Session 13: Mendelian Randomization

Drawback with observational studies

We can leverage genetic variation to (partly) overcome these issues

Mendelian Randomization

- Basic principle: "genetic variants which mirror the biological effects of a modifiable environmental exposure and alters disease risk should be associated with disease risk to the extent predicted by their influence on exposure to the risk factor."
- The random allocation of genetic variants from parents to offspring means these variants will generally be unrelated to other factors which affect the outcome.
- Furthermore, associations between the genotype and the outcome will not be affected by reverse causation because disease does not affect genotype

Possible effects of C-reactive protein (CRP) on cardiovascular (CV) events. Expected outcome from hypothetical randomized clinical trial of selective CRP-lowering intervention, and from Mendelian randomization analysis, if CRP were causal in developing CV.

Three key assumptions in MR analyses

- 1. G (SNP or a combination of multiple SNPs) is robustly associated with X (risk factor)
- 2. G is unrelated to any confounders C, that can bias the relationship between G and Y (outcome). In other words, there are no common causes of G and Y (e.g., population stratification)
- 3. G is related to Y only through its association with X (i.e., no pleiotropy)

Assumption 1: G is robustly associated with X

• Under certain conditions, the relative bias of the instrument variable (IV) estimate is ~1/F. A "weak" IV has been defined as having F<10, where

$$F = \frac{R^2(n-1-k)}{(1-R^2)k}$$

R² is variance in X explained by the IV(s), n is sample size and k is number of IVs

• Weak IVs can lead to biased effect estimates (in the direction of the observed X-Y association) in the presence of confounding of the X–Y relationship.

Assumption 2: No confounding

- G is independent of factors (measured and unmeasured) that confound the X-Y relation
- Since G is randomized at birth and thus is independent of non-genetic confounders and is not modified by the course of disease, the one main concern here is population stratification – i.e., if ancestry is related both to G and Y.
- If you have individual-level data, you can test for this (e.g., PCs)

Assumption 3: No pleiotropy

- This assumption is the trickiest
- Assumes that G is only associated with Y via X and thus the association between G and Y is fully mediated by X and not through any unmeasured factor(s). Needs to be true for SNPs in LD too

Scenarios invalidating assumption 3

Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies¹

TABLE 2

Philip C Haycock,²* Stephen Burgess,³ Kaitlin H Wade,² Jack Bowden,^{2,4} Caroline Relton,² and George Davey Smith²

Study design	Test	Comments
G-X + G-Y	Implies $X \rightarrow Y$	No estimation of magnitude of causal effect
One-sample MR	Various hypotheses	Requires individual-level data; lower power; MR estimates are biased toward the confounded observational association by weak instruments
Two-sample MR	Various hypotheses	Individual-level or summary data; greater power (due to greater potential sample sizes); MR estimates are biased toward the null by weak instruments
Bidirectional MR	$X \rightarrow Y$ and $Y \rightarrow X$	Assesses causation in both directions
Two-step MR	$X \rightarrow M \rightarrow Y$	Tests mediation in a causal pathway
G×E	X→Y (relation is dependent on environment variable)	Able to detect direct effects (a violation of assumption 2 of MR)

¹G×E, gene-environment interaction; G-X, SNP-exposure association; G-Y, SNP-outcome association, M, mediator; MR, Mendelian randomization; SNP, single nucleotide polymorphism; X, hypothesized exposure; Y, outcome variable of interest.

Haycock et al, Am J Clin Nutr 2016

Summary data from two studies

- The G-X and the G-Y associations are estimated in two different samples.
- Assumes no overlap among samples and that the two populations are similar (ethnicity, age, sex, etc.)
- Here, bias due to weak IVs will be towards the null
- Note: The G-X and G-Y associations need to be coded using the same effect allele

Summary data from two studies

 β_{1k} is the mean change in X per allele for SNP k, β_{2k} is the mean change in Y per allele for SNP k, σ_{2k}^{-2} is the inverse variance for the G-Y association.

