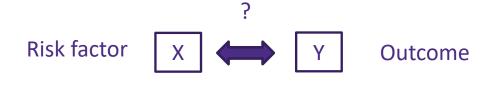


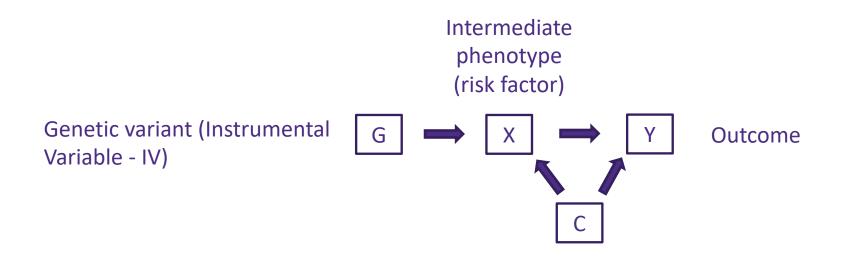
Session 13: Mendelian Randomization


Drawback with observational studies

CONFOUNDING

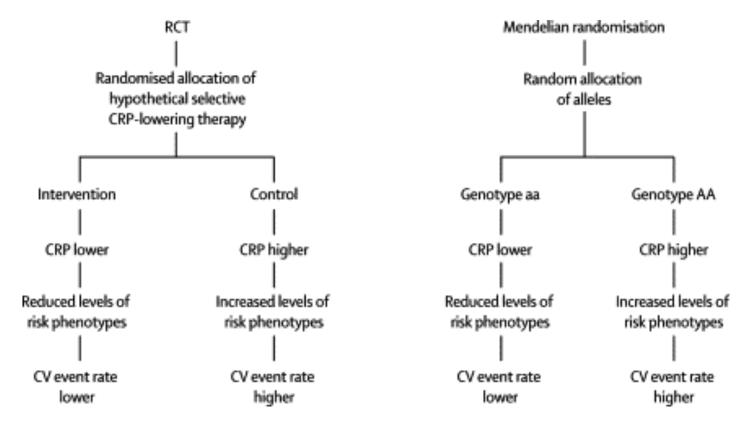
Risk factor X Y Outcome

(Unobserved) Confounders


REVERSE CAUSATION

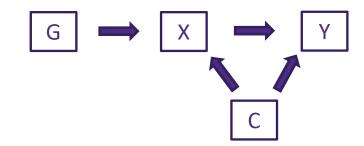
We can leverage genetic variation to (partly) overcome these issues

(Unobserved) Confounders


Mendelian Randomization

- > Basic principle: "genetic variants which mirror the biological effects of a modifiable environmental exposure and alters disease risk should be associated with disease risk to the extent predicted by their influence on exposure to the risk factor."
- > The allocation of genetic variants from parents to offspring will generally be unrelated to other factors which affect the outcome.
- > Furthermore, associations between the genotype and the outcome will not be affected by reverse causation because disease does not affect genotype

Possible effects of C-reactive protein (CRP) concentrations on cardiovascular (CV) events


Expected outcome from hypothetical randomized clinical trial of selective CRP-lowering intervention, and from Mendelian randomization analysis, if CRP were causal in developing CV.

The three key assumptions in MR analyses

- 1. G (SNP or a combination of multiple SNPs) is robustly associated with X (risk factor)
- 2. G is unrelated to any confounders C, that can bias the relationship between G and Y (outcome). In other words, there are no common causes of G and Y (e.g., population stratification)

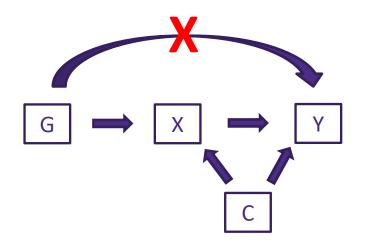
3. G is related to Y only through its association with X (i.e., no pleiotropy)

