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Workflow
for GWAS

Uffelmann, Nature Reviews
Methods Primers, 2021
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Peterson, Cell 2019

Cohorts with diverse ancestral backgrounds

Table 2, Common Pitfalls, Recommendations, and Methods in Need of Davelopment

reference panel to sample

1o the sample ancestry if using a single
ancestry sample. Consider the largest

Cell Pitfail Recommandation Needs
Many genotyping platforms Use or design population-specific array Continue improving coverage of diverse
do not cover non-European or multi-ancestry array, high array density  ancestries on genotyping arrays. Encourage
variation well can improve coverage in groups with ongeing development and sharing of
. . e . . high diversity. Consider low-depth pipelines for analysis of low-depth
Genome-wide Association Studies in Ancestrally -t ot
Diverse POpUIatlonS: Opportunltles, MethOdS, Unnecassary loss of data See Figure 2 for spacific recormmandations  Improve availabiity and convenience of
H - and/or incorrect inferences for sach QC step and Table S2. implemeanting proposed QC methods
Pitfalls, and Recommendations P s e ey
approach
Inaccurate imputation due Consider matching the ancestry of the Continue expanding diversity of imputation
to poor matching of reference panel as closely as possible panals, through collection of whole-gencens

sequencing data, creation of imputation
paneals from that data, and promoting public

reference panel possible for Imputation shanng/accassiblity of those panels,
== l of multiple or admixed samplas,
----------- Initial QC metrics NOT e GWAS mcm of popuation mmw “MM co"'m investigating causes of —and
. M fication regression methods for analysis of solutions to—current incomplete control of
affected by allele frequencies single ancestry groups followed by population strafiiontion o prindpal
lterate as ‘ lterate as mata-analysls. Considar mixed model compenents and mxed modals,
needed needed approaches for admixed or
multi-ancastry analyses
Infer populations Include PCs as covariates aven when
single ancesiry groups analyzed.
PCs should be computed ndividually
l ‘ for each major population group
within & multi-ancestry cohort and
Population QcC metriqs adjusted for mm;wm A ““:'Wun:mc u“.'nm:: :‘mu o bk:'
assignment population structure considered for the multi-ancestry
L analysis.
False negative and false Usa a random-effacts (with possible Continue to Investigate and find solutions
QC metrics WITHIN Combine samples from positive findings; effect blas towards the null), or madified to Improve power for the detection of
ancestral groups different ancestral heterogenity random-effects meta-analysis model. heterogeneous effects.
groups after QC LD impropery handled when  Use fine-mapping methods that Continue to develop fine-mapping methods
all samplas are meta-analyzed axplicitly model population-specific that rely on fewer assumptions, and
Y ‘ Y across popuations. Unaven LD, See racommendations for thoroughly evalate thelr parformance.
- - - QeNoMe COVarage across Ganatyping and Imputation above.
Imputation Genotype imputation Joint genotype populations because of the
within ancestry imputation genotyping array and the
imputation reference panel
‘ l Loss of accuracy in target Extrapolation of PRSs from one Large discovary cohorts for al populations
Stratified asspciation Mi.xeg model . povummw“i’mwlm“imm :::: wana‘:pmm:.;r:. m&mﬂsx mwm
analysis association analysis discovery cohort across populations, potentially incorporating
Association l l LD inforrmation and/or kocal ancestry
Information among dwarse populations,
< < Population stratification; Aggregate tests can improve power Approaches with belter control of population
cn:zf:- :: :leysstll'sy Me‘t:’ha ::Lyze low power to detect and handle separate causal varants stratification; more data on diverse
associations in different populations. populations needed.



Presentation of results from large-scale genetic association studies
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An association with p-value <5x10-2 is considered genome-wide significant

Warner, et al. Obesity 2021
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Mixed model association analysis

> Model any sample structure as a random effect in a mixed model

> More sensitive to cryptic relatedness and complex population structure not
easily captured by PCA

> Historically not used due to computational limitation (especially for large
datasets)

> Software: BOLT-LMM, GENESIS (R Package) and many others...