MR-base: An easy tool for Mendelian Randomization Analysis

Overview:

- Collaboratively developed by the University of Bristol, University of Cambridge and Translational Research Institute of Australia.
- A web-based platform (MR-Base) and an R-package "TwoSampleMR'.
- http://app.mrbase.org/
- Has catalogued thousands of genotype-phenotype associations and also allows manual file upload.

Acknowledgements

Welcome to MR Base

i About

Data access agreement

TwoSampleMR R package

Logged in as Hongjie Chen hongjie.chen41@gmail.com

🗱 Perform MR analysis

Q Quick SNP lookup

A platform for Mendelian randomisation using summary data from genome-wide association

studies

package to analyse your own outcome datasets.

Click on 'Perform MR analysis'

To begin analysis in the web application please review the data access agreement and accept by logging in with your google account.

✤ Get started Current status Beta phase release App version: 1.2.2 3a435d (31 January 2019) R version: 3.5.1 Host: e4ec2116cb55 R/TwoSampleMR version: 0.4.18 Database version: 0.2.0 (17 December 2017) To use MR-Base using the TwoSampleMR R package directly: https://github.com/MRCIEU/TwoSampleMR See our sister website LD Hub for automated LD score regression: http://ldsc.broadinstitute.org/

Get the R package

All analyses, data extraction and more can be performed using the TwoSampleMR R package. Additionally, you can use the R

Acknowledgements

Welcome to MR Base

i About

Data access agreement

TwoSampleMR R package

Logged in as Hongjie Chen hongjie.chen41@gmail.com

📽 Perform MR analysis

account.

Current status

App version:

R version: 3.5.1 Host: e4ec2116cb55

0.4.18

Beta phase release

1.2.2 3a435d (31 January 2019)

R/TwoSampleMR version:

https://github.com/MRCIEU/TwoSampleMR

To use MR-Base using the TwoSampleMR R package directly:

See our sister website LD Hub for automated LD score regression:

Database version: 0.2.0 (17 December 2017)

http://ldsc.broadinstitute.org/

➡ Choose exposures➡ Choose outcomes

Q Quick SNP lookup

A platform for Mendelian randomisation using summary data from genome-wide association

studies

Select the exposure (Instrumental variable),

To begin analysis in the web application please review the data access agreement and accept by logging in with your google

✤ Get started

outcome and analysis scheme here.

Get the R package

package to analyse your own outcome datasets.

All analyses, data extraction and more can be performed using the TwoSampleMR R package. Additionally, you can use the R

Choosing instruments for the exposure

Choose instruments

Select exposure source

MR Base GWAS catalog O Gene expression QTLs

O Manual file upload O NHGRI-EBI GWAS catalog

O Protein level QTLs

To use two sample MR to estimate the causal effect of an exposure on an outcome, the first step is to identify SNPs that are robustly associated with the exposure. These summary statistics for these SNPs can be taken from a sample from which there is no data on the outcome

Please provide instruments by choosing from one of the data sources below, or by uploading your own data. You can choose multiple exposures to be analysed, and multiple instruments per exposure.

Welcome to MR Base i About

MR BASE

Acknowledgements

🏓 Data access agreement

TwoSampleMR R package

Logged in as **Hongjie Chen** hongjie.chen41@gmail.co

C Perform MR analysis Choose exposures

Choose outcomes

🚊 Run MR

Q Quick SNP lookup

The MR Base database holds a collection of the summary statistics from a large number of GWASs. It is possible to use this resource to manually identify instruments, and to therefore use these traits as exposures by finding the independent GWAS significant hits from these summary associations.

To use a trait as an exposure, highlight the relevant row in the table below (multiple traits can be selected). All SNPs with p values below the specified threshold will be extracted, and clumping will be used to remove SNPs in LD with sentinal SNPs. These SNPs will be used as instruments in the MR analysis.