Assumption 1: G is robustly associated with X

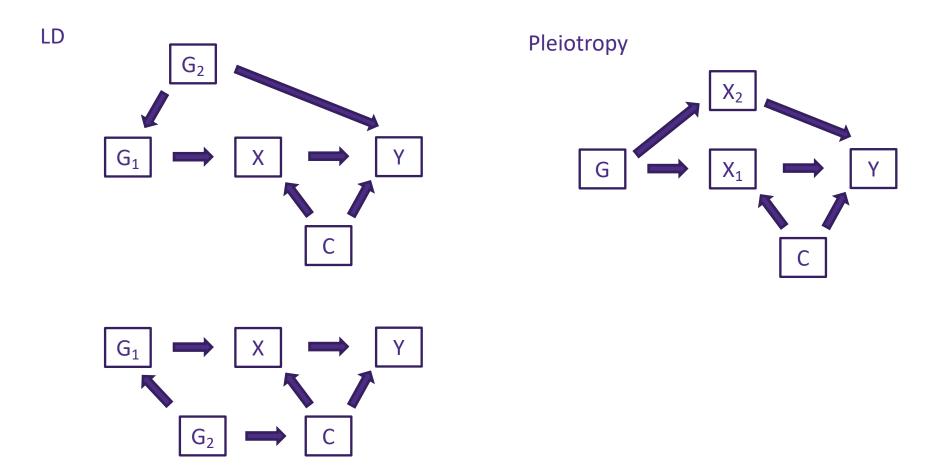
> Under certain conditions, the relative bias of the instrument variable (IV) estimate is ~1/F. A "weak" IV has been defined as having F<10, where

$$F = \frac{R^2(n-1-k)}{(1-R^2)k}$$
 R² is variance in X explained by the IV(s), n is sample size and k is number of IVs

> Weak IVs can lead to biased effect estimates (in the direction of the observed X-Y association) in the presence of confounding of the X-Y relationship.


Assumption 2: No confounding

- > G is independent of factors (measured and unmeasured) that confound the X-Y relation
- > Since G is randomized at birth and thus is independent of non-genetic confounders and is not modified by the course of disease, the one main concern here is population stratification i.e., if ancestry is related both to G and Y.
- > If you have individual-level data, you can adjust for this (e.g., PCs)


Assumption 3: No pleiotropy

- > This assumption is the trickiest
- > Assumes that G is only associated with Y via X and thus the association between G and Y is fully mediated by X and not through any unmeasured factor(s). Needs to be true for SNPs in LD too

Scenarios invalidating assumption 3

Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies¹

Philip C Haycock,²* Stephen Burgess,³ Kaitlin H Wade,² Jack Bowden,^{2,4} Caroline Relton,² and George Davey Smith²

TABLE 2
Different design strategies for MR¹

Study design	Test	Comments
G-X + G-Y	Implies $X \rightarrow Y$	No estimation of magnitude of causal effect
One-sample MR	Various hypotheses	Requires individual-level data; lower power; MR estimates are biased toward the confounded observational association by weak instruments
Two-sample MR	Various hypotheses	Individual-level or summary data; greater power (due to greater potential sample sizes); MR estimates are biased toward the null by weak instruments
Bidirectional MR	$X \rightarrow Y$ and $Y \rightarrow X$	Assesses causation in both directions
Two-step MR	$X \rightarrow M \rightarrow Y$	Tests mediation in a causal pathway
G×E	X→Y (relation is dependent on environment variable)	Able to detect direct effects (a violation of assumption 2 of MR)

¹G×E, gene-environment interaction; G-X, SNP-exposure association; G-Y, SNP-outcome association, M, mediator; MR, Mendelian randomization; SNP, single nucleotide polymorphism; X, hypothesized exposure; Y, outcome variable of interest.

Summary data from two studies

- > The G-X and the G-Y associations are estimated in two different samples.
- > Assumes no overlap among samples and that the two populations are similar (ancestry, age, sex, etc.)
- Note: The G-X and G-Y associations need to be coded using the same effect allele

Summary data from two studies

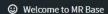
$$\hat{\beta} = \frac{\sum_{k} \beta_{1k} \beta_{2k} \sigma_{\beta_{2k}}^{-2}}{\sum_{k} \beta_{1k} \sigma_{\beta_{2k}}^{-2}}$$

$$se(\hat{\beta}) = \sqrt{\frac{1}{\sum_{k} \beta_{1k}^2 \sigma_{\beta_{2k}}^{-2}}}$$

 β_{1k} is the mean change in X per allele for SNP k, β_{2k} is the mean change in Y per allele for SNP k, σ_{2k}^{-2} is the inverse variance for the G-Y association.