> Relies on building a genetic relatedness matrix (GRM)

w EPIDEMIOLOGY
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Generalized linear mixed models (GLMM) in GWAS

y = xsnpﬂsnp + Xcﬁc +g+te [1]

g~N (0,mof) e~N(0,Iof)

y is the phenotypes of interest

Xsnp IS the variant of interest with its effect B,

X_.is any fixed covariates (e.g., sex, age) with their corresponding coefficients B,
g is the total genetic effects

e is an error term

it is the SNP-derived genetic relationship matrix (GRM)
o is the additive genetic variance tagged by SNPs (unknown)

w EPIDEMIOLOGY
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The genetic relationship matrix (GRM)

> The genetic relationship m;, between two
individuals j and k can be estimated by the following equation:

;) = Z (gij _zpi)(gik _2pi)
w4 2p,(1-p,)

gijis the number of copies of reference allele for SNP i in individual j
p; is the frequency of the reference allele for SNP i
Jiris the number of copies of reference allele for SNP i in individual k

w EPIDEMIOLOGY
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Complement Factor H
Polymorphism in Age-Related
Macular Degeneration

Robert ). Klein,! Caroline Zeiss?* Emily Y. Chew,?*
Jen-Yue Tsai,** Richard S. Sackler,” Chad Haynes,’
Alice K. Henning,s John Paul SanGiovanni,? Shrikant M. Mane,®
Susan T. Mayne,” Michael B. Bracken,” Frederick L. Ferris,?
Jurg ott,’ Colin Barnstable? Josephine Hoh’t

The first GWAS was published in
December 2005 (96 cases and 50 controls

Age-related macular degeneration (AMD) is a major cause of blindness in the
eldedy. We report a genome-wide screen of 96 cases and 50 controls for
polymorphisms associated with AMD. Among 116,204 single-nucleotide
polymorphisms genotyped, an intronic and common variant in the comple-
ment factor H gene (CFH) is strongly associated with AMD (nominal P value
<10~ 7). In individuals homozygous for the risk allele, the likelihood of AMD is
increased by a factor of 7.4 (95% confidence interval 2.9 to 19). Resequencing
revealed a polymorphism in linkage disequilibrium with the risk allele
representing a tyrosine-histidine change at amino acid 402. This polymor-
phism is in a region of CFH that binds heparin and C-reactive protein. The CFH
gene is located on chromosome 1 in a region repeatedly linked to AMD in

[S)
y

Klein, Science 2005

family-based studies.

Age-related macular degeneration (AMD) is
the leading cause of blindness in the developed
world. Its incidence is increasing as the elderly
population expands (/). AMD is characterized
by progressive destruction of the retna’s
central region (macula), causing central field
visual loss (2). A key feature of AMD is the
formation of extracellular deposits called dru-
sen concentrated m and around the macula
behind the retina between the retinal pigment
epithelium (RPE) and the choroid. To date, no
therapy for this disease has proven to be
broadly effective. Several risk factors have
been linked to AMD, including age, smoking,
and family higory (3). Candidate-gene studies

wwwsdencemagorg SCIENCE VOL 308

have not found any genetic differences that can
account for a large proportion of the overall
prevalence (2). Family-based whole-genome
linkage scans have identified chromosomal
regions that show evidence of linkage to
AMD (4-8), but the linkage areas have not
been resolved to any causative mutations.

Like many other chronic diseases, AMD is
caused by a combination of genetic and envi-
ronmental risk factors. Linkage studies are not
as powerful as association studies for the
identification of genes contributing to the risk
for common, complex diseases (9). However,
linkage studies have the advantage of search-
ing the whole genome in an unbiased manner

15 APRIL
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https://www.ebi.ac.uk/gwas/
GWAS Catalog

The NHGRI-EBI Catalog of published genome-wide association studies

o pdan bose! cocnom, 3174, Yau 20571, HESIL &1H20X00-250000

NEW! We can now accept direct submissions of summary statistics for published
GWAS through our new submission page! See the documentation for detailed
instructions.

. Download Lk Summary statistics = Submit
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Genetic Association Results

Note: We have aggregated summary statistics from over 750,000 individuals across three population cohorts: UK Bicbank, Million Vetsrans Program and
Bobark Japan. We are continuously adding data from other population coborts in Global Biobank Engine. Please contact us if you want it 10 be featured.