Can either use the instruments provided by MR-base, O Metabolite level QTLs Or use the manually uploaded file. O Methylation level QTLs

-value threshold		LD Rsq					/	Sele	ection cr	riteria c	of SNPs							
5e-08		0.001																
Perform clumping		Clumping	distance (kb)															
		10000																
isplay columns		First a	author			Sample size				Access		🗹 Sd						
D		Conse	ortium			Number of varia	ants			Category		🗹 Se	ĸ					
Trait		Numb	ber of cases			🗹 Year				Population		🗹 Su	bcategory					
Note		🗹 Numb	ber of controls			PubmedID				Priority		🗹 Un	it					
how 10 🗸 entr	ies																Search:	
↓ ID	t li Trait	Note	First author	Consortium	↓† Number o n case	s contro	of Is Sample	L1 e size	Number of variants	11 Year	PubmedID Access	Category	11 It Population	Priority	it Si	d Sex	11 J Subcategory	l I1 Unit
1 1	Adiponectin		Dastani Z	ADIPOGen				39883	2675209	2012	22479202 public	Risk factor	Mixed		1 0	.57 Males and females	Protein	ln(mg/dL)
10 10	Crohn's disease		Jostins L	IIBDGC	14	763 15	5977	30740	13898	2012	23128233 public	Disease	European		1	Males and females	Autoimmune / inflammatory	log odds
100 100	Hip circumference	Adjusted for BMI	Randall JC	GIANT				60586	2725796	2013	23754948 public	Risk factor	European	1	.5 8.4	548 Males	Anthropometric	SD (cm)
1000 1000	Depressive symptoms		Okbay	SSGAC				161460	6524475	2016	27089181 public	Risk factor	European		1	Males and females	Psychiatric / neurological	SD
1001 1001	Years of schooling		Okbay	SSGAC				293723	8146841	2016	27225129 public	Risk factor	European		1 3	.71 Males and females	Education	SD (years)
1002 1002	Leptin	Adjusted for BMI; effect allel frequencies are missing	le Kilpelainen					32161	2474010	2016	26833098 public	Risk factor	European		1	Males and females	Hormone	log ng/ml
1003 1003	Leptin	Effect allele frequencies are missing	Kilpelainen					32161	2473865	2016	26833098 public	Risk factor	European		2	Males and females	Hormone	log ng/ml
1004 1004	Age at menopause		Day	ReproGen				69360	2418696	2015	26414677 public	Risk factor	European		1 3	.93 Females	Reproductive aging	years
1005 1005	Percent emphysema		Manichaikul A	MESA	Specify	the lite	rature	7667	2968584	2014	24383474 public	Risk factor	Mixed		1 0.7	708 Males and females	Lung disease	log (% emphysema + 1)
1006 1006	Mean platelet volume	Effect allele frequencies are missing	Gieger C	HaemGen	to be in	cluded	here	66867	2690859	2011	22139419 public	Risk factor	European		1 0.	109 Males and females	Haemotological	log fl
All	All	All	All	All	All	All	All		All	All		All	All	All	All	All	All	All

Choosing instruments for the exposure

MR BASE

Welco
Abou
Ackno
Data

Logged i Hongjie hongjie Choo

Q Quick

To use two sample MR to estimate the causal effect of an exposure on an outcome, the first step is to identify SNPs that are robustly associated with the exposure. These summary statistics for these SNPs can be taken from a sample from which there is no data on the outcome.

Please provide instruments by choosing from one of the data sources below, or by uploading your own data. You can choose multiple exposures to be analysed, and multiple instruments per exposure.