MR-base: An easy tool for Mendelian Randomization Analysis

- > http://app.mrbase.org/
- > A web-based platform (MR-Base) and an R-package "TwoSampleMR'.
- > Has catalogued thousands of genotype-phenotype associations and also allows manual file upload.



i About

Acknowledgements

Data access agreement

TwoSampleMR R package

Logged in as

Hongjie Chen
hongjie.chen41@gmail.com

Perform MR analysis

Q Quick SNP lookup

A platform for Mendelian randomisation using summary data from genome-wide association studies

Click on 'Perform MR analysis'

To begin analysis in the web application please review the data access agreement and accept by logging in with your google account.

♣ Get started

All analyses, data extraction and more can be performed using the TwoSampleMR R package. Additionally, you can use the R package to analyse your own outcome datasets.

Get the R package

Current status

Beta phase release

App version:

1.2.2 3a435d (31 January 2019)

R version:

3.5.1

Host:

e4ec2116cb55

R/TwoSampleMR version:

0.4.18

Database version:

0.2.0 (17 December 2017)

To use MR-Base using the TwoSampleMR R package directly:

https://github.com/MRCIEU/TwoSampleMR

See our sister website LD Hub for automated LD score regression:

http://ldsc.broadinstitute.org/

i About

Acknowledgements

Data access agreement

TwoSampleMR R package

Logged in as **Hongjie Chen**hongjie.chen41@gmail.com

Perform MR analysis

≅ Choose exposures

幸 Choose outcomes

₹ Run MR

Q Quick SNP lookup

A platform for Mendelian randomisation using summary data from genome-wide association studies

Select the exposure (Instrumental variable), outcome and analysis scheme here.

To begin analysis in the web application please review the data access agreement and accept by logging in with your google account.

 → Get started

All analyses, data extraction and more can be performed using the TwoSampleMR R package. Additionally, you can use the R package to analyse your own outcome datasets.

Get the R package

Current status

Beta phase release

App version:

1.2.2 3a435d (31 January 2019)

R version:

3.5.1

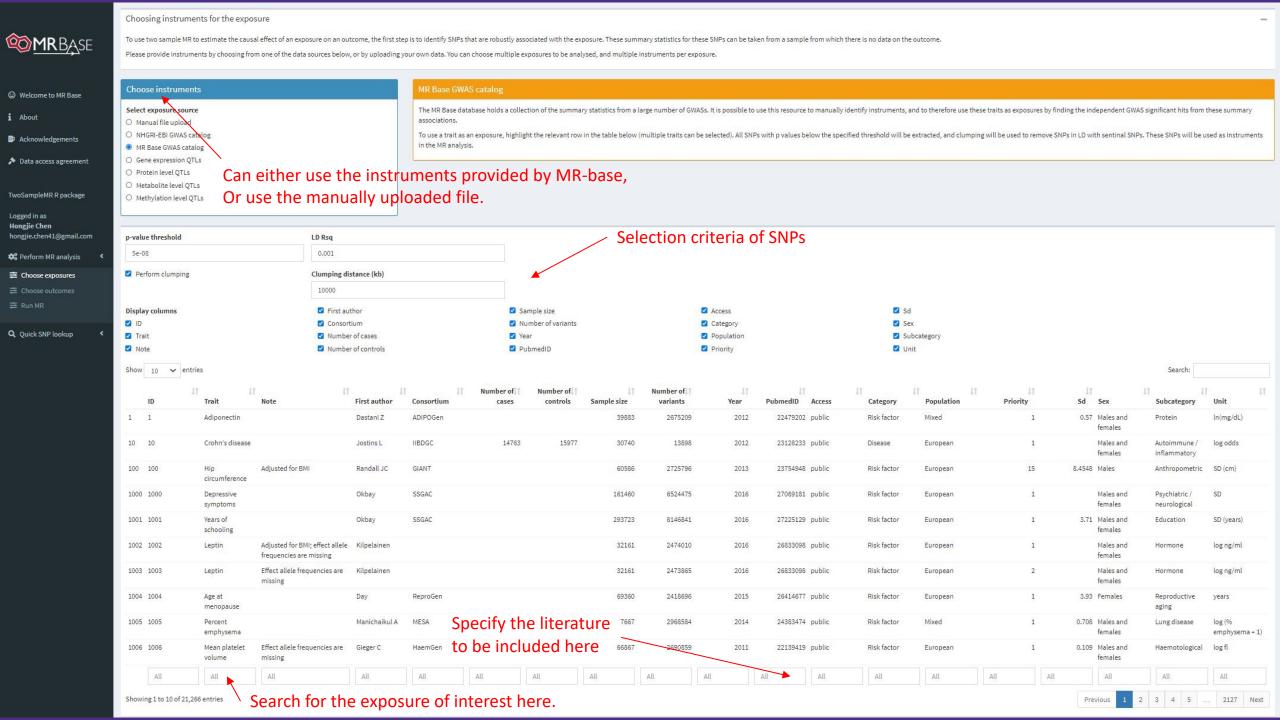
Host:

