Risk prediction

1. Can we identify groups in the population that exhibit high risk?
Application: Screening
2. Can we estimate the risk for a single patient? Application: Prevention

Possible clinical decisions

- General advice on having a healthy lifestyle - Mammography screening frequency tailored to risk	- Lifestyle changes - Frequent mammography screening - Discuss preventive therapies	- Individual counselling in primary care and referral to secondary or tertiary care - Enhanced screening and surveillance - Chemoprevention and/or endocrine therapy - Risk-reducing surgery (mastectomy, salpingo-oophorectomy)

ORIGINAL ARTICLE

Cumulative Association of Five Genetic Variants with Prostate Cancer

No. of associated factors**						
0	$144(5.0)$	$174(10.1)$	NA	1.00		
1	$778(26.9)$	$581(33.6)$	0.48	$1.62(1.27-2.08)$	1.27×10^{-4}	
2	$1053(36.4)$	$622(36.0)$	0.73	$2.07(1.62-2.64)$	5.86×10^{-9}	
3	$642(22.2)$	$286(16.6)$	0.99	$2.71(2.08-3.53)$	9.54×10^{-14}	
4	$236(8.2)$	$60(3.5)$	1.56	$4.76(3.31-6.84)$	9.17×10^{-19}	
≥ 5	$40(1.4)$	$5(0.3)$	2.24	$9.46(3.62-24.72)$	1.29×10^{-8}	4.78×10^{-28}

"A patent application has been filed by the Wake Forest University School of Medicine, Johns Hopkins University School of Medicine, and Dr. Henrik Grönberg at Karolinska Institutet, Stockholm, to preserve patent rights for the technology and results described in this study"

Abstract

Engl J Med. 2008 Feb 28;358(9):910-9. doi: 10.1056/NEJMoa075819. Epub 2008 Jan 16.

Cumulative association of five genetic variants with prostate cancer

Zheng SL ${ }^{1}$, Sun J, Wiklund F, Smith S, Stattin P, Li G, Adami HO, Hsu FC, Zhu Y, Bälter K, Kader AK, Turner AR, Liu W, Bleecker ER, Meyers DA, Duggan D. Carpten JD, Chang BL, Isaacs WB, Xu J, Grönberg H.

\oplus Author information

Abstract

BACKGROUND: Single-nucleotide polymorphisms (SNPs) in five chromosomal regions--three at 8 q 24 and one each at 17 q 12 and 17q24.3--have been associated with prostate cancer. Each SNP has only a moderate association, but when SNPs are combined, the association may be stronger METHODS: We evaluated 16 SNPs from five chromosomal regions in a Swedish population (2893 subjects with prostate cancer and 1781 control ubjects) and assessed the individual and combined association of the SNPs with prostate cancer.
RESULTS: Multiple SNPs in each of the five regions were associated with prostate cancer in single SNP analysis. When the most significant SNP from each of the five regions was selected and included in a multivariate analysis, each SNP remained significant after adjustment for other SNPs and family history. Together, the five SNPs and family history were estimated to account for 46% of the cases of prostate cancer in the Swedish men we studied. The five SNPs plus family history had a cumulative association with prostate cancer (P for trend, $3.93 \times 10(-28)$). In men who had any five or more of these factors associated with prostate cancer, the odds ratio for prostate cancer was 9.46 ($P=1.29 \times 10(-8)$), as compared with men without any of the factors. The cumulative effect of these variants and family history was independent of serum levels of prostate-specific antigen at diagnosis.
CONCLUSIONS: SNPs in five chromosomal regions plus a family history of prostate cancer have a cumulative and significant association with prostate cancer.
Copyright 2008 Massachusetts Medical Society