	-																			
e to MR Base	Choose instruments						MR Base GWAS catalog													
	Select exposure source					The MR Base database holds a collection of the summary statistics from a large number of GWASs. It is possible to use this resource to manually identify instruments, and to therefore use these traits as exposures by finding the independent GWAS significant hits from these summary														
		Ianual fi <mark>l</mark> e upload IHGRI-EBI GWAS ca	talog				association To use a tra	is. it as an exposure	e. <mark>highlight th</mark>	e relevant row i	n the table below	multiple traits can	be selected). All Si	Ps with p values below the	specified threshold will be	extracted, and clum	ping will be used to remove !	SNPs in LD with sentinal SNPs	s. These SNPs will be u	used as instruments
vledgements	<u>о</u> м	IR Base GWAS cata	og				in the MR a	nalysis.									-			
coess agreement	O Ge	ene expression QTI rotein level QTLs	Ls																	
eMD D package	OM	Ietabolite level QTL	.s																	
	OM	lethylation level Q1	Ls																	
as hen					1.1.2.2.1.1.1															
en41@gmail.com	p-val	lue threshold			LD Rsq															
n MR analysis 🔇 🔇		- (closed and	1														
e exposures	M Pe	erform clumping			10000	stance (KD)														
R	Dicol	av columns			Eirst aut	thor			Samol	a siza			Access		Z \$2	4				
n marva (19)			Consort	ium			Numbe	er of variants			Category		Se Se	ex .				
SNP lookup <	Tr	rait			Number	of cases			Vear	10			Population		🗹 Si	ibcategory				
						or controls			Publike	arb			Phoney						a 100 million	
	Show	v 10 🗸 entri	es																Search:	
		ID	Trait ↓1	Note	ļĵ	First author	Consortium	↓î Numbe ca	er of 1 ases	controls	Sample size	Number of variants	11 Year	PubmedID Access	Category	Population	Priority	Sd Sex	11 Subcategory	t It Unit
	1	1	Adiponectin			Dastani Z	ADIPOGen				39883	2675209	2012	22479202 public	Risk factor	Mixed	1	0.57 Males and females	Protein	ln(mg/dL)
	10	10	Crohn's disease			Jostins L	IIBDGC		14763	15977	30740	13898	2012	23128233 public	Disease	European	1	Males and females	Autoimmune / inflammatory	log odds
	100	100	Hip circumference	Adjusted for BM	I	Randall JC	GIANT				60586	2725796	2013	23754948 public	Risk factor	European	15	8.4548 Males	Anthropometric	SD (cm)
	1000	0 1000	Depressive symptoms			Okbay	SSGAC	Select	the ir	nstrum	ents1460	6524475	2016	27089181 public	Risk factor	European	1	Males and females	Psychiatric / neurological	SD
	1001	1 1001	Years of schooling			Okbay	SSGAC	to be ir	nclud	ed	293723	8146841	2016	27225129 public	Risk factor	European	1	3.71 Males and females	Education	SD (years)
	1002	2 1002	Leptin	Adjusted for BM frequencies are	II; effect allele missing	Kilpelainen		in your ⁄	IVIR	anaiys	IS 32161	2474010	2016	26833098 public	Risk factor	European	1	Males and females	Hormone	log ng/ml
	1003	3 1003	Leptin	Effect allele free missing	quencies are	Kilpelainen					32161	2473865	2016	26833098 public	Risk factor	European	2	Males and females	Hormone	log ng/ml
	1004	4 1004	Age at menopause			Day	ReproGen				69360	2418696	2015	26414677 public	Risk factor	European	1	3.93 Females	Reproductive aging	years
	1005	5 1005	Percent emphysema			Manichaikul A	MESA				7667	2968584	2014	24383474 public	Risk factor	Mixed	1	0.708 Males and females	Lung disease	log (% emphysema + 1)
	1006	6 1006	Mean platelet volume	Effect allele free missing	quencies are	Gieger C	HaemGen				66867	2690859	2011	22139419 public	Risk factor	European	1	0.109 Males and females	Haemotological	log fl
		All	All	All		All	All	All	Al		All	All	All	All All	All	All	All All	All	All	All

Showing 1 to 10 of 21,266 entries

Previous 1 2 3 4 5 ... 2127 Next

-

Select outcomes for analysis

Display columns

Show 10 v entries

Trait

Note

The MR Base database houses a large collection of summary statistic data from hundreds of GWAS studies. In order to perform two sample MR, the SNPs that were selected for the exposures will be extracted from the outcomes that you select here. Please select the outcomes that you want to test for being causally influenced by the exposures.

