

Session 9: Risk Prediction

Complex traits are often influenced by many variants

- > The genetic architecture of polygenic complex traits
 - A large number genetic variants contribute to disease risk
 - Each risk variant typically has a <u>small effect</u>, ranging from OR 1.01-1.2
- > Collectively, these variants can lead to better risk prediction than any given variant on its own

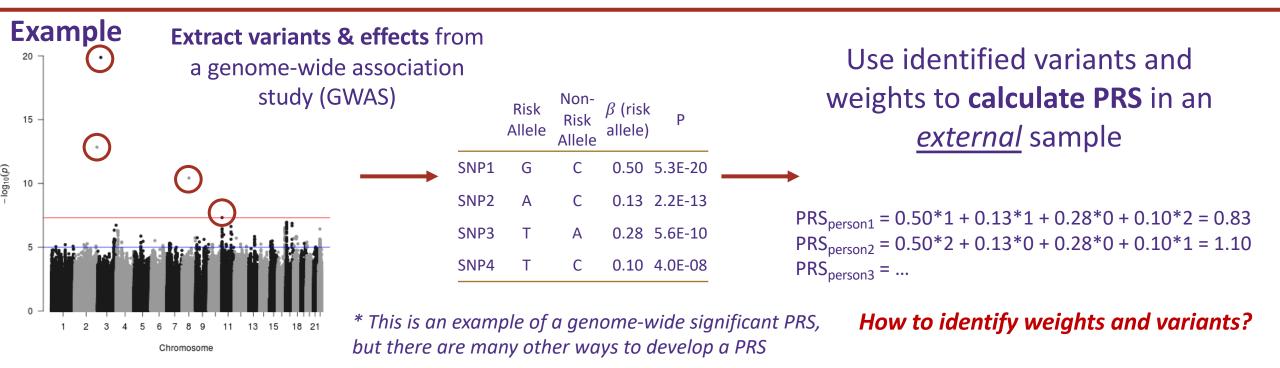
What are Polygenic Risk Scores?

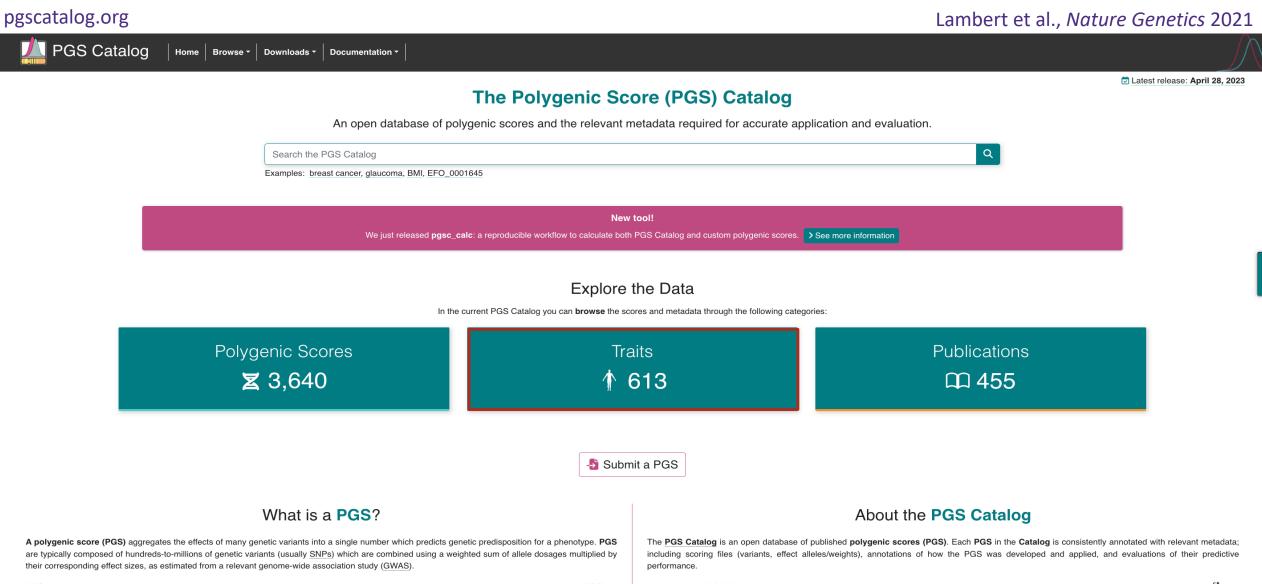
Definition¹: Polygenic scores **quantify genetic predisposition** to a <u>heritable</u> trait, calculated as a sum of genetic alleles weighted by corresponding variant-specific effect sizes.

