UNIVERSITY of WASHINGTON

Session 13:

Mendelian Randomization

Drawback with observational studies

CONFOUNDING

REVERSE CAUSATION

We can leverage genetic variation to (partly) overcome these issues

Mendelian Randomization

> Basic principle: "genetic variants which mirror the biological effects of a modifiable environmental exposure and alters disease risk should be associated with disease risk to the extent predicted by their influence on exposure to the risk factor."
> The allocation of genetic variants from parents to offspring will generally be unrelated to other factors which affect the outcome.
> Furthermore, associations between the genotype and the outcome will not be affected by reverse causation because disease does not affect genotype

Possible effects of C-reactive protein (CRP) concentrations on cardiovascular (CV) events

Expected outcome from hypothetical randomized clinical trial of selective CRP-lowering intervention, and from Mendelian randomization analysis, if CRP were causal in developing CV.

The three key assumptions in MR analyses

1. G (SNP or a combination of multiple SNPs) is robustly associated with X (risk factor)
2. G is unrelated to any confounders C, that can bias the relationship between G and Y (outcome). In other words, there are no common causes of G and Y (e.g., population
 stratification)
3. G is related to Y only through its association with X (i.e., no pleiotropy)

Assumption 1: G is robustly associated with X

> Under certain conditions, the relative bias of the instrument variable (IV) estimate is $\sim 1 /$ F. A "weak" IV has been defined as having $\mathrm{F}<10$, where

$$
F=\frac{R^{2}(n-1-k)}{\left(1-R^{2}\right) k} \quad \begin{aligned}
& \mathrm{R}^{2} \text { is variance in } \mathrm{X} \text { explained by the } \mathrm{IV}(\mathrm{~s}), \\
& \mathrm{n} \text { is sample size and } \mathrm{k} \text { is number of } \mathrm{V} \mathrm{~s}
\end{aligned}
$$

> Weak IVs can lead to biased effect estimates (in the direction of the observed $X-Y$ association) in the presence of confounding of the $X-Y$ relationship.

Assumption 2: No confounding

$>G$ is independent of factors (measured and unmeasured) that confound the $X-Y$ relation
> Since G is randomized at birth and thus is independent of non-genetic confounders and is not modified by the course of disease, the one main concern here is population stratification - i.e., if ancestry is related both to G and Y .
> If you have individual-level data, you can adjust for this (e.g., PCs)

Assumption 3: No pleiotropy

$>$ This assumption is the trickiest
> Assumes that G is only associated with Y via X and thus the association between G and Y is fully mediated by X and not through any unmeasured factor(s). Needs to be true for SNPs in LD too

Scenarios invalidating assumption 3

LD

Pleiotropy

Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies ${ }^{1}$

Philip C Haycock, ${ }^{2} *$ Stephen Burgess, ${ }^{3}$ Kaitlin H Wade, ${ }^{2}$ Jack Bowden, ${ }^{2,4}$ Caroline Relton, ${ }^{2}$ and George Davey Smith ${ }^{2}$

TABLE 2
Different design strategies for MR

Study design		Test
G-X + G-Y	Implies $\mathrm{X} \rightarrow \mathrm{Y}$	Comments
One-sample MR	Various hypotheses	No estimation of magnitude of causal effect
		Requires individual-level data; lower power; MR estimates are biased toward the confounded observational
association by weak instruments		

[^0]
Summary data from two studies

> The G-X and the G-Y associations are estimated in two different samples.
> Assumes no overlap among samples and that the two populations are similar (ancestry, age, sex, etc.)
> Note: The G-X and G-Y associations need to be coded using the same effect allele

Summary data from two studies

$$
\begin{aligned}
& \hat{\beta}=\frac{\sum_{k} \beta_{1 k} \beta_{2 k} \sigma_{\beta_{2 k}}^{-2}}{\sum_{k} \beta_{1 k} \sigma_{\beta_{2 k}}^{-2}} \\
& \operatorname{se}(\hat{\beta})=\sqrt{\frac{1}{\sum_{k} \beta_{1 k}^{2} \sigma_{\beta_{2 k}}^{-2}}}
\end{aligned}
$$

$\beta_{1 \mathrm{k}}$ is the mean change in X per allele for SNP $k, \beta_{2 k}$ is the mean change in Y per allele for SNP $k, \sigma_{2 k}^{-2}$ is the inverse variance for the G-Y association.