Sample size

✓ Number of variants

Welcome to MR Base

	About
1	ADOUL

Acknowledgements

Data access agreement

TwoSampleMR R package

Logged in as **Hongjie Chen** hongjie.chen41@gmail.com

🗱 Perform MR analysis

茸 Run MR

Q Quick SNP lookup

Number of cases	🔽 Year
✓ Number of controls	PubmedID

Choose the outcome of the MR analysis

First author

Consortium

Access
Category
Population
Priority

Select the outcome GWAS data to be used

Sd

Sex

Unit

Subcategory

Search:

Trait	11 Note	First author	↓↑ Consortium	Number of cases	Number of controls	Sample size	Number of variants	Year Catego	ry Subcategory
26 Breast cancer (Combined Oncoarray; GWAS meta analysis)	iCOGS;	Michailidou K	BCAC	122977	105974	228951	10680257	2017 Disease	e Cancer
27 ER+ Breast cancer (Combined Oncoar iCOGS; GWAS meta analysis)	ray;	Michailidou K	BCAC	69501	105974	175475	10680257	2017 Disease	e Cancer
28 ER- Breast cancer (Combined Oncoard iCOGS; GWAS meta analysis)	ay;	Michailidou K	BCAC	21468	105974	127442	10680257	2017 Disease	2 Cancer
29 Breast cancer (Oncoarray)		Michailidou K	BCAC	61282	45494	106776	10680257	2017 Disease	e Cancer
30 Breast cancer (iCOGS)		Michailidou K	BCAC	46785	42892	89677	10680257	2017 Disease	e Cancer
31 Breast cancer (GWAS)		Michailidou K	BCAC	14910	17588	32498	10680257	2017 Disease	e Cancer
32 ER+ Breast cancer (Oncoarray)		Michailidou K	BCAC	38197	45494	83691	10680257	2017 Disease	e Cancer
33 ER+ Breast cancer (iCOGS)		Michailidou K	BCAC	27078	42892	69970	10680257	2017 Disease	e Cancer
34 ER+ Breast cancer (GWAS)		Michailidou K	BCAC	4226	17588	21814	10680257	2017 Disease	e Cancer
35 ER- Breast cancer (Oncoarray)		Michailidou K	BCAC	9655	45494	55149	10680257	2017 Disease	e Cancer
Breast Cancer 🛛 🛞 👞	All	All	All	All	All	All	All	All	All

Search for the outcome of interest

MRBASE

- Welcome to MR Base
- i About
- Acknowledgements
- Data access agreement
- TwoSampleMR R package
- Logged in as Hongjie Chen hongjie.chen41@gmail.com
- 🗱 Perform MR analysis
- **Q** Quick SNP lookup

Move forward and set up the MR analysis

LD clumping

Most two sample MR methods require that the instruments do not have LD between them.

Linkage disequilibrium

- Do not check for LD between SNPs
- Use clumping to prune SNPs for LD

LD proxies

If a particular exposure SNP is not present in an outcome dataset, should proxy SNPs be used instead through LD tagging?

Use proxies?

Minimum LD Rsq value

MAF threshold for aligning palindromes

Allele harmonisation

An important step in two sample MR is making sure that the effects of the SNPs on the exposure correspond to the same allele as their effects on the outcome. This is potentially difficult with palindromic SNPs.

Handling reference alleles

- All effect alleles are definitely on the positive strand
- Attempt to align strands for palindromic SNPs
- Exclude palindromic SNPs

Select methods for analysis

Many methods exist for performing two sample MR. Different methods have sensitivities to different potential issues, accommodate different scenarios, and vary in their statistical efficiency.