- Polygenic Risk Score (PRS)/Genetic Risk Score (GRS): Estimates genetic contribution to disease risk
- **Polygenic Score (PGS)**: Estimates genetic contribution to <u>any phenotype</u> (e.g., disease, biomarkers, height)
- Integrated Risk Model: Estimates disease risk by combining PRS/PGS with other established clinical risk factors

Potential Clinical Utility²:

- **1. PRS-informed disease screening**: Decision to initiate and the interpretation of screening (*disease risk prediction/stratification*)
- 2. PRS-informed therapeutic intervention: Selection of interventions to treat or prevent disease (*disease subtyping*, *prediction of prognostic outcomes/response to therapy*)
- **3. PRS-informed life planning**: Personal utility of PRS, even in the absence of clinical intervention (e.g., Alzheimer's disease PRS: may inform financial, legal, and care planning)


¹ Wand, Lambert et al., *Nature* 2021, Improving reporting standards for polygenic scores in risk prediction studies. ² Torkamani et al., *Nature Reviews Genetics* 2018, The personal and clinical utility of polygenic risk scores.


Calculating Polygenic Risk Scores

PRS is calculated as a weighted sum of genetic *risk* alleles, weighted by corresponding variant-specific effect sizes \rightarrow Higher PRS = Higher genetic risk

$$PRS_i = \sum_{m=1}^M \beta_m G_{im}$$

 β = weight of variant m G = # risk alleles variant m in individual iM = total # variants

PGS nomenclature is heterogeneous: they can also be referred to as genetic scores or genomic scores, and as polygenic risk scores (PRS) or genomic risk scores (GRS) if they predict a discrete phenotype, such as a disease.

More about the PGS Catalog project, descriptions of the data, and publication eligibility criteria can be found in our documentation and recent paper 2.

pgscatalog.org

Lambert et al., *Nature Genetics* 2021

Section PGS Catalog ноте		oumentation	.			Search
		ounientation				breast cancer, glaucoma, BMI, EFO_0001645
Catalog / Browse / Traits						
aits						
ans						
owse PGS by Trait Ca	teaory a	Reset view				
		Hesel view				
	Biological process	37 PGS		elanoma 📔	40 PGS	
	Body measurement	164 PGS		multiple myeloma	6 PGS	
	Cancer	598 PGS	\ominus	nasopharyngeal neoplasm	1 PGS	
	Cardiovascular disease	191 PGS		neuroblastoma	1 PGS	
	Cardiovascular measurement	112 PGS		non-Hodgkins lymphoma	4 PGS	
	Digestive system disorder	261 PGS		non-melanoma skin carcinoma	1 PGS	
	Hematological measurement	271 PGS		ocular cancer	1 PGS	
	Immune system disorder	155 PGS		oral cavity cancer	4 PGS	
	Inflammatory measurement	43 PGS		ovarian carcinoma	9 PGS	
	Lipid or lipoprotein measuremen	nt 230 PGS		ovarian neoplasm	21 PGS	
	Liver enzyme measurement	25 PGS		ovarian serous carcinoma	2 PGS	
	Metabolic disorder	160 PGS		pancreatic carcinoma	8 PGS	
	Neurological disorder	186 PGS		pancreatic ductal adenocarcinoma	1 PGS	
	Other disease	195 PGS		pharynx cancer	2 PGS	
	Other measurement	1749 PGS		polycythemia vera	1 PGS	
	Other trait	153 PGS		prostate adenocarcinoma	1 PGS	
	Response to drug	3 PGS		prostate cancer	2 PGS	
	Sex-specific PGS	18 PGS		prostate carcinoma	62 PGS	

ogscatal	og.org		Lambert et al., Nature	e Genetics 2021
PGS	Catalog Home Browse - Downloads - Do	cumentation -	Search breast cancer, glaucoma, BMI, EFO_0001645	Q
PGS Catalog /	Traits / EFO_0001663			
Trait: pro	ostate carcinoma			
E	xperimental Factor Ontology (EFO) Information			
Identifier	EFO_0001663 ¹²			
Description	A carcinoma that arises from epithelial cells of the prostate gland.			
Trait category	Cancer			
Synonyms	5 synonyms 🕄			
Mapped terms	7 mapped terms 🕤			_
Associato	d Polyaenic Score(s)			Feedback

Associated Polygenic Score(s)

Filter PGS by Par	ticipant Ancestry 🚯	Ancestry legend 3			
Individuals included in: All Stages combined [G, D, E] ~ G - Source of Variant Associations (GWAS) D - Score Development/Training	List of ancestries includes: Display options: Show European ancestry data		Multi-ancestry (including European) Multi-ancestry (excluding European) African East Asian South Asian		European Greater Middle Eastern Hispanic or Latin American Additional Diverse Ancestri Not Reported
E - PGS Evaluation	Show <u>only</u> Multi-ancestry data		Additional Asian Ancestries		