COVID-19 resources avallable at: https://githut

For UK Biobank we present summary statistic resuits from the UK Biobank hospital in-patient health-related outcomes summary information data (Data-Fleld

% computational grouping of phenctypes with cancer 062) registry, death registry data (Category 10005%), algorhmically-defined
outcomes (Category 42), and verbal questicnnaire data (Category 10007 1) and manually curated grouping of phenctypes.
Terms of use
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Breakout Activity

> Explore the NHGRI-EBI GWAS catalog: https://www.ebi.ac.uk/gwas/home. This
website will introduce you to existing GWAS on many different phenotypes.

> Using the GWAS catalog, determine what SNP rs6025 has been associated with
in previous studies.

> Explore the Global Biobank Engine (https://biobankengine.stanford.edu), which
has collated GWAS results on a wide range of phenotypes based on large
biobanks (UK Biobank, Biobank Japan, Million Veterans Program). Using this
resource, what associations do you see with rs6025?

w EPIDEMIOLOGY
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https://www.ebi.ac.uk/gwas/home
https://biobankengine.stanford.edu/

Practical issues in GWAS and other large-scale association studies

Bias

Differential genotyping error/missingness
Population Stratification

Replication

Follow up of identified signals: fine-mapping
Meta-analysis of GWAS

VvV V V V V V
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Some “classical” bias in the context of genetic epidemiology

> Ascertainment bias
— Secondary phenotypes, e.g., Type 2 diabetes and BMI

> Survival bias

— When cases are recruited some time after they were diagnosed. Might lead to a milder form
of disease. This is especially true for aggressive/fatal disease (e.g., pancreatic cancer, heart
attack)

> Diagnostic bias

— If the investigator determining the phenotype knows the genotype beforehand (e.g., if the
radiologist knows that a potential pulmonary disease patient carries a high-risk genotype, she
may look more carefully at the x-ray).

w EPIDEMIOLOGY
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Differential genotyping error/missingness

> Systematic differences in how case and control samples were collected,
handled, or genotyped can lead to spurious associations

— DNA was collected from blood samples for cases and from cheek swabs for controls
— Case samples have been sitting in the freezer for 15 years, control samples are new

— Cases and controls were genotyped in different genotyping labs or by different
platforms

w EPIDEMIOLOGY
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Genetic signatures of exceptional longevity in humans

Sebastiani, Science 2010 EPIDEMIOLOGY
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Retraction

AFTER ONLINE PUBLICATION OF OUR REPORT “GENETIC SIGNATURES OF EXCEPTIONAL LONGEV-
ity in humans” (7), we discovered that technical errors in the [llumina 610 array and an inad-
equate quality control protocol introduced false-positive single-nucleotide polymorphisms
(SNPs) in our findings. An independent laboratory subsequently performed stringent quality
control measures, ambiguous SNPs were then removed, and resultant genotype data were vali-
dated using an independent platform. We then reanalyzed the reduced data set using the same
methodology as in the published paper. We feel the main scientific findings remain supported
by the available data: (i) A model consisting of multiple specific SNPs accurately differentiates
between centenarians and controls; (ii) genetic profiles cluster into specific signatures; and (iii)
signatures are associated with ages of onset of specific age-related diseases and subjects with
the oldest ages. However, the specific details of the new analysis change substantially from
those originally published online to the point of becoming a new report. Therefore, we retract

the original manuscript and will pursue alternative publication of the new findings.
PAOLA SEBASTIANI,*™* NADIA SOLOVIEFF,* ANNIBALE PUCA,? STEPHEN W. HARTLEY,* EFTHYMIA MELISTA,?
STACY ANDERSEN,* DANIEL A. DWORKIS,? JEMMA B. WILK,®* RICHARD H. MYERS,* MARTIN H. STEINBERG,*
MONTY MONTANO,?> CLINTON T. BALDWIN,*” THOMAS T. PERLS**



Population Stratification - Confounding by ancestry

> Group differences N Population 1 Cases Population 2
allele frequencies AND — >
outcome I
e
> GWAS data pick up much
I >
- —

Controls

Genotype [laalllaa Blaa

of these differences! Use
PCA to capture the
information

Marchini, Cardon et al. 2004; EPIDEMIOLOGY
Price, et al. 2006 SCHOOL OF PUBLIC HEALTH




The continuous category-free nature of genetic variation

Colored dots (n = 4149) are

Europe . .. .
0.005 - Middle East l reference individuals representing
BiolMe _-.,.J' anc_estry from seven regions
Africa . projected onto the first two PCs of

0,000 - M‘ o 2 © s ¢ genetic similarity. Gray dots (n =

31,705) are participants from BioMe,
a diverse biobank based in New
York City.