e4ec2116cb55

R/TwoSampleMR version:

0.4.18

Database version:


0.2.0 (17 December 2017)

To use MR-Base using the TwoSampleMR R package directly:

https://github.com/MRCIEU/TwoSampleMR

See our sister website LD Hub for automated LD score regression:

http://ldsc.broadinstitute.org/

Acknowledgements

> Data access agreement

TwoSampleMR R package

Logged in as Hongjie Chen hongjie.chen41@gmail.com

Perform MR analysis

Q Quick SNP lookup

Choosing instruments for the exposure

p-value threshold

5e-08

To use two sample MR to estimate the causal effect of an exposure on an outcome, the first step is to identify SNPs that are robustly associated with the exposure. These summary statistics for these SNPs can be taken from a sample from which there is no data on the outcome.

Please provide instruments by choosing from one of the data sources below, or by uploading your own data. You can choose multiple exposures to be analysed, and multiple instruments per exposure.

Cl	Choose instruments						
Se	Select exposure source						
0	Manual file upload						
0	NHGRI-EBI GWAS catalog						
0	MR Base GWAS catalog						
0	Gene expression QTLs						
0	Protein level QTLs						
0	Metabolite level QTLs						
0	Methylation level QTLs						

LD Rsq 0.001

The MR Base database holds a collection of the summary statistics from a large number of GWASs. It is possible to use this resource to manually identify instruments, and to therefore use these traits as exposures by finding the independent GWAS significant hits from these summary

To use a trait as an exposure, highlight the relevant row in the table below (multiple traits can be selected). All SNPs with p values below the specified threshold will be extracted, and clumping will be used to remove SNPs in LD with sentinal SNPs. These SNPs will be used as instruments