MR-base: An easy tool for Mendelian Randomization Analysis

> http://app.mrbase.org/
> A web-based platform (MR-Base) and an R-package "TwoSampleMR".
> Has catalogued thousands of genotype-phenotype associations and also allows manual file upload.

To begin analysis in the web application please review the data access agreement and accept by logging in with your google account.

∞ MRBASE

A platform for Mendelian randomisation using summary data from genome-wide association

studies

Current status

Beta phase release
App version:
1.2.2 3a435d (31 January 2019)

R version:
3.5.1

Host:
e4ec2116cb55
R/TwoSampleMR version
0.4.18

Database version:
0.2.0 (17 December 2017)

To use MR-Base using the TwoSampleMR R package directly; https://github.com/MRCIEU/TwoSampleMR
See our sister website LD Hub for automated LD score regression:
http://dsc.broadinstitute.org/
@(MRBASE

©MRBASE

ID Acknowledgements Data access agreement

TwoSampleMR R package

Hongile Chen

 hongjie.chen41@gmail.com\& Perform MR analysis \equiv Choose exposures \equiv Choose outcomes $\equiv \operatorname{Run}$ MR

Q Quick SNP lookut

A platform for Mendelian randomisation using summary data from genome-wide association

studies

Select the exposure (Instrumental variable),
outcome and analysis scheme here.
To begin analysis in the web application please review the data access agreement and accept by logging in with your google account.

Get started package to analyse your own outcome datasets.

Currentstatus

Beta phase release
App version:
1.2.2 3a435d (31 January 2019)

R version:
3.5.1

Host:
e4ec2116cb55
R/TwoSampleMR version:
0.4.18

Database version:
0.2.0 (17 December 2017)

To use MR-Base using the TwoSampleMR R package directly:
https://github.com/MRCIEU/TwoSampleMR
See our sister website LD Hub for automated LD score regression:
http://ldsc.broadinstitute.org/
Choose instrumen
MR Base GWAS catalog
Select exposuressource
O NHGRR-EEI IWAS Caty
- mR Base GWAS catalog
- Gene expression eTLS
- Protein level QTLs
- Metabolite level QTLS
O Metabolite level QTLS
O Methylation level QTLS
Methylation leveleots Or use the manually uploaded file
cogged in as
Hongie chen
Logged in as
Hongife chen
hongiechenal@gmalicom

* ${ }^{6}$ Peform MR analysis
\# Choose exposures
\equiv Choose outcomes
\equiv Run MR
Q Quick SNP lookup

\section*{
 | Ci |
| :--- |
| Sele |
| |}

- Gene expression QTLS
- Protein level QTLs

O Metabolite level QTLs
O Methylation level QTLs

Select exposure source
 O Manual file upload

O NHGR1-EEI GWAS catalog

- mR Base GWAS catalog

MR Base GWAS catalog
The MR Base database holds a collection of the summary statistics from a large number of GWASs. It is possible to use this resource to manually identify instruments, and to therefore use these traits as exposurues by finding the independent GWAS significant hits from these summary associations.
To use a trait as an exposure, highlight the relevant row in the table below (multiple traits can be selected). All sNPs with p values below the specified threshold will be extracted, and clumping will be used to remove SNPs in Lo with sentinal SNPs. These SNPs will be used as instruments in the MR analysis.

@OMRBASE

© Welcome to MR Base

i About
© Acknowledgements

* Data access agreement

TwoSampleMR R package

Logged in as Hongie Ch

 Hongiie Chenhongie.chen41@gmail.com
© Perform MR analysis \# Choose exposures \equiv Choose outcomes三 Run MR

Q Quick SNP lookup

Select outcomes for analysis
The MR Base database houses a large collection of summary statistic data from hundreds of GWAS studies. In order to perform two sample MR, the SNPs that were selected for the exposures will be extracted from the outcomes that you select here. Please select the outcomes that you want to test for being causally influenced by the exposures.

Studies available in MR base

Display columns	\square Firstauthor	\square Sample size	\square Access	$\square \mathrm{Sd}$
\square ID	\square Consortium	\square Number of variants	\square Sex	
∇ Trait	\square Number of cases	\square Year	\square Category	\square Subcategory
\square Note	\square Number of controls	\square PubmedID	\square Population	\square Unit

- Number of variants

\square PubmedID

Select the outcome GWAS data to be used
Search:
of $\mid \uparrow \quad$ Number of $\mid \uparrow \quad$ i \dagger
trols

