Analysis of common variants

(Genome-wide association studies -
GWAS)

Analysis of rare variants
(Rare variant association studies -

RVAS)



Genome-wide association studies (GWAS

Samples with phenotype data (continuous, case-control)
(n=1000's)

Genotype samples with commercial ‘chips’
« Affymetrix - Random SNP design (v.5, v.6)

* llumina - TagSNPs plus candidate genes (650Y, 1M) Screen adCross the genome for SN PS that are
v associated with trait (agnostic approach)

Perform statistical association with each SNP
Calculate p-value for each SNP
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Chromosome

Region(s) with plausible statistical association

SNPs genotyped in GWA study (‘chip SNPs’)

Replication and Fine Mapping
« Associated chip SNPs for replication in additional populations
* If replicated more genotyping to fine-map or resequencing
of the region is considered
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Perform targeted resequencing to identify potentially causal SNP(s)
‘Functional’ analysis of potentially causal SNP(s) - in vivo, in vitro, gene
expression.....
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Complement Factor H
Polymorphism in Age-Related
Macular Degeneration

Robert J. Klein,” Caroline Zeiss,>* Emily Y. Chew,?*
Jen-Yue Tsai,** Richard S. Sackler,' Chad I-laynes,1
Alice K. Henning,5 John Paul SanGiovanni,? Shrikant M. Mane,®
Susan T. Mayne,” Michael B. Bracken,” Frederick L. Ferris,?
Jurg ott,’ Colin Barnstable,? Josephine Hoh’f

Age-related macular degeneration (AMD) is a major cause of blindness in the
eldedy. We report a genome-wide screen of 96 cases and 50 controls for
polymorphisms associated with AMD. Among 116,204 single-nucleotide
polymorphisms genotyped, an intronic and common variant in the comple-
ment factor H gene (CFH) is strongly associated with AMD (nominal P value
<107 7). In individuals homozygous for the risk allele, the likelihood of AMD is
increased by a factor of 7.4 (95% confidence interval 2.9 to 19). Resequencing
revealed a polymorphism in linkage disequilibrium with the risk allele
representing a tyrosine-histidine change at amino acid 402. This polymor-
phism is in a region of CFH that binds heparin and C-reactive protein. The CFH
gene is located on chromosome 1 in a region repeatedly linked to AMD in

family-based studies.

Age-related macular degeneration (AMD) is
the leading cause of blindness in the developed
world. Its incidence is increasing as the elderly
population expands (/). AMD is characterized
by progressive destruction of the retina’s
central region (macula), causing central field
visual loss (2). A key feature of AMD is the
formation of extracellular deposits called dru-
sen concentrated m and around the macula
behind the retina between the retinal pigment
epithelium (RPE) and the choroid. To date, no
therapy for this disease has proven to be
broadly effective. Several nisk factors have
been linked to AMD, including age, smoking,
and family higory (3). Candidate-gene studies
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have not found any genetic differences that can
account for a large proportion of the overall
prevalence (2). Family-based whole-genome
linkage scans have identified chromosomal
regions that show evidence of linkage to
AMD (4-8), but the linkage areas have not
been resolved to any causative mutations.

Like many other chronic diseases, AMD is
caused by a combination of genetic and envi-
ronmental risk factors. Linkage studies are not
as powerful as association studies for the
identification of genes contributing to the risk
for common, complex diseases (9). However,
linkage studies have the advantage of search-
ing the whole genome in an unbiased manner

15 APRIL 2005

without presupposing the involvement of
particular genes. Searching the whole genome
in an association study requires typing 100,000
or more single-nucleotide polymorphisms
(SNPs) (10). Because of these technical de-
mands, only one whole-genome association
study, on susceptibility to myocardial infarc-
tion, has been published to date (77).

Study design. We report a whole-genome
case-control association study for genes in-
volved in AMD. To maximize the chance of
success, we chose clearly defined phenotypes
for cases and controls. Case individuals ex-
hibited at least some large drusen in a quan-
titative photographic assessment combmed
with evidence of sight-threatening AMD
(geographic atrophy or neovascular AMD).
Control individuals had either no or only a
few small drusen. We analyzed our data using
a statistically conservative approach to correct
for the large number of SNPs tested, thereby
guaranteeing that the probability of a false pos-
itive is no greater than our reported P values.