✓ Perf	orm clumping		Clum	mping distance (kb)														
			10	0000														
Displa	columns			First author		☑ Sa	ample size			✓ Access		2 5	Sd					
☑ ID				Consortium		☑ Nu	umber of variants			✓ Category			Sex					
Train	t			Number of cases		✓ Yea	ar			✓ Population		☑ 5	Subcategory					
☑ Note	E			Number of controls		☑ Pul	ubmedID			Priority		2 (Unit					
Show	10 v entri	es															Search:	
	ID J1	† I† Trait	Note	First author	Consortium	Number of 1 n cases	Number of controls	Sample size	Number of T variants	Year	PubmedID Access	Category	Population 11	Priority		I Sex	Subcategory 4	Unit 11
1	1	Adiponectin		Dastani Z	ADIPOGen			39883	2675209	2012	22479202 public	Risk factor	Mixed	1	. 0.5	.57 Males and females	Protein	ln(mg/dL)
10	10	Crohn's disease		Jostins L	IIBDGC	14763	15977	30740	13898	2012	23128233 public	Disease	European	1		Males and females	Autoimmune / inflammatory	log odds
100	100	Hip circumference	Adjusted for BMI	Randall JC	GIANT			60586	2725796	2013	23754948 public	Risk factor	European	15	8.454	48 Males	Anthropometric	SD (cm)
1000	1000	Depressive symptoms		Okbay		Select the		nents ¹⁴⁶⁰	6524475	2016	27089181 public	Risk factor	European	1	ļ	Males and females	Psychiatric / neurological	SD
1001	1001	Years of schooling		Okbay		to be inclu		293723	8146841	2016	27225129 public	Risk factor	European	1	. 3.7	.71 Males and females	Education	SD (years)
1002	1002	Leptin	Adjusted for BMI; effective frequencies are missing the contraction of	ect allele Kilpelainen ing		In your MF	₹ anaiys	SIS 32161	2474010	2016	26833098 public	Risk factor	European	1		Males and females	Hormone	log ng/ml
1003	1003	Leptin	Effect allele frequenci missing	cies are Kilpelainen				32161	2473865	2016	26833098 public	Risk factor	European	2	į.	Males and females	Hormone	log ng/ml
1004	1004	Age at menopause		Day	ReproGen			69360	2418696	2015	26414677 public	Risk factor	European	ļ	3.9	.93 Females	Reproductive aging	years
1005	1005	Percent emphysema		Manichaikul A	MESA			7667	2968584	2014	24383474 public	Risk factor	Mixed	1	0.70	'08 Males and females	Lung disease	log (% emphysema + 1)
1006	1006	Mean platelet volume	Effect allele frequenci missing	cies are Gieger C	HaemGen			66867	2690859	2011	22139419 public	Risk factor	European	1	0.10	.09 Males and females	Haemotological	log fl
	All	All	All	All	All	All	All	All	All	All	All All	All	All	All	All	All	All	All
Showir	g 1 to 10 of 21,26	66 entries													F	Previous 1	2 3 4 5 .	2127 Next

Welcome to MR Base

i About

Acknowledgements

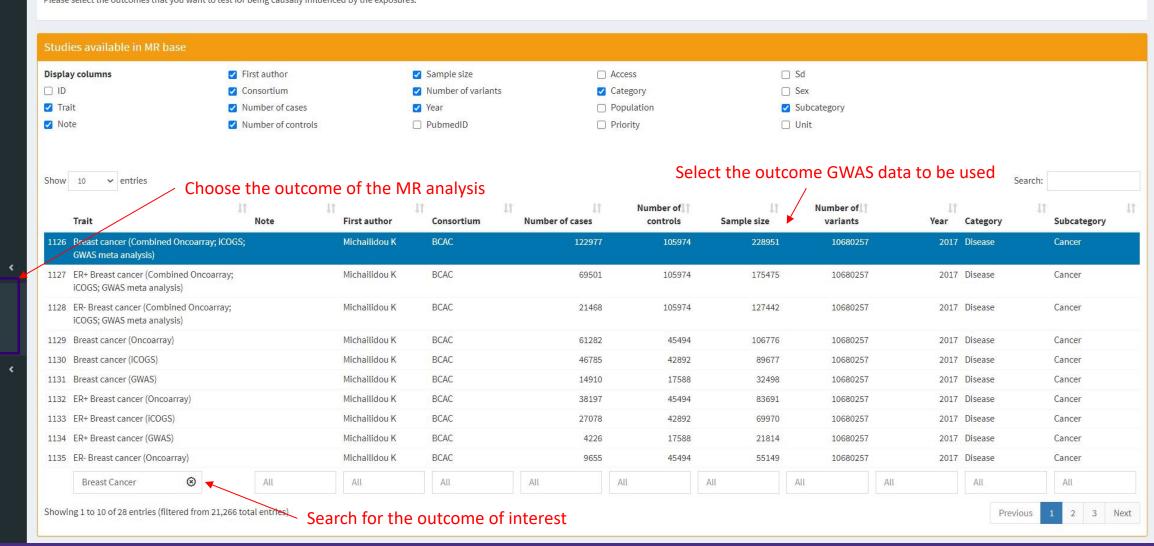
Data access agreement

TwoSampleMR R package

Logged in as **Hongjie Chen**hongjie.chen41@gmail.com

Perform MR analysis

≅ Choose exposures


≅ Run MR

Q Quick SNP lookup

Select outcomes for analysis

The MR Base database houses a large collection of summary statistic data from hundreds of GWAS studies. In order to perform two sample MR, the SNPs that were selected for the exposures will be extracted from the outcomes that you select here.

