Genome-wide association
studies



Genome-wide association studies (GWAS

Samples with phenotype data (continuous, case-control)
(n=1000's)

Genotype samples with commercial ‘chips’
« Affymetrix - Random SNP design (v.5, v.6)

* llumina - TagSNPs plus candidate genes (650Y, 1M) Screen across the genome for SNPs that are
v associated with trait (agnostic approach)

Perform statistical association with each SNP
Calculate p-value for each SNP
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Region(s) with plausible statistical association

SNPs genotyped in GWA study (‘chip SNPs’)

Replication and Fine Mapping
« Associated chip SNPs for replication in additional populations
* If replicated more genotyping to fine-map or resequencing
of the region is considered
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Perform targeted resequencing to identify potentially causal SNP(s)
‘Functional’ analysis of potentially causal SNP(s) - in vivo, in vitro, gene
expression.....
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Analysis of genetic association studies

1. Quality Control

a. Sample level: Low call rate, heterozygosity, sex check, ancestry, relatedness
b. SNP level: Low call rate, minor allele frequency, HWE

2. Imputation
Imputation Michigan Server (https://imputationserver.sph.umich.edu/index.html)

3. Analysis
Model each SNP separately
Linear/Logistic regression or general mixed models

Y=a+*SNP+ X

* B =SNP effect (log(OR) if logistic regression)
e X = additional covariates (e.g. sex, study, age, population stratification)


https://imputationserver.sph.umich.edu/index.html

Common models of penetrance

Effect Effect Effect
AA AC CC AA AC CC AA AC CC
Recessive Dominant Additive
Genotype coding: 0,0,1 Genotype coding: 0,1,1 Genotype coding: 0,1,2

Effect = mean of continuous trait or log(OR) of binary trait



Peterson, Cell 2019

Cell

Genome-wide Association Studies in Ancestrally
Diverse Populations: Opportunities, Methods,
Pitfalls, and Recommendations

Cohorts with diverse ancestral backgrounds

Table 2, Common Pitfalls, Recommendations, and Methods in Need of Development

Pitfail Recommandation Needs
Many genotyping platforms Usa or design population-specific array Continue improving coverage of diverse
do not cover non-European or multi-ancestry aray, high array density  ancestries on genotyping arrays. Encourage
variation well. can improve coverage in groups with ongoing development and sharing of
high diversity. Consider low-depth pipelines for analysis of low-depth
whola-genoma saguencing. sequancing data.
Unnecessary loss of data See Figure 2 for specific recommeandations  Improve availabiity and convenience of
and/or incorrect inferences for each QC step and Table S2. implemeanting proposed QC methods
by using & one-size-fits-all robust o population structure.
approach
Inaccurate imputation due Consider matching the ancestry of the Continue expanding diversity of imputation
to poor matching of reference panel as closely as possible panals, through collection of whole-gencme

reference panel to sample

1o the sample ancestry if using a single
ancestry sample. Consider the largest

of multiple or admixed samples,

sequencing data, creation of imputation
paneals from that data, and promoting public
shanng/accassiblity of those panals,

L reference panel possibla for Imputation

GWAS Poor control of population Consider standard linsar/logistic
S e e M stratification regression methods for analysis of
single ancastry groups followad by
mata-analysls. Conslder mixed model
approaches for admixed or
multi-ancastry analyses
Include PCs as covariates even when
single ancestry groups analyzed.
PCs should be computed individually

Continue investigating causes of —and
solutions to—current incomplete control of
population stratification from principal
components and mxed modals,

Initial QC metrics NOT
affected by allele frequencies

Iterate as ‘ Iterate as
needed needed

Infer populations

|

QcC

.

f

Population
assignment

QC metrics adjusted for
population structure

'

QC metrics WITHIN
ancestral groups

Combine samples from
different ancestral
groups after QC

Y

o

Imputation

Genotype imputation

Joint genotype

within ancestry imputation
Stratified association Mixed model

analysis

association analysis

Association

:

.