					Search	
Polygenic Score ID & Name	PGS Publication ID (PGP)	Reported Trait	Mapped Trait(s) (Ontology)	Number of Variants	Ancestry distribution	Scoring File (FTP Link)
	nat ×					
PGS000030 (PrCa)	PGP000019 Schumacher FR <i>et al.</i> Nat Genet (2018)	Prostate cancer	prostate carcinoma	147	G · E	E
PGS000084 (CC_Prostate)	PGP000050 >> Graff RE <i>et al.</i> Nat Commun (2021)	Prostate cancer	prostate carcinoma	161	G - E	E
PGS000333 (PRS_PC)	PGP000100 >> Mars N et al. Nat Med (2020)	Prostate cancer	prostate carcinoma	6,606,785	6 D E	È
PGS000662 (GRS.PCa.269)	PGP00122 » Conti DV <i>et al.</i> Nat Genet (2021)	Prostate Cancer	prostate carcinoma	269	G · E	E

pgscatalog.org PGS Catalog Home Browse * Documentation * PGS Developed By This Publication \$

					Search	⊕ ≡ • ± •
Polygenic Score ID & Name	PGS Publication ID (PGP)	Reported Trait	Mapped Trait(s) (Ontology)	Number of Variants	Ancestry distribution	Scoring File (FTP Link)
PGS000662 (GRS.PCa.269)	PGP000122	Prostate Cancer	prostate carcinoma	269	G - E	

Showing 1 to 1 of 1 rows

Performance Metrics ()

Disclaimer: The performance metrics are displayed as reported by the source studies. It is important to note that metrics are not necessarily comparable with each other. For example, metrics depend on the sample characteristics (described by the PGS Catalog Sample Set [PSS] ID), phenotyping, and statistical modelling. Please refer to the source publication for additional guidance on performance.

								Search	⊙ ♦ ≡ • ≰ •
PGS Performance Metric ID (PPM)	Evaluated Score 🝦	PGS Sample Set ID (PSS)	Performance Source	Trait 🔶	PGS Effect Sizes (per SD change)	Classification Metrics	Other Metrics	Covariates Included in the Model 🕴	PGS Performance: Other Relevant Information
PPM001365	PGS000662 (GRS.PCa.269)	PSS000596 European Ancestry A 199,969 individuals	PGP000122 >> Conti DV <i>et al.</i> Nat Genet (2021)	<u>Reported Trait</u> : Prostate Cancer	_	AUROC: 0.833	Odds ratio (OR, top 10% versus 40-60% GRS): 4.17 Overall Net Reclassification Index (NRI [%]): 59.4	Age, 10 PCs	_
PPM001366	PGS000662 (GRS.PCa.269)	PSS000595 African Ancestry 2,633 individuals	PGP000122 >> Conti DV et al. Nat Genet (2021)	Reported Trait: Prostate Cancer	_	AUROC: 0.679	Odds ratio (OR, top 10% versus 40-60% GRS): 3.53	Age, 10 PCs, study	-

Conti, Darst et al. Nature Genetics 2021

	А	В	С	D	E	F	G	Н	I	J
1	. ###PGS CATALOG SCORING FILE - see https://www.pgscatalog.org/downloads/#dl_ftp_scoring for additional info							ation		
2	#format_vers	sion=2.0								
3	##POLYGENI	C SCORE (PG	S) INFORMAT	ION						
4	#pgs_id=PGS	000662								
5	<pre>#pgs_name=</pre>	GRS.PCa.269								
6	<pre>#trait_report</pre>	ed=Prostate	Cancer							
7	#trait_mappe	ed=prostate o	arcinoma							
8	#trait_efo=El	0_0001663								
	#weight_type									
	#genome_bu									
11	<pre>#variants_nu</pre>	mber=269								
	##SOURCE IN		J							
	#pgp_id=PGP									
						41588-020-007				
		chr_name			other_allele		allelefrequency_effect_European			
	rs7542260	1	5743196		С	0.102298257	0.067	0.439	0.113	0.157
	rs2847344	1	10564675		G	0.042411273	0.692	0.703	0.69	0.54
	rs10803412	1	16376831		Т	0.055506528	0.176	0.594	0.021	0.126
	rs544780844	1	46251655		С	0.07282201	0.188	0.098	0.015	0.1
	rs56391074	1	88210715		A	0.048255598	0.37	0.722	0.751	0.5
	rs1811698	1	150772613		T	0.080240037	0.895	0.448	0.81	0.887
	rs607518	1	150954671		G	0.067047369	0.209	0.068	0.042	0.116
23	rs10127983	1	153923276	Т	С	0.066274137	0.312	0.223	0.29	0.399

Convert genomic coordinates between builds:

UCSF LiftOver <u>https://genome.ucsc.edu/cgi-bin/hgLiftOver</u> NCI Remap: <u>https://www.ncbi.nlm.nih.gov/genome/tools/remap</u>

Selecting Polygenic Risk Scores

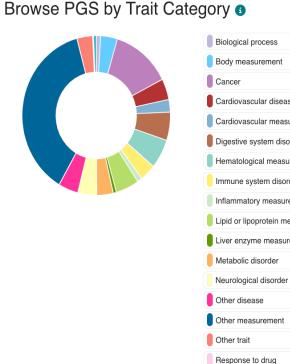
How to select the optimal PRS for your study?

