<0.000
(2758)		1·63 (1·55-1·71)	<0.000
Ovaries (C56)	- -	1·09 (1·04–1·14)	<0.000
(3684)		1·08 (1·02–1·15)	0.000
Prostate (C61)	■	0·98(0·95–1·00) 0·96(0·93–0·99)	0-004 0-002
Kidney (C64)	- 	1·25 (1·17-1·33)	<0.000
(1906)		1·25 (1·13-1·38)	<0.000
Bladder (C67)	- 	1·03 (0·99–1·06)	0.062
(7976)		1·05 (0·99–1·12)	0.033
Brain and CNS (C71–72)	- -	1·04 (0·99–1·10)	0-053
(2974) –		1·02 (0·94–1·10)	0-56
Thyroid (C73)	- 	1·09 (1·00–1·19) 1·11 (0·99–1·25)	0-008 0-017
(941)			
Non-Hodgkin lymphoma (C82–85)	⊨	1·03 (0·99–1·06)	0.050
	★	1·00 (0·95–1·05)	0.96
(941) Non-Hodgkin lymphoma (C82–85) (6946) - Multiple myeloma (C90) (2969) -			0.050 0.96 0.15 0.40


- Association between BMI and cancer risk was assessed for 22 cancers
- 5.24 million individuals (166,996 cancer cases)

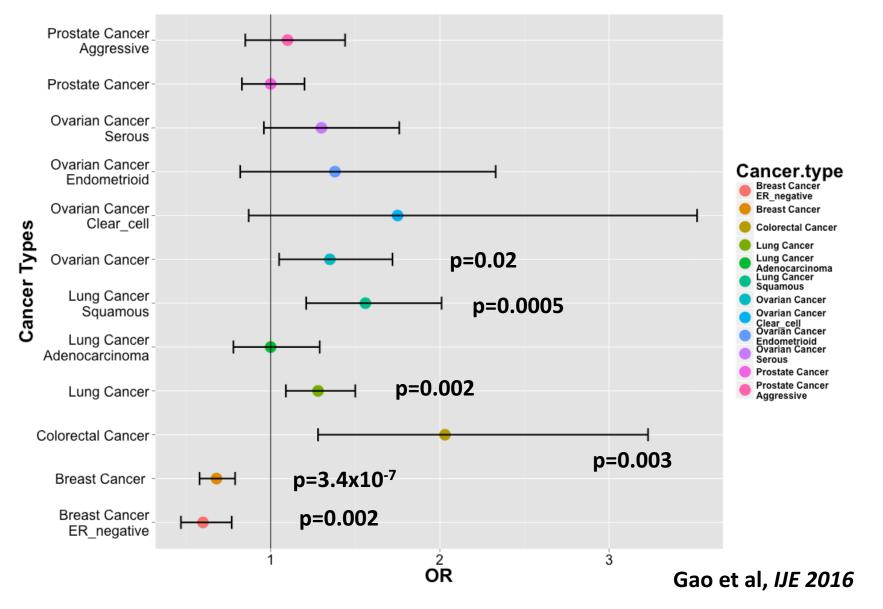
Breast—premenopausal (C50)	0.89(0.86-0.92) <0.0
(6298)	0.89(0.85-0.94) <0.0
Breast—postmenopausal (C50)	1.05 (1.03–1.07) <0.0
(28 409)	1.05 (1.03–1.08) <0.0
Colon (C18)	1.10 (1.07–1.13) <0.00
(13 465)	1.11 (1.07–1.15) <0.00
Rectum (C20)	1.04 (1.00–1.08) 0.01
(6123)	1.05 (0.99–1.12) 0.02
Lung (C34) 💻	0.82 (0.81–0.84) <0.0
(19 339)	0.99(0.93-1.05) 0.5
Ovaries (C56)	1.09 (1.04–1.14) <0.0
(3684)	1.08 (1.02–1.15) 0.0
Prostate (C61)	0.98(0.95-1.00) 0.0
(24901)	0.96(0.93-0.99) 0.0