-0.005 -

Oceania ~|:‘
~0.010 -
2

-0.015 4 ‘ ¥
East Asia —S .
«— Americas
-0.020 4
T T T T
~0.010 ~0.005 - 0.000 Q008 Lewis, Science 2022

Clearly delineated continental
ancestry categories (dots in color)
are really a by-product of

sampling strategy. They are not
reflective of the diversity in this real-
world dataset, which is made
evident by the continuous sea of

gray.

PC2
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How to assess population stratification (and other sources of
inflation) in your GWAS

> Most of the genetic markers in the genome (e.g., in a GWAS) are likely
not associated with the trait of interest

> The genomic control parameter (A;-) summarizes systematic inflation
in your data and is based on a large number of association tests

1o The median of the observedy? statistics
““ ™ The median of the y? statistics under the NULL

w EPIDEMIOLOGY
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For a 1 d.f. y“test, the denominator is 0.455




A few notes about A

> Acc should be close to 1 if no bias exists.

— Rule of thumb for a small-to-moderate GWAS: <1.05 is often ok, above 1.1 deserves
attention

> Agc scales with sample size

« Under a polygenic model, many SNPs with small effect sizes will be detected with
very large sample size -> expect A;¢ to increase

> There are methods (e.g,, LD score regression) that allows you to assess if
the inflation in test statistics is due to a true polygenic signal or due to
bias.

: : EPIDEMIOLOGY
Bulik-Sullivan et aI, Nat Genet 2015 w SCHOOL OF PUBLIC HEALTH




Hair color GWAS in the Nurses Health Study (n=2,287)

> QQ plot for a GWAS of dark-light ) L.
hair color in European ancestry o {:
women from the Nurses Health o /!
Study. The black points are the |
test statistics from the B
unadjusted tests. The red points ~ © °-
are from PC adjusted tests. o Aec=1.24
Acc=1.02

EPIDEMIOLOGY
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Han et al, PLoS Genet 2008



QQ plots from two breast cancer GWAS

> QQ plot for a GWAS of breast cancer (1,145 cases) in the > QQ plot for a GWAS of breast
same women as from the hair color GWAS. Again, black cancer in 120,000 cases and
points = unadjusted tests, red points from PC adjusted 105,000 controls.
tests. Breast cancer risk does not correlate with =
European ancestry ) ~ ’
© - o - §
o 3 ] 8
7 » Aec=1.17 §
i g ¢

Expected )(2

0 1 2 3 4 5 6
Hunter, Nature Genet 2007 Sxpeciad Michailidou, Nature 2017 W
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A note about replication
> Want to see the signal in more than one population (e.g., longevity study)

> Originally, replication was a way to maintain sample size while reducing
costs

— Stage 1: many SNPs in few samples
— Stage 2: few SNPs (selected from stage 1) in many samples

> |t has been shown that it is more powerful to combine data up-front
instead of subsequent replication (or “look-ups”)
— Politics will play a role

w EPIDEMIOLOGY
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Follow up on GWAS hits: Fine-mapping

0 N N

............... e SEUS G qun SR

Direct association Indirect association

Nature Reviews | Genetics

LD complicates things: Which SNP(s) is the causal SNP?