We used a subset of individuals who par-
ticipated in the Age-Related Eye Disease
Study (AREDS) (I2). From the AREDS

"Laboratory of Statistical Genetics, Rodefeller Uni-
versity, 1230 York Avenue, New York, NY 10021,
USA *Department of Ophthalmology and Visual
Science, Yale University School of Medicine, 330
Cedar Street, New Haven, CT 06520, USA. *National
Eye Institute, Building 10, CRC, 10 Center Drive,
Bethesda, MD 20892-1204, USA. “Biological Imaging
Core, National Eye Institute, 9000 Rockville Pike,
Bethesda, MD 20892, USA. “The EMMES Corporation,
401 North Washington Street, Suite 700, Rockville
MD 20850, USA. *W. M. Keck Fadlity, Yale University,
300 George Street, Suite 201, New Haven, CT 06511,
USA. "Department of Epidemiology and Public
Health, Yale University School of Medicine, 60
College Street, New Haven, CT 06520, USA

*These authors contributed equally to this work.
#To whom correspondence should be addressed.
E-mail: josephine hoh@yale.edu
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Presentation of results from large-scale
genetic association studies
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An association with p-value <5x102 is considered genome-wide significant
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The importance of sample size in GWAS

One of the first GWAS of height (N=1,914). Red dots represent SNPs that achieved a P<5x1077 in
the joint analysis with stage 2 samples. The solid black horizontal line is the P=5x10" line.
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Supplementary Figure 2. 199 loci associated with adult height variation. Karyogram displaying the genome location of the 180 height
SNPs identified from the primary meta-analysis (green) and the 19 secondary signals (red) discovered in the conditional analysis to be
associated with height. The closest genes to the SNPs (gray) are followed by a MIM (blue) label if the gene underlies a skeletal growth-related
Mendelian disorder described in OMIM. The plot was created using Affyrmation (http://genepipe.ngc.sinica.edu.tw/affyrmation/).
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N= 253,288
697 SNPs (423 regions)

Variance explained ~ 20%
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#Genome-wide significant hits

Significant hits and total sample size
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Bias in the context of genetic epidemiology

Ascertainment bias
* Secondary phenotypes, e.g. Type 2 diabetes and BMI

Survival bias
* Might lead to a subtype analysis (milder form of disease)

Respondent bias
* Response rate has to differ by case-control status and genotype

Diagnosis bias
* Only a problem if the physician knows the genotype

Recall bias
* Not applicable in genetic epidemiology

Note: This does not hold up for gene-environment interactions!



Differential genotyping error/missingness

 Systematic differences in how case and control samples were
collected, handled, or genotyped can lead to spurious associations

* DNA was collected from blood samples for cases and from cheek swabs for controls
* Case samples have been sitting in the freezer for 15 years, control samples are new
e Cases and controls were genotyped in different genotyping labs or by different platforms

There is one more dominating source of bias in genetic association studies —
population stratification.



Genetic signatures of exceptional longevity in humans
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Sebastiani, Science 2010



Retraction

AFTER ONLINE PUBLICATION OF OUR REPORT “GENETIC SIGNATURES OF EXCEPTIONAL LONGEV-
ity in humans” (), we discovered that technical errors in the [llumina 610 array and an inad-
equate quality control protocol introduced false-positive single-nucleotide polymorphisms
(SNPs) in our findings. An independent laboratory subsequently performed stringent quality
control measures, ambiguous SNPs were then removed, and resultant genotype data were vali-
dated using an independent platform. We then reanalyzed the reduced data set using the same
methodology as in the published paper. We feel the main scientific findings remain supported
by the available data: (i) A model consisting of multiple specific SNPs accurately differentiates
between centenarians and controls; (ii) genetic profiles cluster into specific signatures; and (iii)
signatures are associated with ages of onset of specific age-related diseases and subjects with
the oldest ages. However, the specific details of the new analysis change substantially from
those originally published online to the point of becoming a new report. Therefore, we retract
the original manuscript and will pursue alternative publication of the new findings.

PAOLA SEBASTIANI,*™ NADIA SOLOVIEFF,* ANNIBALE PUCA,? STEPHEN W. HARTLEY,* EFTHYMIA MELISTA,?