- Matching your trait
 - Closely matching the trait under investigation in the testing data (i.e., the study the PRS is being applied to) to the one used in the training data (i.e., the GWAS used to develop the PRS) will improve the accuracy of the PRS
- Sample Size
 - The larger the training data, the more accurate the PRS
- Population
 - Matching the training population to the ancestral background of the testing population could optimize results
 - However, large training sample sizes are important for PRS accuracy

PRS accuracy is <u>also</u> dependent on trait heritability (*h*²)

• Traits with low *h*² typically lead to poor predictive models

Breakout Activity

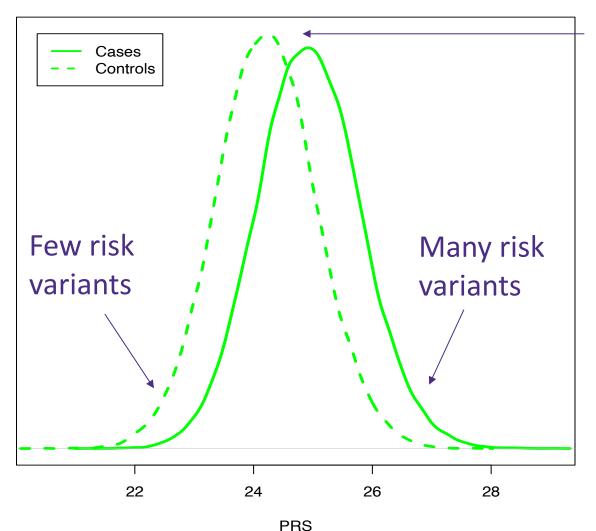

pgscatalog.org

Lambert et al., Nature Genetics 2021

PGS Catalog Home Brow	wse - Downloads - Docume	ntation *	Search xeast cancer, glaucoma, BMI, EFO_0001645	

PGS Catalog / Browse / Traits

Traits

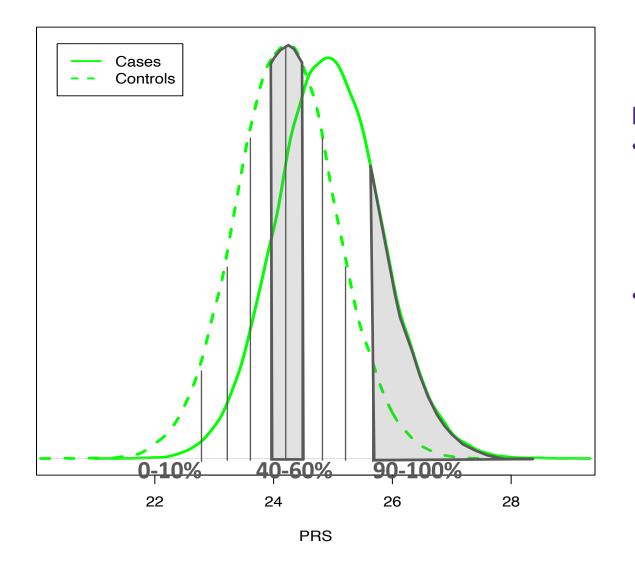

Sex-specific PGS

C'R	eset view		
	37 PGS	melanoma	40 PGS
	164 PGS	multiple myeloma	6 PGS
	598 PGS	nasopharyngeal neoplasm	1 PGS
se	191 PGS	neuroblastoma	1 PGS
urement	112 PGS	non-Hodgkins lymphoma	4 PGS
order	261 PGS	non-melanoma skin carcinoma	1 PGS
urement	271 PGS	ocular cancer	1 PGS
rder	155 PGS	oral cavity cancer	4 PGS
ement	43 PGS	ovarian carcinoma	9 PGS
easurement	230 PGS	ovarian neoplasm	21 PGS
rement	25 PGS	ovarian serous carcinoma	2 PGS
	160 PGS	pancreatic carcinoma	8 PGS
	186 PGS	pancreatic ductal adenocarcinoma	1 PGS
	195 PGS	pharynx cancer	2 PGS
	1749 PGS	polycythemia vera	1 PGS
	153 PGS	prostate adenocarcinoma	1 PGS
	3 PGS	prostate cancer	2 PGS
	18 PGS	prostate carcinoma	62 PGS

You received a grant to investigate whether the effect of a polygenic score is impacted by dietary factors (e.g., GxE interactions).