Comment in

Five genetic variants associated with prostate cancer. [N Engl J Med. 2008] Five genetic variants associated with prostate cancer. [N Engl J Med. 2008 Five genetic variants associated with prostate cancer. [N Engl J Med. 2008 Five genetic variants associated with prostate cancer. [N Engl J Med. 2008 Five genetic variants associated with prostate cancer. [N Engl J Med. 2008 Five genetic variants associated with prostate cancer. [N Engl J Med. 2008 Five genetic variants associated with prostate cancer. [N Engl J Med. 2008
Re: cumulative association of five genetic variants with prostate cancer. [Eur Urol. 2008]
Complexities of prostate-cancer risk. [N Engl J Med. 2008]
Re: Cumulative association of five genetic variants with prostate cancer. [Eur Urol. 2008]
Words of wisdom. Re: Cumulative association of five genetic variants with prostate cancer. Zheng SL, Sun J, Wiklund F, et al. [Eur Urol. 2008]
PMID: 18199855 [PubMed - indexed for MEDLINE] Free full text
f \geqslant इस

Send to:

Full text links

NEJM $\underset{\text { fulltext }}{\text { fret }}$

Save items

Add to Favorites

Similar articles
Association between two unlinked loci at 8 q 24 and prostate cancer risl [J Natl Cancer Inst. 2007 Replication of prostate cancer risk loci in a Replication of prostate cancer risk loci in a
Japanese case-control [J Natl Cancer Inst. 2009] Multiple independent genetic variants in the 8q24 region are as [Cancer Epidemiol Biomarkers Pr...]
Review A systematic review of replication
studies of prc [Cancer Epidemiol Biomarkers Pr...]
Review Prostate cancer genomics, biology, and risk assessment through geno [Cancer Sci. 2012]

See reviews..

See all...

Cited by over 100 PubMed Central

articles
Whole-Genome Sequencing of a Healthy Aging Cohort.

Regulatory polymorphisms modulate the
expression of HLA class II molecules [Elife. 2016,
mproved prediction of complex diseases by common genetic markers: sta [Hum Genet. 2016]

See all..

Related information -

Risk score based on genome-wide significant SNPs

- Your genetic risk score (GRS) is a continuous variable.
- Two main approaches: Unweighted scores and weighted score
- Unweighted score in individual i for m SNPs: add up number of alleles for each individual

$$
G R S_{i}=\sum_{j=1}^{m} G_{i j}
$$

- Weighted score in individual ifor m SNPs: multiply number of alleles for each SNP with published effect sizes for each individual

$$
G R S_{i}=\sum_{j=1}^{m} \beta_{i j} G_{i j}
$$

Generating a genetic risk score

- If you are using a weighted score, do not use β s from your own data -> model overfitting
- Need to handle missing data
- Complete case analysis (remove all samples with ≥ 1 SNP missing)
- Impute
- LD (do not always have this information, e.g. only GRS SNPs were genotyped)
- Expected value based on allele frequency (PLINK)
- Sampling from your data conditioned on some variables (case-control status, age)

Distribution of genetic risk scores (GRS)

Distribution of GRS for complex diseases

Lifetime risk of breast cancer based on a genetic risk score (77 SNPs) in women of European origin

Going beyond genome-wide significant SNPs

Measures of risk prediction performance (i)

- Area under the receiver operator characteristic (ROC) curve
- The ROC curve plots the true-positive fraction (sensitivity) against the falsepositive fractions (1-specificity)
- Ranges from 0.5 (no discrimination between cases and controls) to 1.0 (perfect discrimination)

Measures of risk prediction performance (ii)

- Reclassification based on genetic risk scores

Nature Reviews | Genetics
A cohort of 4,232 people was classified into low ($<10 \%$; green), medium ($>10-<20 \%$; yellow) and high ($>20 \%$; red)
10 -year risk of cardiovascular disease before and after applying genotype risk score.
a | Before incorporating genotype score (standard risk factors)
b | Reclassification based on genotypes
c | After incorporating genotype score
Reclassification statistics and outcome data show improvement in classification

Two empirical examples

Prostate Cancer	Pancreatic Cancer
Common	Rare
Few known environmental risk factors	Many known environmental risk factors
Often a long natural history with disease that does not progress	Often detected too late and with poor prognosis.
Many common genetic variants identified	Few common genetic variants identified
7,509 cases and 7,652 controls of European	3,349 cases and 3,654 controls of European Ancestry
We generated risk models using family history and 25 SNPS	We generated risk models using Smoking, Heavy alcohol use, Body Mass Index, Diabetes, Family history and 4 genetic variants