STACY ANDERSEN,* DANIEL A. DWORKIS,? JEMMA B. WILK,* RICHARD H. MYERS,* MARTIN H. STEINBERG,®
MONTY MONTANO,? CLINTON T. BALDWIN,*” THOMAS T. PERLS**

Science, 2011



Population Stratification - Confounding by ancestry

Population 1 Cases Population 2
— >
5 Group differences in
ancestry AND
outcome
I< e
Controls
Genotype [llaa[llaa laa

Marchini, Cardon et al. 2004; Price, Patterson et al. 2006



Fine-mapping

Direct association Indirect association

Nature Reviews | Genetics

LD complicates things: Which SNP(s) is the causal SNP?

Hirschhorn & Daly. Nature Reviews Genetics 2005



Results from a prostate cancer GWAS
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Fine-mapping approaches

* Conditional regression analysis

e Rerun analysis and adjust for the most significant SNP, see if any other SNP remains
significant. Keep going until no more significant SNPs

e Calculate posterior probabilities for each SNP
* Incorporate “functional” information to identify biological plausible SNPs

* Choose a set of “potentially causal variants” and take them forward for
downstream analysis.



Fine-mapping

Approximate Bayesian analysis to estimate the posterior probability that a given SNP is causal

e Ratio of the likelihood from a
logistic regression for SNP; and
the sum across all likelihoods
for other SNPs in the region
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Incorporating functional annotation data in fine-
Mapping
PAINTOR - Probabilistic Annotation INTegratOR

Prioritizes SNPs based on posterior probabilities

Allows for multiple causal variants at a locus

Requires only summary association statistics and a reference population (e.g. 1000
Genomes)

Integrates functional annotations (e.g. ENCODE)

Estimates probability of causality in functional annotations from the data itself

Kichaev et al, PLoS Genetics 2014



Rare variant assoclation
studies



|dentifying genetic variation associated with disease

Rare variants of \ ..
small effect | = T
very hard to identify
1.1 by genetic means

Allele frequency

Manolio et al, Nature 2009



A recent study
sequenced 10,545
human genomes
and found more
than 150 million
variants

Telenti, PNAS 2016
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Introduction — Rare variants

e Usually less than 1% (depending on who you ask)

* Traditional single variant association analysis have low statistical power and/or
are not valid
* MAF=1% in 1,000 cases and 1,000 controls implies 40 minor alleles
* Low cell counts lead to invalid statistical tests/low power

* Because the number of rare variants is much larger than the number of common
variants, more stringent significance levels might be required, further reducing
power



Why do we care about rare variants when they only affect a
small proportion of the population?

PCSKQ n d LD L Plasma LDL-C levels in African American subjects without
a (left) and with (right) a nonsense mutation in PCSKO.

cholesterol ;
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Cohen, Nat Genet 2005



PCSK9 mutations and coronary heart disease
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A PCSK9 antibody decreases LDL (8-week trial

LDL Cholesterol
(mean percent change from baseline)
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placebo

Atorvastatin, 10 mg, plus
SAR236553
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Roth, NEJM 2012



Fig. 3 Signatures of purifying selection in protein-coding SNVs. Relationship between the
evidence that a variant is functionally important and MAF for four different methods.
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Study design for rare variant analysis

High-depth WGS

Low-depth WGS

Whole-exome sequencing

GWAS chip and imputation

Exome chip (custom array)

Advantage

can identify nearly all variants in
the genome with high confidence

cost-effective and useful approach
for association mapping

can identify all exomic variants; is
less expensive than WGS

inexpensive

much cheaper than exome
sequencing

Disadvantage

very expensive

has limited accuracy for rare-
variant identification and genotype
calling;

compared to deep sequencing, is
subject to power loss if the same
number of subjects is sequenced

is limited to the exome

has lower accuracy for imputed
rare variants
Will miss any variants unique to
your sample

provides limited coverage for very
rare variants and for non-
Europeans

is limited to target regions

Lee, AJHG 2014



% of exon regions not covered
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WGS has consistently good coverage across all of the exons
whilst ESP exome coverage is more variable, missing up to
40% of exon regions for some genes.
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What to do?

* Many different rare variant tests are available.