Look through the PGS Catalog and choose a PGS for your trait of interest (any trait you are interested in). Justify to the grant funders the reason you chose that PGS.

Evaluating Polygenic Risk Scores

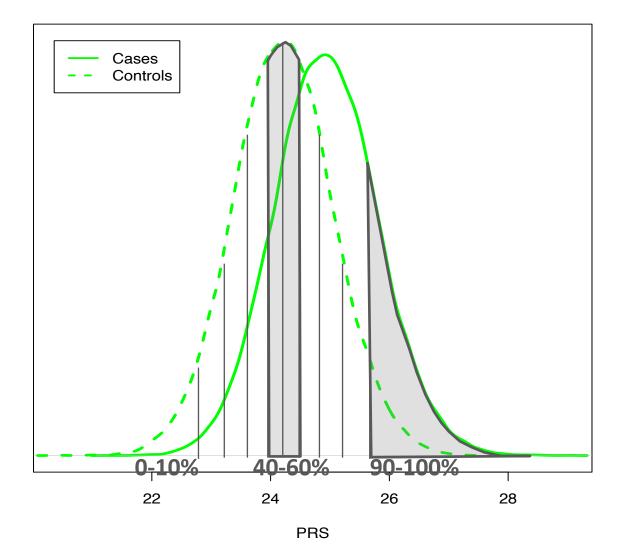

Average: everyone probably has some of these variants, since most are common in GWAS

¹Choi et al., *Nature Protocols* 2020, A guide to performing polygenic risk score analyses.

² Chatterjee et al., *Nature Reviews Genetics* 2016, Developing and evaluating polygenic risk prediction models for stratified disease prevention.

Density

Evaluating Polygenic Risk Scores


PRS could be analyzed as a:

- Continuous predictor
 - Standardize PRS (subtract mean & divide by SD for each individual)
 - Interpretation: "1 SD increase in PRS associated with ..."
- Categorical predictor
 - Compare individuals between deciles/quantiles (e.g., Disease OR for individuals in 90-100% vs 40-60% PRS)
 - Interpretation: "Individuals in the 90-100% PRS category have x-fold higher odds of disease than those in the 40-60% PRS category"

¹Choi et al., *Nature Protocols* 2020, A guide to performing polygenic risk score analyses.

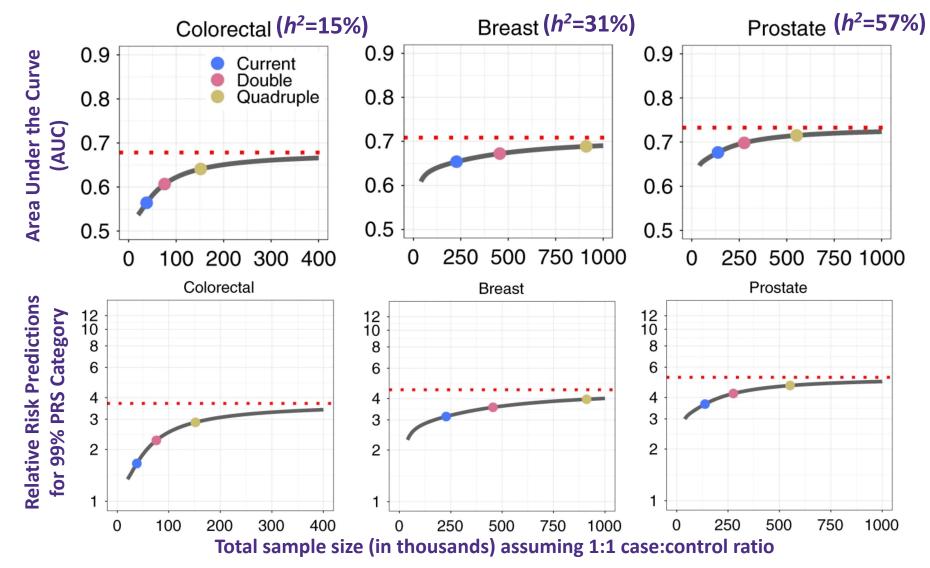
² Chatterjee et al., *Nature Reviews Genetics* 2016, Developing and evaluating polygenic risk prediction models for stratified disease prevention.

