Mendelian Randomization



Drawback with observational studies
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We can leverage genetic variation to (partly)
overcome these issues
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Mendelian Randomization

* Basic principle: “genetic variants which mirror the biological effects of a
modifiable environmental exposure and alters disease risk should be
associated with disease risk to the extent predicted by their influence on
exposure to the risk factor.”

* The random allocation of genetic variants from parents to offspring means
these variants will generally be unrelated to other factors which affect the
outcome.

* Furthermore, associations between the genotype and the outcome will not
be affected by reverse causation because disease does not affect genotype

Ebrahim & Davey Smith, Hum Genet 2008
Davey Smith & Ebrahim, Int J Epi 2004



Three key assumptions in MR analysis

1. G (SNP or a combination of multiple SNPs)
is robustly associated with X (risk factor)

2. Gis unrelated to any confounders C, that
can bias the relationship between G and Y
(outcome). In other words, there are no
common causes of Gand Y (e.g. population
stratification)

3. Gisrelated to Y only through its
association with X (i.e. no pleiotropy)
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Assumption 1: G is robustly associated with X

e Under certain conditions, the relative bias of the instrument variable (1V)
estimate is ~1/F. A “weak” IV has been defined as having F<10, where

P R*(n — 1 —k) R? is variance in X explained by the IV(s),
(1 — Rk n is sample size and k is number of IVs

 Weak IVs can lead to biased effect estimates (in the direction of the observed X-Y
association) in the presence of confounding of the X-Y relationship.

Pierce, IJE 2011



Assumption 2: No confounding

* G is independent of factors (measured and unmeasured) that
confound the X-Y relation

* Since G is randomized at birth and thus is independent of non-genetic
confounders and is not modified by the course of disease, the one
main concern here is population stratification —i.e. if ancestry is
related both to G and Y.

* If you have individual-level data, you can test for this (e.g. PCA)



Assumption 3: No pleiotropy

* This assumption is the trickiest

* Assumes that G is only associated with Y via X and thus the
association between G and Y is fully mediated by X and not through
any unmeasured factor(s). Needs to be true for SNPs in LD too
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Best (but oft-forgotten) practices: the design, anaIyS|s and
interpretation of Mendelian randomization studies’

Philip C Haycock,”* Stephen Burgess,” Kaitlin H Wade,” Jack Bowden,”* Caroline Relton,” and George Davey Smith®

TABLE 2

Different design strategies for MR'

Study design Test Comments

G-X +G-Y Implies X—Y No estimation of magnitude of causal effect

One-sample MR Various hypotheses Requires individual-level data; lower power; MR estimates

are biased toward the confounded observational
association by weak instruments

Two-sample MR Various hypotheses Individual-level or summary data; greater power (due
to greater potential sample sizes); MR estimates are biased
toward the null by weak instruments

Bidirectional MR X—=Yand Y—X Assesses causation in both directions

Two-step MR X—-M-Y Tests mediation in a causal pathway

GXE X—=Y Able to detect direct effects (a violation of assumption
(relation is dependent on environment variable) 2 of MR)

lGXE, gene-environment interaction; G-X, SNP-exposure association; G-Y, SNP-outcome association, M, mediator; MR, Mendelian randomization;
SNP, single nucleotide polymorphism; X, hypothesized exposure; Y, outcome variable of interest.

Haycock et al, Am J Clin Nutr 2016



Individual-level data in one sample

* Access to SNPs, risk factor, and outcome for all participants

* The causal effect of X on Y can be estimated using 2-stage least-squares (2SLS)
regression:

1. X=a+ yG

2. Y=c+ X", where X™ are the genetically predicted exposure levels as
measured in (1)

* The causal estimate is given by
e Can be implemented in R using the “ivpack” package
* Weak instruments cause bias towards the observed confounded association



Summary data from two samples

e The G-X and the G-Y associations are estimated in two different
samples.

* Assumes no overlap among samples and that the two populations are
similar (ethnicity, age, sex, etc.)