* Some are based on aggregating variants (“burden” tests)
e CMC (Li and Leal, 2008)
* WSS (Madsen and Browning, 2009)
* Variable Threshold approach (Price, 2010)

 Some are based on studying the distribution of variants
e C-alpha (Neale, 2011)
e SKAT (Wu, 2011)



Burden tests

* Collapse many variants into a single risk score
 Combine minor allele counts into one variable

* Collapsing approach

* Gene, pathways, functional annotations, etc
 Much more straight-forward for coding regions

* Weighing
 Variant type (predicted function)
 Variant frequency



The Cohort Allelic Sums Test - CAST

Main Idea: Combine rare variants according to some (arbitrary) feature (gene,
genetic region, functional category) and assess the new variable

Step 1: Create an indicator variable X for individual j:

Y. — 1if rare variants are present
J 0 otherwise

Step 2: In (£)= a + X (logistic regression)

Morgenthaler, Mutat Res 2007



Variant Collapsing — 2 approaches
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Drawback with burden tests

e Assume all variants in a set are causal and associated with a trait in
the same direction. The common assumption is often that the rare
allele increases disease risk

* If this is untrue, power is lost.

e Solution: Tests that look at the distribution of rare variants



The C-alpha test

 Main idea: Test whether
observed variants either
increase or decrease risk (or
have no effect). Risk variants
are expected to be more
common in cases;
protective variants more
common in controls.

Position Annotation High Lipid Level Low Lipid Level
21078358 Alad481Thr 2 5
21078359 lle4314Val 3 0
21078990 Arg4270Thr 6 3
21079417 Val4128Met 1 7
21083082 Thr3388Lys 2 1
21083637 Ser3203Tyr 6 0
21086035 Leu2404lle 2 3
21086072 Glu2391Asp 2 2
21086127 Thr2373Asn 2 2
21086308 Val2313lle 2 1
21087477 His1923Arg 6 12
21087504 Asn1914Ser 0 5
21087634 Asp1871Asn 2 0
21091828 Pro1143Ser 0 6
21091872 Arg1128His 0 3
21091918 Asp1113His 1 3
21106140 Thr498Asn 2 0
Singletons 6 R

Nonsynonymous variants discovered via targeted pooled sequencing in 192
individuals with extreme triglyceride levels. High counts represent the number
of copies of the variant discovered in 96 individuals who have high triglycerides
(defined as exceeding the 5% upper tail of the population distribution). Low
counts represent the number of copies of the variant discovered in 96
individuals who have low triglycerides (lower 5% tail). The singletons are
grouped together and listed as the penultimate row because its total count is
second largest (10, versus 18 for the His1923Arg). For details about pooled
sequencing, see Text S1.

doi:10.1371/journal.pgen.1001322.t001

APOB variant counts in
individuals with high/low
triglyceride levels.

Neale, PLoS Genetics 2011



C-alpha test

* If there is no association, variants are distributed randomly between cases and
controls following a binomial (n,p) distribution. For example, if the case:control
ratio is 1:1, a variant seen twice (doubleton) would be observed in cases y times
where y is either 0, 1 and 2 with probability %4, 2 and %, respectively.

* If there is an association, we typically will observe a higher proportion of
doubletons with y=2 and/or y=0 than expected.

* C-alpha can be used to detect a pattern across the full set of rare variants. Under
the null hypothesis, p;=p,. The alternative hypothesis is that p; follows a mixture
distribution across all variants, with some variants being detrimental (p,>p,),

some neutral, and some protective (p.<p,).
Neale, PLoS Genetics 2011



Power comparisons for C-alpha, Madsen-Browning (MB), Variable threshold (VT), and CMC (binary:
Li-Leal p and count of rare variants: Li-Leal c). As the mixing proportions between risk and protective
variants increase (moving from 0, 10, 20, 30, 40 and 50% chance of any of the phenotypically relevant
variants being protective), C-alpha maintains power, while other tests lose power.
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SKAT: sequence kernel association test

* In contrast to the C-alpha test, SKAT is regression-based and thereby
allows for adjustment of covariates.

e Uses a variance-component score test in a mixed-model framework to
assess regression coefficients for rare variants.

logit P(y; =1) = ay +a'X; + B'G;

y;: case-control status; a,: intercept; a = [a,,..., a, ]' is the vector of regression coefficients for the m
covariates; X;: fixed effects of covariates; B = [61,...,6p]' is the vector of regression coefficients for the p
observed gene variants in the region; G;: (G5, G, ..., G;,) genotypes for the p variants within the region

Hp:B=00rpB=B,=..=B,=0

Wu, AJHG 2011



Combined tests

* SKAT-O
* Picks the best combination of SKAT and a burden test, and then
corrects for the flexibility afforded by this choice. Specifically, if the
SKAT statistic is Q1, and the squared score for a burden test is Q2,
SKAT-O considers tests of the form (1-rho)*Q1 + rho*Q2, where
rho is between 0 and 1.