Prostate cancer - Risk model performance

D	Cases > 65 y	
Decile 1 (ref)		1.00 (1.00-1.00)
Decile 2	\square	1.39 (1.16-1.67)
Decile 3	-	1.71 (1.43-2.05)
Decile 4	\leftharpoondown	1.84 (1.54-2.20)
Decile 5	■	2.17 (1.82-2.59)
Decile 6	\square	2.04 (1.71-2.43)
Decile 7	\leftharpoondown	2.32 (1.95-2.76)
Decile 8	\square	2.70 (2.27-3.21)
Decile 9	\longmapsto	3.20 (2.70-3.79)
Decile 10		4.56 (3.86-5.39)
	$\ulcorner 1$,
	0.121 .663 .194 .73	6.27
OR		

111213141516171819202122232425262728293031323334

Does performance vary with age?

Age	Model 1: Family History	Model 2: Genetics	Model 3: Genetics + Family History
-60	$0.55(0.53-0.56)$	$0.66(0.64-0.69)$	$0.68(0.65-0.71)$
$61-65$	$0.53(0.52-0.54)$	$0.65(0.63-0.67)$	$0.65(0.63-0.67)$
$66-70$	$0.53(0.52-0.54)$	$0.63(0.62-0.65)$	$0.65(0.63-0.66)$
$71-75$	$0.52(0.51-0.53)$	$0.63(0.61-0.65)$	$0.64(0.62-0.66)$
$75+$	$0.51(0.49-0.52)$	$0.60(0.57-0.63)$	$0.60(0.57-0.63)$

Absolute risks of prostate cancer as a function of family history and genetic risk

Age	Family history	No information on genetics	10th percentile	30th percentile	50th percentile	70th percentile	90th percentile
50	Negative FH	0.020	0.008	0.012	0.017	0.023	0.034
	Positive FH	0.042	0.016	0.027	0.038	0.049	0.067
60	Negative FH	0.064	0.029	0.043	0.056	0.075	0.109
	Positive FH	0.134	0.057	0.088	0.122	0.154	0.231
70	Negative FH	0.089	0.046	0.065	0.081	0.102	0.139
	Positive FH	0.183	0.104	0.137	0.175	0.209	0.271
80	Negative FH	0.063	0.039	0.049	0.060	0.071	0.089
	Positive FH	0.131	0.085	0.114	0.132	0.143	0.181

NOTE: Quintiles of genetic risk were based on the distribution in controls. All calculations are based on regression parameters estimated in the imputed data set. Incidence rates are based on SEER data.
Abbreviation: FH , family history.

Pancreatic cancer - Risk model performance

Model 1: Non-genetic risk factors	Model 2: Genetic risk factors	Model 3: Non-genetic and genetic risk factors
$\mathrm{A} U C=0.57(0.55-0.59)$	$\mathrm{A} U C=0.58(0.56-0.60)$	$\mathrm{A} U C=0.61(0.58-0.63)$

Klein et al, PLoS One 2013

Reclassification of lifetime risk after adding genetic factors to the risk model

Controls

Cases

Fewer than 0.3% individuals had more than a 5% average lifetime risk. No individual had an estimated lifetime risk above 7.5\%.

Alzheimer's Disease and APOE

Perceived risk 6 weeks after genetic testing

Changes in insurance

All women had a 29% life-time risk of developing Alzheimer's

Changes in behavior after testing for genetic cancer risk n=762 (23andMe and Pathway Genomics)

PGT Cancer Risk	Overall			Not Meeting CDC Recommendations for Fruit and Vegetables at Baseline			Meeting CDC Recommendations for Fruit and Vegetables at Baseline		
	No.	Changed Diet, \%	P	No.	Changed Diet, \%	P	No.	Changed Diet, \%	P
Breast cancer risk			. 50			. 82			30
Not elevated	375	34.7		180	30.6		195	38.5	
Elevated	44	29.5		27	33.3		17	23.5	
Colorectal cancer risk			. 73			. 90			. 56
Not elevated	524	30.3		294	27.9		230	33.5	
Elevated	166	28.9		97	28.9		69	29.0	
Prostate cancer risk			. 70			. 24			. 23
Not elevated	207	24.2		137	23.4		70	25.7	
Elevated	64	26.6		46	32.6		18	11.1	