* Here, bias due to weak I1Vs will be towards the null

* Note: The G-X and G-Y associations need to be coded using the same
effect allele



Summary data from two samples
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Cancer type (ICD10) and number of cases

HR (99% CI) pvalve
Oral cavity (C00-06) —a— 0-81(074-0-89)  <0-0001
(7976) R 107 (0-91-1-26) 026
Oesophageal (C15) L 103 (0-99-1-08) 0-056
(5213) 116 (109-124)  <0-0001
Stomach (C16) -— 1.03(0-:98-1.09) 016
(3337) —— 1.08(1-00-1-18) 0013
Colon (C18) 110 (1:07-1-13) <0-0001
(13 465) 111 (1-07-115)  <0-0001
Rectum (C20) Hi- 1.04 (1-00-1-08) 0-017
(6123) | s 105 (0-99-1-12) 0024
Liver (C22) 119 (112-127)  <0-0001
(1859) 126 (114-1.40)  <0-0001
Gallbladder (C23) 131 (112-152)  <0-0001
(303) —————— 150(121-185)  <0.0001
Pancreas (C25) - 105 (1-00-1-10) 0-012
(3851) —— 111 (1:03-1-19) 000024
Lung ((34) - 0-82(0-81-0.84)  <0-0001
(19339) —— 0-99(0-93-1-05) 055
Malignant melanoma (C43) - 0-99(0:96-1-02) 039
(8505) = 0-96(0-92-1-00) 0-013
Breast—premenopausal (C50) - 0-89(0-86-0.92)  <0-0001
(6298) o 0-89(0-85-0.94)  <0-0001
Breast—postmenopausal (C50) [ ] 1-05 (1-03-1-07) <0-0001
(28 409) * 1.05 (1-03-1.08) <0-0001
Cervix (C53) —.— 110 (1:03-1-17) 0-00035
(1389) —_— 114 (1.03-126) 0-0010
Uterus (C54-55) 1.62 (1.56-1-69) <0-0001
(2758) 1.63 (1.55-1.71) <0-0001
Ovaries (C56) - 1.09(1:04-114)  <0-0001
(3684) —x— 1.08(1:02-115) 000036
Prostate (C61) - 0-98(0-95-1-00) 0-0042
(24901) | 096(0-93-0-99) 00021
Kidney (C64) 125(117-133)  <0-0001
(1906) 125(113-138)  <0.0001
Bladder (C67) - 1.03(0:99-1-06) 0062
(7976) — 1.05 (0-99-112) 0033
Brain and CNS (C71-72) | 1.04(0-99-1-10) 0053
(2974) —be— 102 (0-94-1-10) 056
Thyroid (C73) - 109 (1-00-1-19) 0-0088
(941) —— 111 (0-99-1-25) 0-017
Non-Hodgkin lymphoma (C82-85) - 1.03 (0-99-1-06) 0-050
(6946) — 1:00 (0-95-1-05) 096
Multiple myeloma (C90) - 1.03 (0-98-1-09) 015
(2969 P 1:03(0-95-111) 0-40
Leukaemia (C91-95) - 1.09(105-113)  <0-0001
(5833) —— 1.07 (1:02-1-14) 0-0011

r
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X Neversmokersonly  Estimated HR per 5 kg/m? increase in BMI (99% Cl)

* Association between BMI and cancer risk was

assessed for 22 cancers

e 5.24 million individuals (166,996 cancer cases)
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Childhood body fatness is inversely
associated with breast cancer risk

L IO /
N

Baer et al, AJE 2010



Expansion to other cancer types within GAME-ON

Cancer Type Cases Controls GWAS studies
Breast

All 15,569 18,204 11
ER-negative 4,760 13,248 8
Colorectal 5,100 4,831 6
Lung?