Evaluating Polygenic Risk Scores

Evaluate performance for dichotomous trait Logistic regression

- Effect on trait (OR & P-value)
- Area under the curve (AUC)
- Net reclassification index (NRI)
- Variance explained (Pseudo R²)

Evaluate performance for continuous traits <u>Linear regression</u>

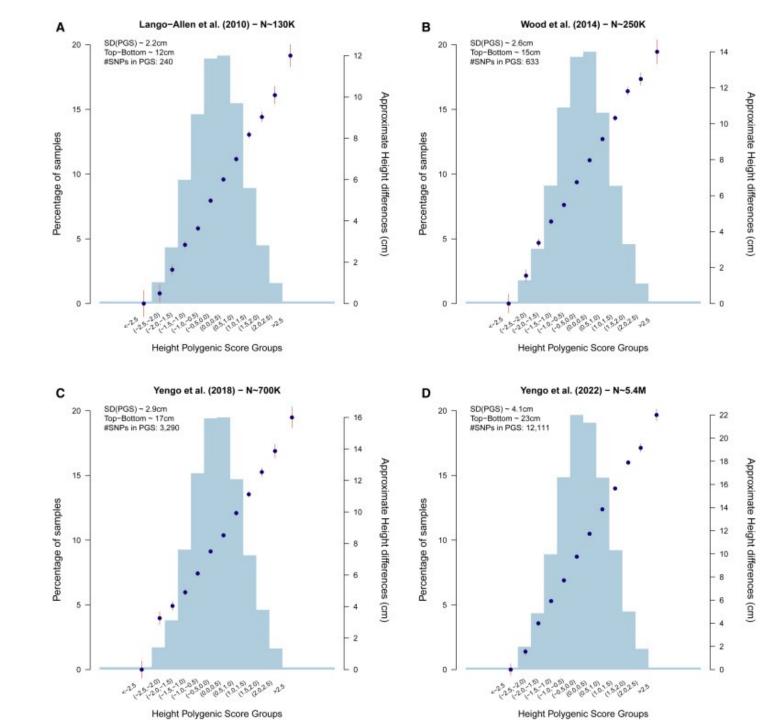

- Effect on trait (beta & P-value)
- Variance explained (R²)

Adjust for age, sex, population stratification (principal components of ancestry) *Few other factors can be true "confounders" but additional adjustment may be necessary*

¹Choi et al., *Nature Protocols* 2020, A guide to performing polygenic risk score analyses.

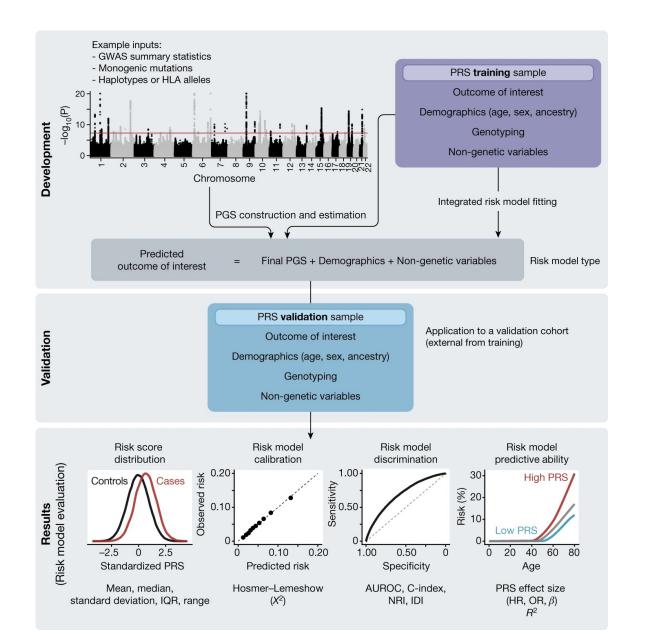
² Chatterjee et al., *Nature Reviews Genetics* 2016, Developing and evaluating polygenic risk prediction models for stratified disease prevention.

Factors that Impact Polygenic Risk Score Performance



PRS accuracy is highly dependent on sample size and trait heritability (*h*²)

¹Zhang et al., *Nature Communications* 2020, Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. ²Mucci et al., *JAMA* 2016, Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. (provided heritability estimates above)


Impact of sample size on PGS performance

As the sample size of height GWAS increases, the predictive ability of polygenic scores (PGS) have improved

Abdellaoui, AJHG 2023

Summary: Developing & Evaluating Polygenic Risk Scores

PRS development, testing, and validation process

Wand, Lambert et al., Nature 2021 (Choi et al., Nature Protocols 2020 has a similar diagram)

Training sample. Used to develop the PRS: run GWAS, optimize the PRS (i.e., test many different PRS models and determine which has the best performance).

Validation sample. Independent data used to evaluate the optimized PRS.


How can you newly construct and evaluate PRS?