Cross-ancestry
meta-analysis

Meta-analyze
cohorts

False negative and false
positive findings; effect
hatarogenaity

LD impropery handled when

all samplas are meta-analyzed

across populations. Unaven
QanNoMea COVarage across
populations because of the
genotyping array and the
imputation reference panel
Loss of accuracy in targaet
population with increasing
genetic distance from
discovery cohort

Population stratification;
low power to detect
Sk

for each major population group

within & multi-ancestry cohort and
Included as covariates In the regrassion
madel. Additional covariates should be
considered for the multi-ancestry
analysis.

Usa a random-effects (with possible
blas towards the null), or modified
random-affects mata-analysis model.
Usa fine-mapping methods that
axplicitly model population-specific
LD. See racommendations for
Ganotyping and Imputation above.

Extrapolation of PRSs from one
ancestry to another is problematic
with current approaches and data.

Aggregate tests can improve power
and handle saparate causal varants

in different populations.

Continue to Investigate and find solutions
to Improve power for the detection of
hatarogeneous affects.

Continue to develop fine-mapping methods
that rely on fewer assumptions, and
thoroughly evaluate thelr parformance.

Large discovary cohorts for al populations
are neadad. Davelop methods for computing
PRSs that are not biased when applied
across populations, potentially incorporating
LD information and/or local ancestry
Information among dverse populations,
Approaches with belter control of population
stratification; more data on diverse
populations needed.



Complement Factor H
Polymorphism in Age-Related
Macular Degeneration

Robert ). Klein,” Caroline Zeiss,>* Emily Y. Chew,?*
Jen-Yue Tsai,** Richard S. Sackler,” Chad Haynes,’
Alice K. Henning,® John Paul SanGiovanni,? Shrikant M. Mane,®
Susan T. Mayne,” Michael B. Bracken,” Frederick L. Ferris,?
Jurg ott,' Colin Barnstable,? Josephine Hoh’+

The first GWAS was published
in December 2005 (96 cases
and 50 controls

Age-related macular degeneration (AMD) is a major cause of blindness in the
eldedy. We report a genome-wide screen of 96 cases and 50 controls for
polymorphisms associated with AMD. Among 116,204 single-nucleotide
polymorphisms genotyped, an intronic and common variant in the comple-
ment factor H gene (CFH) is strongly associated with AMD (nominal P value
<10~ 7). In individuals homozygous for the risk allele, the likelihood of AMD is
= 7 increased by a factor of 7.4 (95% confidence interval 2.9 to 19). Resequencing

| revealed a polymorphism in linkage disequilibrium with the risk allele
representing a tyrosine-histidine change at amino acid 402. This polymor-
phism is in a region of CFH that binds heparin and C-reactive protein. The CFH
gene is located on chromosome 1 in a region repeatedly linked to AMD in
family-based studies.
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Klein, Science 2005

Age-related macular degeneration (AMD) is
the leading cause of blindness in the developed
world. Its incidence is increasing as the elderly
population expands (/). AMD is characterized
by progressive destruction of the retina’s
central region (macula), causing central field
visual loss (2). A key feature of AMD is the
formation of extracellular deposits called dru-
sen concentrated m and around the macula
behind the retina between the retinal pigment
epithelium (RPE) and the choroid. To date, no
therapy for this disease has proven to be
broadly effective. Several nsk factors have
been linked to AMD, mcluding age, smoking,
and family higory (3). Candidate-gene studies

wwwsdencemagorg SCIENCE VOL 308

have not found any genetic differences that can
account for a large proportion of the overall
prevalence (2). Family-based whole-genome
linkage scans have identified chromosomal
regions that show evidence of linkage to
AMD (4-8), but the linkage areas have not
been resolved to any causative mutations.

Like many other chronic diseases, AMD is
caused by a combination of genetic and envi-
ronmental risk factors. Linkage studies are not
as powerful as association studies for the
identification of genes contributing to the risk
for common, complex diseases (9). However,
linkage studies have the advantage of search-
ing the whole genome in an unbiased manner
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This diagram shows all SNP-trait associations with p-value < 5.0 x 107, published in the GWAS Catalog

Copyright © EMBL-EBI 2017 | EMBL-EBI is an Outstation of the European Molecular Biology Laboratory | Privacy | Cookies | Terms of use