2017 Disease
2017 Disease
2017 Disease
iCOGS; GWAS meta analysis)
1128 ER-Breast cancer (Combined Oncoarray;
iCOGS; GWAS meta analysis)
1129 Breast cancer (Oncoarray)
1130 Breast cancer (iCOGS)
1131 Breast cancer (GWAS)
1132 ER + Breast cancer (Oncoarray)
1133 ER + Breast cancer (iCOGS)
1134 ER + Breast cancer (GWAS)
1135 ER- Breast cancer (Oncoarray)
Breast Cancer
Breast Cancer All All

@oMRBASE

(9) Welcome to MR Base
 i About
 II Acknowledgements
 Data access agreement
 TwoSampleMR R package

 \equiv Run MR

 Q Quick SNP lookup

 ongife Che

 ongife Che hongjie.chen41@gmail.com hongjie.chen41@gmail.com

 Perform MR analysis

 Perform MR analysis

 \# Choose exposures

 \# Choose exposures

 \equiv Choose outcomes

 \equiv Choose outcomes
 Use clumping to prune SNPs for LD
 LD proxies
 a particular exposure SNP is not present in an outcome dataset, should proxy SNPs be used instead through LD tagging?
 \square Use proxies?
 Minimum LD Rsq value
 0.6 0.8

 Allow palindromic SNPs?
 MAF threshold for aligning palindromes
 }LD clumping
Most two sample MR methods require that the instruments do not have LD between them.
Linkage disequilibrium
Do not check for LD between SNPs

Allele harmonisation

An important step in two sample MR is making sure that the effects of the SNPs on the exposure correspond to the same allele as their effects on the outcome. This is potentially difficult with palindromic SNPs.

Handling reference alleles

All effect alleles are definitely on the positive strand

- Attempt to align strands for palindromic SNPs

O Exclude palindromic SNPs

Select methods for analysis

Many methods exist for performing two sample MR. Different methods have sensitivities to different potential issues, accommodate different scenarios, and vary in their statistical efficiency.

Choose which methods to use:

\checkmark Wald ratio

\square Maximum likelihood

- MR Egger
\square MR Egger (bootstrap)
\square Simple median
- Weighted median
\square Penalised weighted median
∇ Inverse variance weighted
\square IVW radial
\square Inverse variance weighted (multiplicative random effects)
\square Inverse variance weighted (fixed effects)
\square Simple mode
\square Weighted mode
\square Weighted mode (NOME)
\square Simple mode (NOME)
Robust adjusted profile score (RAPS)
\square Sign concordance test
\square Unweighted regression

Submit

 perform the analysis.
4 Perform MR analysis

After setting up the analysis scheme, click here to submit the request to perform the MR analysis
© Welcome to MR Base
i About
III Acknowledgements
\＄Data access agreement

TwoSampleMR R package

Logged in as

Hongjie Chen
hongife．chen41＠gmail．com
¢ Perform MR analysis
\equiv Choose exposures
\equiv Choose outcomes
\＃Run MR
ㅂ MRResults
Q Quick SNP／ookup

Exposure
Age at menopause｜｜id：1004
Outcome
－Breast cancer（Combined Oncoarray；iCOGS；GWAS meta analysis）｜｜id：112
む Generate HTML report
this table shows the MR estimates from each method of the causal effect of the exposure on the outcome．The effects are reported in the units that were used to estimate the SNP effects．

Test statistics corresponding to MR analysis approaches selected．

method	$\downarrow \dagger$	nsnp 1 ¢	b $\backslash 1$	se ${ }^{\text {¢ }}$	pval［1
MR Egger		35	0.06926	0.02329	0.005452
Weighted median		35	0.05319	0.01036	$2.815 \mathrm{e}-7$
Inverse variance weighted		35	0.04993	0.01036	0.000001446
Weighted mode		35	0.06599	0.01204	0.000004092

Exposure details

Name：Age at menopause

D： 1004
Number of instruments used： 42
Units：years
Number of cases： NaN
Number of controls： NaN
Sample size： 69360
PubmedID： 26414677
First author：Day
Consortium：ReproGen
Year： 2015

Outcome details

Name：Breast cancer（Combined Oncoarray；COGS；GWAS meta analysis）
D： 1126
SNPs in GWAS： 10680257
Number of instruments identified： 35 of which are LD proxies： 0 \＃of instruments were found in the outcome GWAS， Units：log odds
Number of cases： 122977
Number of controls： 105974
Sample size： 228951
PubmedID： 29059683
First author：Michailidou
Consortium：BCAC
Year： 2017