Please select the outcomes that you want to test for being causally influenced by the exposures.

Welcome to MR Base

i About

Acknowledgements

Data access agreement

TwoSampleMR R package

Logged in as

Hongjie Chen
hongjie.chen41@gmail.com

Perform MR analysis

≅ Run MR

Q Quick SNP lookup

Move forward and set up the

LD clumping

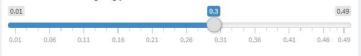
Most two sample MR methods require that the instruments do not have LD between them.

Linkage disequilibrium

- Do not check for LD between SNPs
- O Use clumping to prune SNPs for LD

LD proxies

If a particular exposure SNP is not present in an outcome dataset, should proxy SNPs be used instead through LD tagging?


✓ Use proxies?

Minimum LD Rsq value

✓ Allow palindromic SNPs?

MAF threshold for aligning palindromes

Allele harmonisation

An important step in two sample MR is making sure that the effects of the SNPs on the exposure correspond to the same allele as their effects on the outcome. This is potentially difficult with palindromic SNPs.

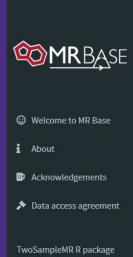
Handling reference alleles

- All effect alleles are definitely on the positive strand
- Attempt to align strands for palindromic SNPs
- O Exclude palindromic SNPs

Select methods for analysis

Many methods exist for performing two sample MR. Different methods have sensitivities to different potential issues, accommodate different scenarios, and vary in their statistical efficiency.

Choose which methods to use:


- ✓ Wald ratio
- Maximum likelihood
- MR Egger
- MR Egger (bootstrap)
- Simple median
- ✓ Weighted median
- Penalised weighted median
- Inverse variance weighted
- ☐ IVW radial
- Inverse variance weighted (multiplicative random effects)
- Inverse variance weighted (fixed effects)
- ☐ Simple mode
- ✓ Weighted mode
- ☐ Weighted mode (NOME)
- ☐ Simple mode (NOME)
- ☐ Robust adjusted profile score (RAPS)
- ☐ Sign concordance test
- Unweighted regression

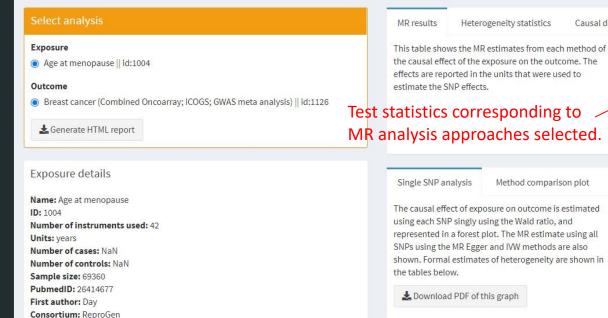
Submit

Once you have selected exposures, outcomes, and analysis options you are ready to perform the analysis.

Perform MR analysis

After setting up the analysis scheme, click here to submit the request to perform the MR analysis

Logged in as Hongjie Chen hongjie.chen41@gmail.com


Perform MR analysis

≐ Choose outcomes

Run MR

MR Results

Q Quick SNP lookup

Name: Breast cancer (Combined Oncoarray; iCOGS; GWAS meta analysis)