Lee, AJHG 2012



Table 2.

Summary of Statistical Methods for Rare-Variant Association Testing

Description Methods Advantage Disadvantage Software Packages”
Burden tests collapse rare variants ARIEL test,™ CAST,”" are powerful when a lose power in the presence  EPACTS, GRANVIL,
into genetic scores CMC method,” large proportion of of both trait-increasing and PLINK/SEQ, Rvtests,
MZ test,” WSS™ variants are causal and  trait-decreasing variants or a SCORE-Seq, SKAT, VAT
effects are in the same  small fraction of causal
direction variants
Adaptive burden tests use data-adaptive aSum,” Step-up,”®  are more robust than are often computationally ~ EPACTS, KBAC,
weights or thresholds EREC test,”” VT,f“ burden tests using fixed intensive; VT requires the PLINK/SEQ, Rvtests,
KBAC method,”” weights or thresholds; same assumptions as burden SCORE-Seq, VAT
RBT™ some tests can improve  tests
result interpretation
Variance-component test variance of genetic SKAT,”' SSU test,"*  are powerful in the are less powerful than EPACTS, PLINK/SEQ,
tests effects C-alpha test”’ presence of both trait-  burden tests when most SCORE-Seq, SKAT, VAT
increasing and trait- variants are causal and
decreasing variants or a  effects are in the same
small fraction of causal direction
variants
Combined tests combine burden and SKAT-O,” Fisher are more robust with can be slightly less EPACTS, PLINK/SEQ,
variance-component method,”” MiST"" respect to the percentage powerful than burden MiST, SKAT
tests of causal variants and or variance-component
the presence of both tests if their assumptions
trait-increasing and trait- are largely held; some
decreasing variants methods (e.g., the
Fisher method) are
computationally intensive
EC test exponentially combines EC test” is powerful when a very is computationally no software is available

score statistics

small proportion of
variants are causal

intensive; is less powerful
when a moderate or large
proportion of variants are
causal

yet

Lee, AJHG 2014



Issues in rare variant analysis (i)

e Which variants to include?

 All variants
* Some pre-selected (or empirically estimated) threshold
* Predicted impact (SIFT, PolyPhen-2, CADD)

* How to test non-exonic regions?
e Rare variants are often grouped by gene making variant grouping straight-
forward in exome studies.

* For whole-genome analysis, alternative approaches such as sliding window or
additional functional annotations (conserved regions, regulatory regions etc)

cah be used



Issues in rare variant analysis (ii)

 Which association test to use

e Performance of various tests will depend on the underlying genetic
architecture of the trait of interest.

* If we believe that there are multiple variants with risk-increasing effects, burden tests
are most powerful

* |f we believe that there is a mixture of risk increasing and risk decreasing variants and/or
most variants do not have an effect, variance-component methods are most powerful

* If no prior information is available, multiple approaches can be used (e.g.
both burden and variance component methods). Have to consider multiple
testing.



Issues in rare variant analysis (iii)

* Population stratification

* Emerging field — it is not clear how effective principal components (or linear
mixed models) are for population stratification adjustment

 Studies have suggested that it is not more effective to generate principal
components on rare variants compared to common variants

* However, principal components can be used to identify controls that are
closely matched on ancestry to the cases



Issues in rare variant analysis (iv)

* In general, rare variants are more difficult to impute

* We have talked before about the danger of genotyping your cases on
one array (or version of array) and the controls of another array. For
rare variants (e.g. exome arrays), this might cause even larger issues!



Issues in rare variant analysis (v)

* Replication is more complex for rare variants:

e Since the variants are by definition rare, they might be unique to the discovery
population

* For single variants, replication is fairly straightforward: genotype the variant in the
replication population

* For gene-based association tests: Sequencing the gene (or region) can identify
additional variants

* Choose whichever approach which allow you to maximize number of samples in your
replication!