Download diagram &




Observed test statistic

30
25
20
15
10

30
25

15
10

0

Presentation

of GWAS results

BD CAD cD
3 —con o & 30 —CCOl S O
L 25 : 25 Q-’ale »
2 g 20
1 15
10 10
5 5
- . : : . 0is : . : . 0ig : : - ;
0 5 10 15 20 5 10 15 20 0 5 10 15 20
HT RA TID
30 msas s 30 —ss o
25 r B 25 =4
sae 20 20 ¢
15 15 g
10 10 g
5 5
- , , . . 0-is : . . . 01 . , . .
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
T2D
30 _—cean b A
25 & °.. ¢
20 =
15
10
5
Oy . : . ‘
0 5 10 15 20

Expected chi-squared value

15 7

Bipolar disorder

-
(=]

-- N w » (&) 2] ~

» Type 1 diabetes .
{ $ =
‘-. v : . - "II “‘llli II. ——
- N w IS (] D N O © = = o o o ok o DN X
O = N @ H OO NOOO=N
Type 2 diabetes
I
.
i Shibistindirnaiediliias N I.l o
= N w & » D ~ @® © - - ek ek ok ek e NN X
o - N W & OO NONDOO=N
Chromosome

An association with p-value <5x10-2 is considered genome-wide significant

WTCCC, Nature 2007



Practical issues in GWAS and other large-scale
association studies

* Bias

e Differential genotyping error/missingness

* Population Stratification

* Replication

* Follow up of identified signals — fine-mapping
* Meta-analysis of GWAS



|II

Some “classical” bias in the context of genetic

epidemiology

e Ascertainment bias
e Secondary phenotypes, e.g. Type 2 diabetes and BMI

e Survival bias

* When cases are recruited some time after they were diagnosed. Might
lead to a milder form of disease. This is especially true for aggressive/fatal
disease (e.g. pancreatic cancer, heart attack)

* Diagnostic bias
* If the investigator determining the phenotype knows the genotype
beforehand (e.g. if the radiologist knows that a potential pulmonary

disease patient carries a high-risk genotype, she may look more carefully
at the x-ray).



Differential genotyping error/missingness

 Systematic differences in how case and control samples were
collected, handled, or genotyped can lead to spurious associations

* DNA was collected from blood samples for cases and from cheek swabs for controls
e Case samples have been sitting in the freezer for 15 years, control samples are new
* Cases and controls were genotyped in different genotyping labs or by different platforms



Genetic signatures of exceptional longevity in humans
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Sebastiani, Science 2010



Retraction

AFTER ONLINE PUBLICATION OF OUR REPORT “GENETIC SIGNATURES OF EXCEPTIONAL LONGEV-
ity in humans” (), we discovered that technical errors in the [llumina 610 array and an inad-
equate quality control protocol introduced false-positive single-nucleotide polymorphisms
(SNPs) in our findings. An independent laboratory subsequently performed stringent quality
control measures, ambiguous SNPs were then removed, and resultant genotype data were vali-
dated using an independent platform. We then reanalyzed the reduced data set using the same
methodology as in the published paper. We feel the main scientific findings remain supported
by the available data: (i) A model consisting of multiple specific SNPs accurately differentiates
between centenarians and controls; (ii) genetic profiles cluster into specific signatures; and (iii)
signatures are associated with ages of onset of specific age-related diseases and subjects with
the oldest ages. However, the specific details of the new analysis change substantially from
those originally published online to the point of becoming a new report. Therefore, we retract
the original manuscript and will pursue alternative publication of the new findings.

PAOLA SEBASTIANI,*™* NADIA SOLOVIEFF,* ANNIBALE PUCA,? STEPHEN W. HARTLEY,* EFTHYMIA MELISTA,?

STACY ANDERSEN,* DANIEL A. DWORKIS,? JEMMA B. WILK,* RICHARD H. MYERS,* MARTIN H. STEINBERG,®
MONTY MONTANO,? CLINTON T. BALDWIN,*” THOMAS T. PERLS**



Population Stratification - Confounding by ancestry

e Group differences
in allele frequencies Population 1 Cases Population 2

AND outcome — -
* GWAS data pick up -
these differences!
Use PCA to capture
the information
-
- —

Controls

Genotype [laallaa laa
Marchini, Cardon et al. 2004; Price, Patterson et al. 2006




How to assess potential population stratification

* Most of the genetic markers in the genome (e.g. in a GWAS) are likely not
associated with the disease

* The genomic control parameter (Agc) summarizes systematic inflation from a large
number of association test results

B The median of the observedy? statistics
"~ The median of the y? statistics under the NULL

/IGC

Fora 1 d.f. y?test, the denominator is 0.455



A few notes about Az

* Acc should be close to 1 if no bias exists.