Hirschhorn & Daly. evVER B EMIIOI0O GY
SCHOOL OF PUBLIC HEALTH



Results from a prostate cancer GWAS
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F’Slc;lt:;e: | T | S | | 8 I 1NN | . ] Fg:}::e: 1 SN | VR I Y O I I 1
‘ 84~ l r 100
| M-0.8
| 12791447 80 3
6 -: g; Pa 105 % 10°
1 4 "

—log,, (P value)
BN

2 4
20
i"S\'.i‘-"l SYNE2w -'F_X.‘"P AKA:ﬁ- F‘LEKNGJ: 0
SIESR, MmEDIS MR CL e L R ~oEre —0Ri0k
0—2'5.:&’5 ﬁﬂ\l:‘t.‘-o O“.’.’i fw -CY_R‘.R;‘ -Cllt'm O-CN!!-')A‘
/L g ~OVeHz ORI =NLRPIO
PPe1RY-~ - LOCZR3299 cr;;‘r-j
' J T T ‘ T 1 ' —
64.2 64.4 64.6 64.8 65 7.2 7.4 7.6 7.8 8
Position on chr14 (Mb) Position on chr11 (Mb)
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Fine-mapping approaches

> Conditional regression analysis

— Rerun analysis adjusting for the most significant SNP, see if any other SNP remains
significant. Keep going until no more significant SNPs

> Calculate posterior probabilities for each SNP
> |ncorporate “functional” information to identify biological plausible SNPs

> Choose a set of “potentially causal variants” and take them forward for
downstream analysis.

w EPIDEMIOLOGY
SCHOOL OF PUBLIC HEALTH



Meta-analysis
> Sample size is the key for a successful genetic association study

> |International collaborations to pool data from multiple GWAS are
common

> |ssues with sharing individual-level data
— Ethical approvals, IRBs, large files, ownership of the data...

Evangelou & loannidis, Nature Rev Genetics 2013
w EPIDEMIOLOGY

de Bakker, Hum Mol Genetics 2008
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[Set up consortium]

&
} { Set up collaboration rules upfront J
* Formulate analysis team - N
[0 Write analysis plan J * Goal is to avoid introducing
- heterogeneity
| » Standardized definition
4 of phenotype
¢ Inclusion and exclusion criteria
* Harmonize data sets based on analysis plan clearly described
* Carry out analysis in each group * Quality-control rules apply

|

* Set up storage options
* Collect summary statistics

| Novel methods for synthesizing
v results and controlling
L heterogeneity may apply

* Investigate sources of heterogeneity
_* Synthesize results

|

* Prioritize signals based on pre-specified threshold
* Replicate selected findings

|

[Carry out meta-analysis including all available data]

Evangelou & loannidis, Nature Rev Genetics 2013

Nature Reviews | Genetics



Meta-analysis in practice

> Common protocol
— Imputation reference panel
— Association analysis (test for the same thing across studies)

> QC of summary stats
— Are the alleles the expected?
— Are the minor allele frequencies the expected?
— Are beta estimates/standard errors reasonable?
— QQ-plots, Manhattan plots
— Note: “Clean data” is most often not cleaned.

w EPIDEMIOLOGY
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Method

Pvalue
meta-analysis

Fixed effects

Random
effects

Bayesian
approach

Multivariate
approaches

Other
extensions

Description

Simplest meta-analytical
approach

Synthesis of effect sizes.
Between-study variance is
assumed to be zero

Synthesis of effect sizes.
Assumes that the individual

studies estimate different effects

Incorporates prior assessment

of the genetic effects

Incorporates the possible

correlation between outcomes or

genetic variants

A set of different approaches

that allows for the identification

of multiple variants across
different diseases

Advantages

Allows meta-analysis when
effects are not available

Effects readily available
through specialized software

Generalizability of results

Most direct method for
interpretation of results as
posterior probabilities given
the observed data

Increased power can identify
variants that conventional
meta-analysis do not reveal
using the same data sets

Summary results of previous
meta-analyses can be used

GCTA, genome-wide complex trait analysis; GWAS, genome-wide association study.

Disadvantages

Direction of effect is not always
available; inability to provide effect
sizes; difficulties in interpretation

Results may be biased if a large
amount of heterogeneity exists

Power deserts in discovery efforts;
may yield spuriously large summary
effect estimates when there are
selection biases

Methodologically challenging;
GWAS-tailored routine software
not available; subjective prior
information used

Computationally intensive; software
not available for all analyses; some
may require individual-level data

May need additional exploratory
analyses for the identification of
variants; prone to systematic biases

Evangelou & loannidis, Nature Rev Genetics 2013

Main software used
METAL, GWAMA,

R packages

METAL, GWAMA,
R packages

GWAMA, R packages

R packages

GCTA for multi-locus
approaches

Software developed
by the authors

of the proposed
methodologies