All 12,527 17,285 6
Adenocarcinoma 3,804 16,289 6
Squamous 3,546 16,434 6
Ovarian®

All 4,369 9,123 3
Clear-cell 356 9,123 3
Endometrioid 715 9,123 3
Serous 2,556 9,123 3
Prostate

All 14,160 12,712

Aggressive 4,446 12,724 6
Total 51,725 62,155

Gao et al, IJE 2016
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Adult BMI (77 SNPs)
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Bidirectional MR analysis

* Approach to overcome reverse causation

C
* |Vs for both X, and X, are used to assess / \
the causal association in both directions

1. Is G, associated with X,?
2. Is G, associated with X,?

(Also confirm that G, is associated with X, Gl GZ

and that G, is associated with X,



BMI and CRP — what causes what?

* There is a consistent observed association between high BMI and high
CRP levels
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Light grey points represent a scatter plot of the correlation between
circulating CRP and residual BMI. Gray areas represent 95% confidence
regions around IV estimates. Black area represents 95% confidence regions

around simple linear regression estimates. Timpson et al, Int J Obesity 2011



Table 5. Observational and instrumental variable derived relationships between BMI and circulating CRP.

4 Previous table | ~ Figures and tables index

Effect estimates

Outcome /fexplanatory variable | opservational | Instrumental variable | Prv Paiff | F first
CRP/BMI 1.46 (1.44, 1.48) 1.41 (1.10, 1.80) 0.006 | 0.8 31.1
BMI/CRP 1.03 (1.00, 1.07) —-0.24 (—0.58, 0.11) 0.2 <0.0001 | 57.3

These data suggest that the observed association between circulating CRP
and measured BMI is likely to be driven by BMI, with CRP being a marker
of elevated adiposity.

Timpson et al, Int J Obesity 2011



Drawbacks with MR analysis

* Large sample sizes are needed

* As genetic effects on risk factors are typically small, MR estimates of
association have much wider confidence intervals than conventional
epidemiological estimates.

* Make sure that the three key assumptions hold

* |n practice, this is very difficult, especially for the third assumption of no
pleiotropy.



TABLE 4

Practical strategies for enhancing causal inference'

Strategy

Addresses

Rationale/explanation

Potential limitation

Pleiotropy analyses

Exclusion of nonspecific SNPs

Weighted median estimator

MR-Egger regression

Gene-environment interactions

Multiple independent instruments

Two-sample approaches

Multi-SNP instruments

External weights for 2SS

Genetic confounding

Genetic confounding

Violation of all MR assumptions

Direct effects/horizontal pleiotropy

Genetic confounding

Genetic confounding

Weak instrument bias and low power

Weak instrument bias and low power

Weak instrument bias

Test association between instrument(s) and wide range of
potential confounders

SNPs associated with multiple exposures may introduce
pleiotropy

Sensitivity analysis allowing 50% of the instruments to be
invalid

Sensitivity analysis allowing all instruments to be subject to
direct effects (i.e., horizontal pleiotropy)

Association should only be observed in certain exposure
subgroups (e.g., smoking instruments in ever- compared
with never-smokers)

Association across multiple independent genomic regions
should be robust to confounding

Allows larger sample sizes because measurement of the
exposure is not required in all samples; bias from weak
instruments is toward the null, rather than the confounded
observational association

Instrument will explain more of the variance in the exposure,
reducing impact of weak instruments bias and increasing
power

Weight the first stage by SNP-exposure effect from an
external study

Does not test for association with unknown confounders

Power may be limited to detect nonspecific associations;
exclusion of nonspecific SNPs can also introduce bias into
the analysis

At least 50% of the genetic proxies must be valid instruments

The InSIDE assumption is required: strength of the
gene-exposure association must not correlate with the
strength of bias due to horizontal pleiotropy

Limited number of available gene-environment interactions;
can introduce collider bias

Power likely to be limited for individual genetic variants

Samples must be independent and representative of the same
population; less flexible than 2SS

Requires multiple GWAS significant hits; increases chance
of pleiotropy

Precisely estimated external weights must be unavailable

'GWAS, genome-wide association study; InSIDE, Instrument Strength Independent of Direct Effect; MR, Mendelian randomization; SNP, single nucleotide polymorphism; 2SLS, 2-stage least squares.

Haycock et al, Am J Clin Nutr 2016