MR analysis approaches selected. Weighted mode 35 0.06599 Single SNP analysis Method comparison plot Leave-one-out analysis Funnel plot The causal effect of exposure on outcome is estimated rs10905065 rs11804189 using each SNP singly using the Wald ratio, and rs12196873 rs2720044 rs13040088 represented in a forest plot. The MR estimate using all rs7259376 rs6899676 SNPs using the MR Egger and IVW methods are also rs763121 rs10852344 rs16991615 shown. Formal estimates of heterogeneity are shown in rs 10957156 the tables below. rs7125555 rs1166834 Land Download PDF of this graph rs2241584 rs1411478 Causal effect of exposure rs.1800930 rs1046089 rs1799949 on outcome, by SNP rs427394 rs4246511 re4888230 rs4879656 rs365132 rs704795 rs1054875 re6858800

rs4693089

All - Egger All - IVW

MR effect size for "Age at menopause || id:1004" on "Breast cancer (Combined Oncoarray; iCOGS; GWAS meta analysis

Causal direction test

method

MR Egger

Weighted median

Inverse variance weighted

Horizontal pleiotropy

nsnp

35

35

35

b

0.06926

0.05319

0.04993

se

0.02329

0.01036

0.01036

0.01204

of instruments were found in the outcome GWAS, which were used in the MR analysis.

MR results

estimate the SNP effects.

Heterogeneity statistics

This table shows the MR estimates from each method of

the causal effect of the exposure on the outcome. The

effects are reported in the units that were used to

Tables

pval

0.005452

2.815e-7

0.000001446

0.000004092

Graphs

Downloads for all analyses

Year: 2015

ID: 1126

Units: log odds

Outcome details

SNPs in GWAS: 10680257

Number of cases: 122977 Number of controls: 105974 Sample size: 228951 PubmedID: 29059683 First author: Michailidou K Consortium: BCAC Year: 2017

... of which are LD proxies: 0

Number of instruments identified: 35

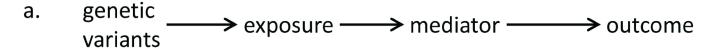
♣ Download harmonised summary statistics

♣ Download MR results

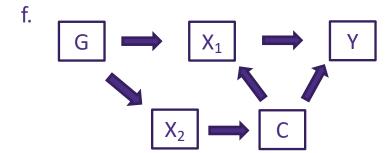
Download the generated datasets or MR analysis results here.

La Download leave-one-out sensitivity analysis

Land Download single SNP MR results


(BREAKOUT ACTIVITY)

> (Explore MR-Base (http://www.mrbase.org) to conduct your own MR study. Run an MR study of body mass index and lung cancer risk following the example in class.)



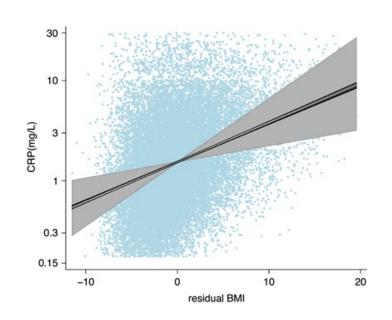
BREAKOUT ACTIVITY

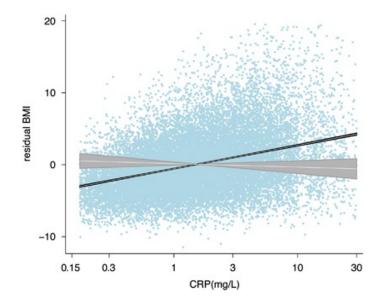
> In which examples (a-f) below do the MR assumptions not hold for assessing the association between exposure (X_1) and outcome (Y)? Why? Why not?

- b. genetic variants mediator mediator exposure outcome
- c. genetic → exposure → outcome variants variable
- d. genetic → related variable → outcome
 variants ← exposure

Bidirectional MR analysis

- > Approach to overcome reverse causation
- > IVs for both X₁ and X₂ are used to assess the causal association in both directions
- 1. Is G_1 associated with X_2 ?
- 2. Is G_2 associated with X_1 ?


(Also confirm that G_1 is associated with X_1 and that G_2 is associated with X_2



BMI and CRP – what causes what?

> There is a consistent observed association between high BMI and high CRP levels

Light grey points represent a scatter plot of the correlation between circulating CRP and residual BMI. Gray areas represent 95% confidence regions around IV estimates. Black area represents 95% confidence regions around simple linear regression estimates.