* Rule of thumb: <1.05 is often ok, above 1.1 deserves attention (exception: when you have large
sample sizes, we will come back to this)

* Acc scales with sample size

* Under a polygenic model, many SNPs with small effect sizes will be detected with very large sample
size -> expect A to increase

* Agc of 1.06 is a much bigger concern in studies with hundreds of samples compared to studies with
thousands of samples

* A standard approach is to correct for inflation by dividing all test statistics by Ag

* Drawback: Affects all SNPs, so SNPs that are not affected by bias are overpenalized and SNPs that
are very affected by bias are underpenalized



observed

Hair Color in Nurses Health Study (n=2,287)
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Acc=1.24
Acc=1.02

expected

Han 2008 Plos Genet

QQ plot for a GWAS of dark-light
hair color in US European-
ancestry subjects from the NHS.
The black points are the p-values
from the unadjusted tests. The
red points are from principal-
component adjusted tests.



observed

Breast Cancer GWAS

© - 27l QQ plot for a GWAS of breast cancer in the
g © same NHS samples (breast cancer risk does
o not correlate with European ancestry)
V —
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Michailidou, Nature 2017



Exercise

* Explore the NHGRI-EBI GWAS catalog:
(https://www.ebi.ac.uk/gwas/home). This website will introduce you
to existing GWAS on many different phenotypes.

* Using the GWAS catalog, determine what the SNP rs6025 has been
associated with in previous studies.


https://www.ebi.ac.uk/gwas/home

A note about replication

* Want to see the signal in more than one population (e.g. longevity
study)

* Previously, replication was a way to maintain sample size while
reducing costs
e Stage 1: many SNPs in few samples
e Stage 2: few SNPs (selected from stage 1) in many samples

* It has been shown that it is more powerful to combine data up-front
instead of subsequent replication (or “look-ups”)

* Politics will play a role



Follow up on GWAS hits: Fine-mapping

a b
............... . SR G s CST |
Direct association Indirect association

Nature Reviews | Genetics

LD complicates things: Which SNP(s) is the causal SNP?

Hirschhorn & Daly. Nature Reviews Genetics 2005



Results from a prostate cancer GWAS

b
Psl“:::f: ne P N TNN0 | 0 I, ] Pslﬁ:aesd S N 8 /00 B I Y IO O N 1
r$58262369 [P 2 1n ‘ [
P=383x10 0.8
\A. 08

r$12791447 + 80
P=105%10"

2

04
02

(o2}
1

-10g,, (P value)
BN

40
2 -
20
-SGFPY SYNE2w= -TEX21P AKAPS vm PLEKHG3 == O
- ' - —
-ESR2 MTHFD1~= HSPAZ -~ 'N;R‘r"“-o SYT5» PPEBP2 -~ - QR5P2 - OR10A6
. - . .. - - . e e ee e . .
«~-287825 RBAIXNLD - OLFIAL 1~ -~ CYBSR? O/ «0OA10A3
- . .o - ' '
ZBTB -—OViHe ORI 1P «=NLRPIO
. -~ i .
PPPIRM - LOCZRIZG9 EF3f~
o oo K J
T T T - T N — e o
64.2 64.4 64.6 64.8 65 7.2 7.4 7.6 7.8 8
Position on chr14 (Mb)

Position on chr11 (Mb)

i v ~ ' .5' w v v B

OB

Wang. Nature Comm, 2015



Fine-mapping approaches

* Conditional regression analysis

e Rerun analysis adjusting for the most significant SNP, see if any other SNP remains
significant. Keep going until no more significant SNPs

 Calculate posterior probabilities for each SNP
* Incorporate “functional” information to identify biological plausible SNPs

* Choose a set of “potentially causal variants” and take them forward for
downstream analysis.