- 1) Generate/obtain GWAS summary statistics
- 2) Determine variant inclusion threshold
 - Often based on P-values (e.g., 5x10⁻⁸)
 - For "genome-wide" PRS, could include 1.2M HapMap3 variants
- 3) Account for LD
 - Often limit to independent variants (e.g., r²<0.10)
 - Genome-wide PRS approaches often reweight variants to account for LD rather than limiting to independent variants
- 4) Calculate PRS in dataset independent of that used to develop the PRS
- 5) Evaluate PRS performance

Breakout Activity: Calculate PRS

*Participant 1's outcome is not considered

Genetic Variant	Risk allele	Risk weight	Participant 1 Genotype	Participant 1 PRS
rs1234	А	0.02	AA	
rs2345	G	0.04	GT	
rs3456	С	0.05	СТ	
rs4567	А	0.09	AC	
rs5678	Т	0.004	TT	
rs6789	Т	0.07	CC	
rs7891	G	0.01	TT	
rs8912	С	0.015	AA	
			Polygenic risk	
			score	

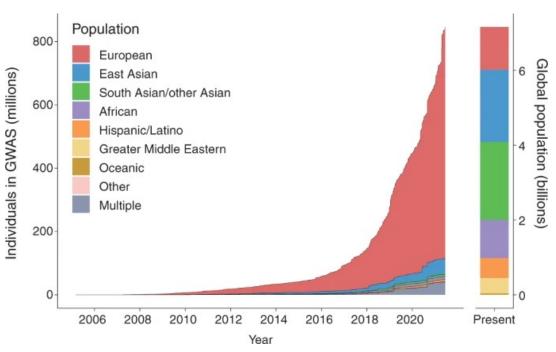
 $PRS_i = \sum_{m=1}^{M} \beta_m G_{im} \qquad \qquad \beta = \text{weight of variant } m$ G = # risk alleles variant m in individual iM = total # variants

Breakout Activity: Calculate PRS

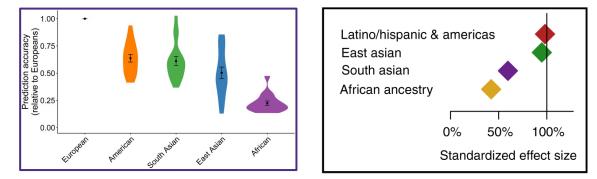
*Participant 1's outcome is not considered

Genetic Variant	Risk allele	Risk weight	Participant 1 Genotype	Participant 1 PRS
rs1234	A	0.02	AA	+0.02 * 2
rs2345	G	0.04	GT	+0.04 * 1
rs3456	С	0.05	СТ	+0.05 * 1
rs4567	А	0.09	AC	+0.09 * 1
rs5678	Т	0.004	TT	+0.004 * 2
rs6789	Т	0.07	CC	0
rs7891	G	0.01	TT	0
rs8912	С	0.015	AA	0
			Polygenic risk	
			score	0.228

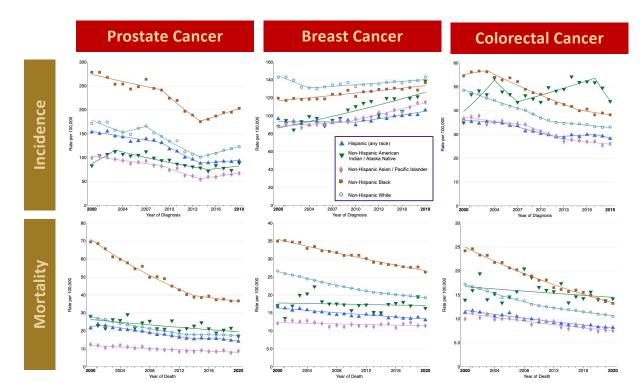
 $PRS_i = \sum_{m=1}^{M} \beta_m G_{im} \qquad \qquad \beta = \text{weight of variant } m$ G = # risk alleles variant m in individual i


M = total # variants

PRS Across Diverse Populations



Lack of Diversity in GWAS Could Contribute to Health Disparities



Diversity of GWAS over time relative to the global population

Martin et al., *Nature Genetics* 2019 Duncan et al., *Nature Communications* 2019 Fatumo et al., *Nature Medicine* 2022

Polygenic predictive ability relative to European ancestry individuals, ~20 traits

Established Risk Factors of Common Cancers

	Prostate Cancer Risk Factors	Breast Cancer Risk Factors	Colorectal Cancer Risk Factors
Age	70% cases >65	40% cases >65	56% cases >65
Modifiable/ Other Non-Genetic	Exercise, adiposity, smoking, tomato intake	Exercise, adiposity, alcohol use, HRT, reproductive history	Exercise, adiposity, smoking, alcohol use, red and processed meat intake, fiber intake
Germline Genetics	h²~58%	h²~31%	h²~15%