These data suggest that the observed association between circulating CRP and measured BMI is likely to be driven by BMI, with CRP being a marker of elevated adiposity.

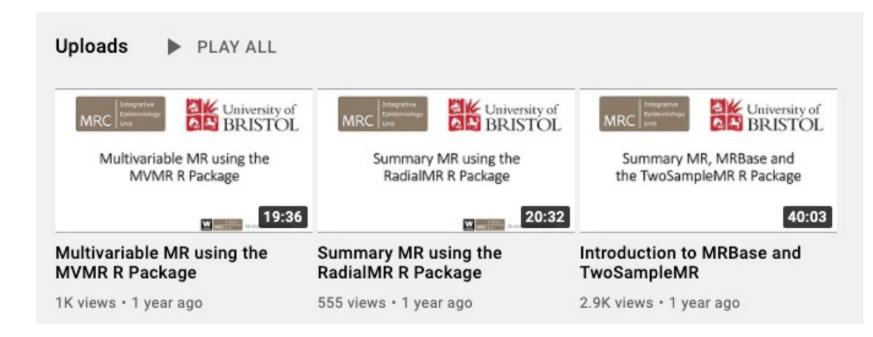
Table 5. Observational and instrumental variable derived relationships between BMI and circulating CRP.

Previous table	▲ Figures and tables index							
	Effec							
Outcome /explanatory variable	Observational	Instrumental variable	P _{IV}	P _{diff}	F first			
CRP/BMI	1.46 (1.44, 1.48)	1.41 (1.10, 1.80)	0.006	0.8	31.1			
BMI/CRP	1.03 (1.00, 1.07)	-0.24 (-0.58, 0.11)	0.2	<0.0001	57.3			

Drawbacks with MR analysis

- > Large sample sizes are needed
 - As genetic effects on risk factors are typically small, MR estimates of association have much wider confidence intervals than conventional epidemiological estimates.
- > Make sure that the three key assumptions hold
 - In practice, this is very difficult, especially for the third assumption of no pleiotropy.

Table 1. Summary of some methods proposed for Mendelian randomization: inverse-variance weighted method and robust methods.


Method	Consistency assumption	Strengths and weaknesses	Reference	Software
Inverse-variance weighted	All variants valid or balanced pleiotropy	Most efficient (greatest statistical power), biased if average pleiotropic effect differs from zero	18	*†
MR-Egger	InSIDE	Sensitive to outliers, sensitive to violations of InSIDE assumption, InSIDE assumption often not plausible, often less efficient	19	*†
Weighted median	Majority valid	Robust to outliers, sensitive to addition/removal of genetic variants	20	*+
Mode-based estimation	Plurality valid	Robust to outliers, sensitive to bandwidth parameter and addition/removal of genetic variants, generally conservative	21	*†
MR-PRESSO	Outlier-robust	Removes outliers, efficient with valid IVs, very high false positive rate with several invalid IVs	22	‡
MR-Robust	Outlier-robust	Downweights outliers, efficient with valid IVs, high false positive rate with several invalid IVs	23	*
MR-Lasso	Outlier-robust	Removes outliers, efficient with valid IVs, high false positive rate with several invalid IVs	23	
MR-RAPS	Balanced pleiotropy (except outliers)	Downweights outliers, sensitive to violations of balanced pleiotropy assumption	24	‡
Contamination Mixture	Plurality valid	Robust to outliers, sensitive to variance parameter and addition/ removal of genetic variants	25	*
MR-Mix	Plurality valid	Robust to outliers, requires large numbers of genetic variants, very high false positive rate in several scenarios	26	‡

Each of the methods in the table can be implemented using summarized data. False positive rates refer to the simulation study by Slob and Burgess²⁷. InSIDE is the Instrument Strength Independent of Direct Effect assumption.

Mendelian Randomization in R

- > Has several methods for performing MR using summary data.
- > https://cran.r-project.org/web/packages/MendelianRandomization/index.html
- > https://www.youtube.com/channel/UCHjMrVSqOu1rcrYQPAD_bNA