Downloads for all analyses
』Download harmonised summary statistics
\star Download MR results \longleftarrow Download the generated datasets or MR analysis results here．
』 Download leave－one－out sensitivity analysis
\downarrow Download single SNP MR results

Single SNP analysis Method comparison plot

The causal effect of exposure on outcome is estimated using each SNP singly using the Wald ratio，and epresented in a forest plot．The MR estimate using all SNPs using the MR Egger and IWW methods are also shown．Formal estimates of heterogeneity are shown in the tables below．
\star Download PDF of this graph which were used in the MR analysis．

Causal effect of exposure on outcome，by SNP

(BREAKOUT ACTIVITY)

> (Explore MR-Base (http://www.mrbase.org) to conduct your own MR study. Run an MR study of body mass index and lung cancer risk following the example in class.)

BREAKOUT ACTIVITY

> In which examples (a-f) below do the MR assumptions not hold for assessing the association between exposure $\left(\mathrm{X}_{1}\right)$ and outcome (Y)? Why? Why not?
a. genetic

b. genetic

c. genetic

d. genetic
 variants
exposure
e. genetic \longrightarrow outcome \longrightarrow exposure variants

Bidirectional MR analysis

> Approach to overcome reverse causation
$>$ IVs for both X_{1} and X_{2} are used to assess the causal association in both directions

1. Is G_{1} associated with X_{2} ?
2. Is G_{2} associated with X_{1} ?
(Also confirm that G_{1} is associated with X_{1} and that G_{2} is associated with X_{2}

BMI and CRP - what causes what?

> There is a consistent observed association between high BMI and high CRP levels

Light grey points represent a scatter plot of the correlation between circulating CRP and residual BMI. Gray areas represent 95\% confidence regions around IV estimates. Black area represents 95\% confidence regions around simple linear regression estimates.

These data suggest that the observed association between circulating CRP and measured BMI is likely to be driven by BMI, with CRP being a marker of elevated adiposity.

Table 5. Observational and instrumental variable derived relationships between BMI and circulating CRP.

4 Previous table	- Figures and tables index				
	Effect estimates				
Outcome /explanatory variable	Observational	Instrumental variable	$\mathrm{P}_{\text {IV }}$	$\mathbf{P}_{\text {diff }}$	$F_{\text {first }}$
CRP/BMI	1.46 (1.44, 1.48)	1.41 (1.10, 1.80)	0.006	0.8	31.1
BMI/CRP	1.03 (1.00, 1.07)	-0.24 (-0.58, 0.11)	0.2	<0.0001	57.3

Drawbacks with MR analysis

> Large sample sizes are needed

- As genetic effects on risk factors are typically small, MR estimates of association have much wider confidence intervals than conventional epidemiological estimates.
> Make sure that the three key assumptions hold
- In practice, this is very difficult, especially for the third assumption of no pleiotropy.

Table 1. Summary of some methods proposed for Mendelian randomization: inverse-variance weighted method and robust methods.
$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { Method } & \begin{array}{l}\text { Consistency } \\ \text { assumption }\end{array} & \text { Strengths and weaknesses } & \text { Reference } & \text { Software } \\ \hline \begin{array}{l}\text { Inverse-variance } \\ \text { weighted }\end{array} & \begin{array}{l}\text { All variants valid or } \\ \text { balanced pleiotropy }\end{array} & \begin{array}{l}\text { Most efficient (greatest statistical power), biased if average } \\ \text { pleiotropic effect differs from zero }\end{array} & 18 & & \text { * } \\ \hline \text { MR-Egger } & \text { InSIDE } & \begin{array}{l}\text { Sensitive to outliers, sensitive to violations of InSIDE assumption, } \\ \text { InSIDE assumption often not plausible, often less efficient }\end{array} & 19 & \text { * }\end{array}\right\}$

Each of the methods in the table can be implemented using summarized data. False positive rates refer to the simulation study by Slob and Burgess ${ }^{27}$. InSIDE is the Instrument Strength Independent of Direct Effect assumption.

Mendelian Randomization in \mathbf{R}

> Has several methods for performing MR using summary data.
> https://cran.r-project.org/web/packages/MendelianRandomization/index.html
> https://www.youtube.com/channel/UCHjMrVSqOu1rcrYQPAD bNA

[^0]: ${ }^{1} \mathrm{G} \times \mathrm{E}$, gene-environment interaction; G-X, SNP-exposure association; G-Y, SNP-outcome association, M, mediator; MR, Mendelian randomization; SNP, single nucleotide polymorphism; X, hypothesized exposure; Y, outcome variable of interest.