Bhaskaran et al, Lancet 2014

Childhood body fatness is inversely associated with breast cancer risk

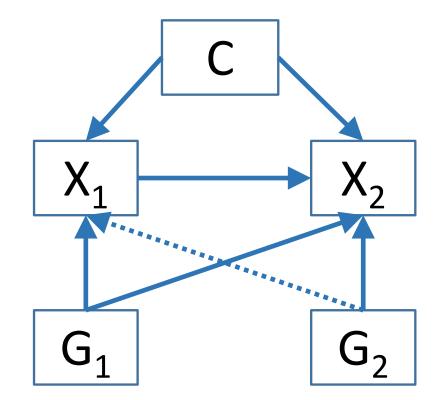

Baer et al, AJE 2010

Expansion to other cancer types within GAME-ON

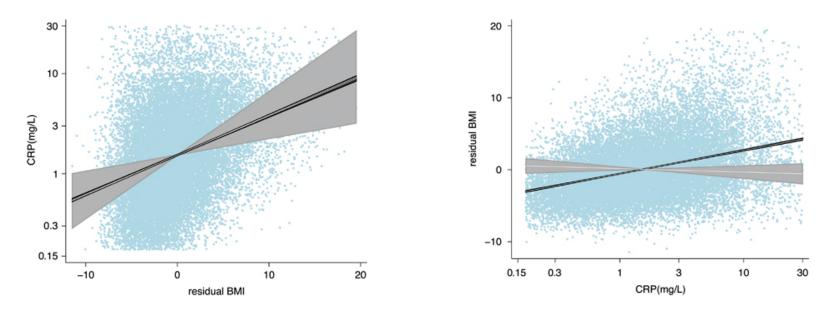

Cancer Type	Cases	Controls	GWAS studies
Breast			
All	15,569	18,204	11
ER-negative	4,760	13,248	8
Colorectal	5,100	4,831	6
Lung ^a			
All	12,527	17,285	6
Adenocarcinoma	3,804	16,289	6
Squamous	3,546	16,434	6
Ovarian ^a			
All	4,369	9,123	3
Clear-cell	356	9,123	3
Endometrioid	715	9,123	3
Serous	2,556	9,123	3
Prostate			
All	14,160	12,712	6
Aggressive	4,446	12,724	6
Total	51,725	62,155	Ga

Gao et al, IJE 2016

Childhood body fatness (9 SNPs)


Adult BMI (77 SNPs)

Bidirectional MR analysis


- Approach to overcome reverse causation
- IVs for both X_1 and X_2 are used to assess the causal association in both directions
- 1. Is G_1 associated with X_2 ?
- 2. Is G_2 associated with X_1 ?

(Also confirm that G_1 is associated with X_1 and that G_2 is associated with X_2

BMI and CRP – what causes what?

• There is a consistent observed association between high BMI and high CRP levels

Light grey points represent a scatter plot of the correlation between circulating CRP and residual BMI. Gray areas represent 95% confidence regions around IV estimates. Black area represents 95% confidence regions around simple linear regression estimates.

Timpson et al, Int J Obesity 2011

 These data suggest that the observed association between circulating CRP and measured BMI is likely to be driven by BMI, with CRP being a marker of elevated adiposity.

Table 4. Relationships between genotypic variation and BMI and circulating CRP

Previo	Previous table A Figures and tables index								
				FTO(rs99396	i09)				
	тт	AT	AA	Per allele effect	P-value				
BMI	26.07 (25.98, 26.17)	26.37 (26.29, 26.45)	26.73 (26.59, 26.87)	0.32 (0.24, 0.40)	<0.0001				
CRP	1.51 (1.48, 1.55)	1.55 (1.52, 1.58)	1.61 (1.56, 1.67)	1.03 (1.01, 1.05)	0.003				
				CRP(rs30912	44)				
	CC	CT	TT	CA	AT	AA	Per allele effect	P	
BMI	26.32 (26.23, 26.41)	26.36 (26.27, 26.44)	26.24 (26.07, 26.42)	26.25 (26.02, 26.47)	26.29 (25.98, 26.61)	27.15 (26.02, 28.28)	-0.01 (-0.06, 0.04)	0.7	
CRP	1.37 (1.34, 1.40)	1.61 (1.57, 1.64)	1.82 (1.74, 1.90)	1.71 (1.62, 1.81)	2.11 (1.95, 2.28)	2.56 (1.95, 3.37)	1.11 (1.10, 1.13)	< 0.000	

Table 5. Observational and instrumental variable derived relationships between BMI and circulating CRP.

 Previous table 	 Figures and tables index 								
Outcome /explanatory variable		Observational	Instrumental variable	P _{IV}	P _{diff}	F _{first}			
CRP/BMI		1.46 (1.44, 1.48)	1.41 (1.10, 1.80)	0.006	0.8	31.1			
BMI/CRP		1.03 (1.00, 1.07)	-0.24 (-0.58, 0.11)	0.2	<0.0001	57.3			

Abbreviations: BMI, body mass index; CI, confidence interval; CRP, C-reactive protein.

Observational analysis effects (95% CI) derived from linear regression adjusted for sex, age, age squared, age-sex interaction, log(height), smoking, drinking, education and income.

CRP is log transformed for analyses above and effects on CRP are shown as ratios of geometric means for a s.d. increase in BMI.

BMI effects are expressed as kgm⁻² for a doubling in logCRP.

Instrumental variable derived estimates of the same effects include the same covariates.

 $P_{\rm IV}$ is the P-value from a test that the instrumental variable estimate is equal to the null.

P diff is the P-value from a test for difference between the observational and instrumental variable estimates.

F_{first} is the first stage F-statistic from instrumental variable analysis.

Timpson et al, Int J Obesity 2011

Drawbacks with MR analysis

- Large sample sizes are needed!
- As genetic effects on risk factors are typically small, MR estimates of association have much wider confidence intervals than conventional epidemiological estimates.
- Make sure that the three key assumptions hold!