#Genome-wide significant hits

1000

100 200

10

Sample Size is key to GWAS!

Significant hits and total sample size

Crohn’s disease
Ulcerative colitis
Ankylosing spondylitis
Celiac disease

Primary billiary cirrhosis

Primary sclerosing cholangitis

Juvenile idiopathic arthritis
Rheumatoid arthritis
Autoimmune thyroid disease

Psoriasis

Number of individuals (millions)
8

10

B Native American

B Hispanic/Latino

B Asian

[C] African/African descent

[J European/European descent

100

|
1000

#sample size

|
10000

60000

Chen, HMG 2014

2006 2007 2008 2009

2010

2012

2014 2015 2016 2017

Wojcik, Nature 2019



Meta-analysis

e Sample size is the key for a successful genetic association study

* International collaborations to pool data from multiple GWAS are
common

* Issues with sharing individual-level data
* Ethical approvals, IRBs, large files, ownership of the data...

Evangelou & Ioannidis, Nature Rev Genetics 2013

de Bakker, Hum Mol Genetics 2008



[Set up consortium]

X
% { Set up collaboration rules upfront )
* Formulate analysis team - ~
[0 Write analysis plan J * Goal is to avoid introducing
- heterogeneity
| * Standardized definition
4 of phenotype
¢ Inclusion and exclusion criteria
* Harmonize data sets based on analysis plan clearly described
~* Carry out analysis in each group * Quality-control rules apply

|

* Set up storage options
~* Collect summary statistics

| Novel methods for synthesizing
v results and controlling
heterogeneity may apply

* Investigate sources of heterogeneity
_* Synthesize results

|

* Prioritize signals based on pre-specified threshold
* Replicate selected findings

|

[Carry out meta-analysis including all available data]

Evangelou & loannidis, Nature Rev Genetics 2013

Nature Reviews | Genetics



Meta-analysis in practice

* Common protocol
* Imputation reference panel
e Association analysis (test for the same thing across studies)

* QC of summary stats
* Are the alleles the expected?
* Are the minor allele frequencies the expected?
* Are beta estimates/standard errors reasonable?
* QQ-plots, Manhattan plots
* Note: “Clean data” is most often not cleaned.



Method

Pvalue
meta-analysis

Fixed effects

Random
effects

Bayesian
approach

Multivariate
approaches

Other
extensions

Description

Simplest meta-analytical
approach

Synthesis of effect sizes.
Between-study variance is
assumed to be zero

Synthesis of effect sizes.
Assumes that the individual

studies estimate different effects

Incorporates prior assessment

of the genetic effects

Incorporates the possible

correlation between outcomes or

genetic variants

A set of different approaches

that allows for the identification

of multiple variants across
different diseases

Advantages

Allows meta-analysis when
effects are not available

Effects readily available
through specialized software

Generalizability of results

Most direct method for
interpretation of results as
posterior probabilities given
the observed data

Increased power can identify
variants that conventional
meta-analysis do not reveal
using the same data sets

Summary results of previous
meta-analyses can be used

GCTA, genome-wide complex trait analysis; GWAS, genome-wide association study.

Disadvantages

Direction of effect is not always
available; inability to provide effect
sizes; difficulties in interpretation

Results may be biased if a large
amount of heterogeneity exists

Power deserts in discovery efforts;
may yield spuriously large summary
effect estimates when there are
selection biases

Methodologically challenging;
GWAS-tailored routine software
not available; subjective prior
information used

Computationally intensive; software
not available for all analyses; some
may require individual-level data

May need additional exploratory
analyses for the identification of
variants; prone to systematic biases

Evangelou & loannidis, Nature Rev Genetics 2013

Main software used
METAL, GWAMA,

R packages

METAL, GWAMA,
R packages

GWAMA, R packages

R packages

GCTA for multi-locus
approaches

Software developed
by the authors

of the proposed
methodologies



Exercise

* Explore the Global Biobank Engine
(https://biobankengine.stanford.edu), which has collated GWAS
results on a wide range of phenotypes based on large biobanks (UK
Biobank, Biobank Japan, Million Veterans Program).

e Using the Global Biobank Engine, explore sex-specific SNP
associations with circulating levels of testosterone


https://biobankengine.stanford.edu/