Choose which methods to use:

- 🗹 Wald ratio
- Maximum likelihood
- MR Egger
- MR Egger (bootstrap)
- Simple median
- 🗹 Weighted median
- Penalised weighted median
- Inverse variance weighted
- IVW radial
- Inverse variance weighted (multiplicative random effects)
- Inverse variance weighted (fixed effects)
- Simple mode
- 🗹 Weighted mode
- Weighted mode (NOME)
- Simple mode (NOME)
- Robust adjusted profile score (RAPS)
- Sign concordance test
- Unweighted regression

Submit

Once you have selected exposures, outcomes, and analysis options you are ready to perform the analysis.

Perform MR analysis

After setting up the analysis scheme, click here to submit the request to perform the MR analysis

	Select analysis	MR results Heterogeneity statistics Causal dir	ection test Horizontal pleiotropy				Table
R BASE	Exposure	This table shows the MR estimates from each method of the causal effect of the exposure on the outcome. The	method 🎝	nsnp] †	b↓↑	se	pval
	. We active to base a literation	effects are reported in the units that were used to	MR Egger	35	0.06926	0.02329	0.005452
	Outcome	estimate the SNP effects.	Weighted median	35	0.05319	0.01036	2.815e-7
	Breast cancer (Combined Oncoarray; iCOGS; GWAS meta analysis) id:1126	Test statistics corresponding to /	Inverse variance weighted	35	0.04993	0.01036	0.000001446
2	➡ Generate HTML report	MR analysis approaches selected	Weighted mode	35	0.06599	0.01204	0.000004092
		init analysis approaches selected.					
ents	Exposure details	Single SNP analysis Method comparison plot	Leave-one-out analysis Funnel plot				Graphs
ment	Name: Age at menopause	The causal effect of exposure on outcome is estimated					
	ID: 1004	using each SNP singly using the Wald ratio, and	rs 11905055 rs 11804189 rs 12196873				
	Number of instruments used: 42	represented in a forest plot. The MR estimate using all	rs2720044 rs13040088	_			
	Number of cases: NaN	SNPs using the MR Egger and IVW methods are also	rs6899676				
	Number of controls: NaN	shown. Formal estimates of heterogeneity are shown in	rs 10852344 rs 16991615				
	Sample size: 69360	the tables below.	rs10957156	_			
	PubmedID: 26414677		rs 11008344				
	First author: Day	Download PDF of this graph	rs2241584 rs1411478		Cauca		Fornacura
	Consortium: ReproGen		rs2941505 rs1800932	•	Causa	l effect o	exposure
<	Year: 2015		rs1749306		on out	come, by	/ SNP
			rs12460 rs12460 rs1246511				
	Outcome details		rs4896238				
	Name: Breast cancer (Combined Oncoarray; iCOGS; GWAS meta analysis)		rs365132				
	ID: 1126		rs6856693				
	SNPs in GWAS: 10680257		rs4693089				
<	Number of instruments identified: 35 💌		All - Egger All - IVW				
	of which are LD proxies: 0 # Of instrume	ents were found in the outcome GWA	S, -0.2 -0.1 0.0 0.1 MR effect size for	0.2 0.3			
	Units: log odds	used in the MR analysis	Age at menopause id:1004 on Breast cancer (Combined Oncoarray;	COGS; GWAS meta analys	115		
	Number of cases: 122977 VVIIICII VVEIE (used in the win analysis.					
al	Sample size: 228051						
vsis	PubmedID: 20059683						
19313	First author: Michailidou K						
	Consortium: BCAC						
	Year: 2017						
	Downloads for all analyses						
	Lownload harmonised summary statistics						
	▲ Download MR results	oad the generated datasets or MR and	alvsis results here.				
	Lownload leave-one-out sensitivity analysis						
	Download single CND MD results						

BREAKOUT ACTIVITY

- Explore MR-Base (<u>http://www.mrbase.org</u>) to conduct your own MR study.
- Run an MR study of body mass index and lung cancer risk following the example in class.

Bidirectional MR analysis

- Approach to overcome reverse causation
- IVs for both X_1 and X_2 are used to assess the causal association in both directions
- 1. Is G_1 associated with X_2 ?
- 2. Is G_2 associated with X_1 ?

(Also confirm that G_1 is associated with X_1 and that G_2 is associated with X_2

BMI and CRP – what causes what?

• There is a consistent observed association between high BMI and high CRP levels

Light grey points represent a scatter plot of the correlation between circulating CRP and residual BMI. Gray areas represent 95% confidence regions around IV estimates. Black area represents 95% confidence regions around simple linear regression estimates.

Timpson et al, Int J Obesity 2011

Table 5. Observational and instrumental variable derived relationships between BMI and circulating CRP.

Previous table	 Figures and tables index 								
	Effec								
Outcome /explanatory variable	Observational	Instrumental variable	P _{IV}	Pdiff	F first				
CRP/BMI	1.46 (1.44, 1.48)	1.41 (1.10, 1.80)	0.006	0.8	31.1				
BMI/CRP	1.03 (1.00, 1.07)	-0.24 (-0.58, 0.11)	0.2	< 0.0001	57.3				

These data suggest that the observed association between circulating CRP and measured BMI is likely to be driven by BMI, with CRP being a marker of elevated adiposity.

Drawbacks with MR analysis

- Large sample sizes are needed
 - As genetic effects on risk factors are typically small, MR estimates of association have much wider confidence intervals than conventional epidemiological estimates.
- Make sure that the three key assumptions hold
 - In practice, this is very difficult, especially for the third assumption of no pleiotropy.

 Table 1. Summary of some methods proposed for Mendelian randomization: inverse-variance weighted method and robust methods.

Method	Consistency assumption	Strengths and weaknesses	Reference	Software
Inverse-variance weighted	All variants valid or balanced pleiotropy	Most efficient (greatest statistical power), biased if average pleiotropic effect differs from zero	18	*†
MR-Egger	InSIDE	Sensitive to outliers, sensitive to violations of InSIDE assumption, InSIDE assumption often not plausible, often less efficient	19	*†
Weighted median	Majority valid	Robust to outliers, sensitive to addition/removal of genetic variants	20	*†
Mode-based estimation	Plurality valid	Robust to outliers, sensitive to bandwidth parameter and addition/ removal of genetic variants, generally conservative	21	*†
MR-PRESSO	Outlier-robust	Removes outliers, efficient with valid IVs, very high false positive rate with several invalid IVs	22	+
MR-Robust	Outlier-robust	Downweights outliers, efficient with valid IVs, high false positive rate with several invalid IVs	23	*
MR-Lasso	Outlier-robust	Removes outliers, efficient with valid IVs, high false positive rate with several invalid IVs	23	
MR-RAPS	Balanced pleiotropy (except outliers)	Downweights outliers, sensitive to violations of balanced pleiotropy assumption	24	‡
Contamination Mixture	Plurality valid	Robust to outliers, sensitive to variance parameter and addition/ removal of genetic variants	25	*
MR-Mix	Plurality valid	Robust to outliers, requires large numbers of genetic variants, very high false positive rate in several scenarios	26	‡

Each of the methods in the table can be implemented using summarized data. False positive rates refer to the simulation study by Slob and Burgess²⁷. InSIDE is the Instrument Strength Independent of Direct Effect assumption.

Mendelian Randomization in R

- Encodes several methods for performing Mendelian randomization analyses with summarized data. Summarized data on genetic associations with the exposure and with the outcome can be obtained from large consortia. These data can be used for obtaining causal estimates using instrumental variable methods.
- <u>https://cran.r-project.org/web/packages/MendelianRandomization/index.html</u>
- <u>https://www.youtube.com/channel/UCHjMrVSqOu1rcrYQPAD_bNA</u>