Current State of GWAS of Common Cancers

	Pro	state Cance	r ¹⁻³	Bre	east Cancer ⁴	1-7	Colo	rectal Cance	r ⁸⁻¹¹
Population	Cases	Controls	Total	Cases	Controls	Total	Cases	Controls	Total
African	19,391	61,608	80,999	9,241	10,193	19,434	1,894	4,703	6,597
East Asian	10,809	95,790	106,599	27,116	112,407	139,523	25,395	220,368	245,763
European	122,188 ^{78.2%}	604,640	726,828	133,384 ^{77.9%}	113,789	247,173	78,706 ^{74.5%}	170,949	247,655
Hispanic	3,931	26,405	30,336	1,497	3,212	4,709	1,611	4,330	5,941
Total	156,319	788,443	944,762 ¹	132,218	116,167	410,839	105,606	400,350	505,956
Largest Published GWAS to Date*	107,247	127,006	234,253 ³	160,500	226,196	386,696 ²	100,204	154,587	254,791 ⁵

* Based on number of cases

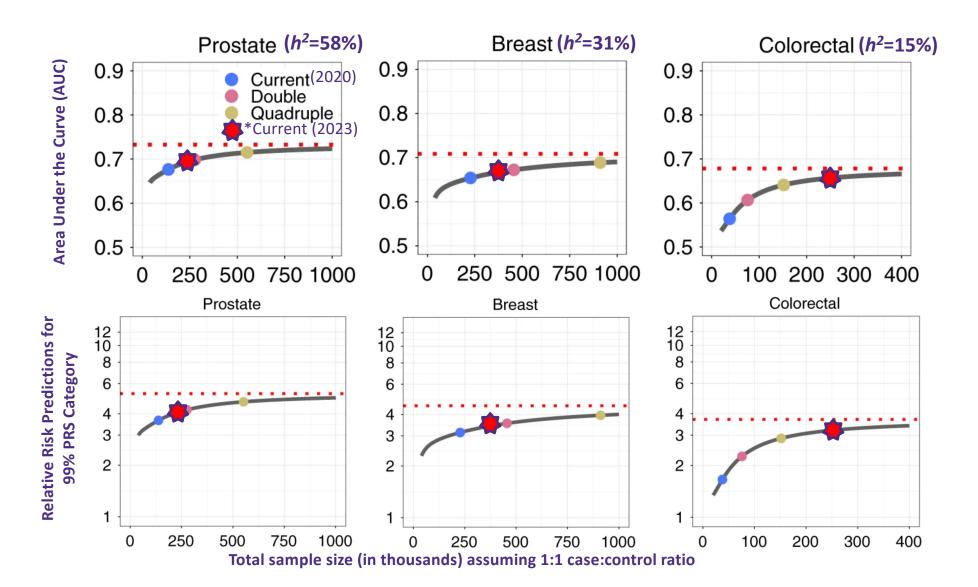
¹ Multi-ancestry: Wang et al., under revision → 451 variants
² African: Chen et al., Eur Urol 2023 → 9 novel variants
³ Multi-ancestry: Conti*, Darst* et al., Nat Gen 2021 → 269 variants ⁴ European & East Asian: Jia*, Ping* et al., *AJHG* 2022 → 222 variants
⁵ European & African: Adedokun et al., Nat *Comm* 2021 → 6 loci
⁶ Hispanic: Fejerman et al., Nat Comm 2014 → 1 loci
⁷ European & East Asian: Michailidou et al., Nature 2017 → 180 loci
^A Mavaddat et al., BCR 2010

⁹ European & East Asian: Xin et al., Genome Med 2023 → 48 variants
¹⁰ African: Wang et al., IJC 2017 → 1 loci
¹¹ Hispanic: Schmit et al., Carcinogenesis 2016 → 4 loci

⁸ European & East Asian: Fernandez-Rozadilla

et al., *Nat Gen* 2023 → **205 variants**

Current State of GWAS of Common Cancers


	Pro	state Cance	r ¹⁻³	Bre	east Cancer ⁴	1-7	Colo	rectal Cance	er ⁸⁻¹¹
Population	Cases	Controls	Total	Cases	Controls	Total	Cases	Controls	Total
African	19,391	61,608	80,999	9,241	10,193	19,434	1,894	4,703	6,597
East Asian	10,809	95,790	106,599	27,116	112,407	139,523	25,395	220,368	245,763
European	122,188 ^{78.2%}	604,640	726,828	133,384 ^{77.9%}	113,789	247,173	78,706 ^{74.5%}	170,949	247,655
Hispanic	3,931	26,405	30,336	1,497	3,212	4,709	1,611	4,330	5,941
Total	156,319	788,443	944,762 ¹	132,218	116,167	410,839	105,606	400,350	505,956
Largest Published GWAS to Date*	107,247	127,006	234,253 ³	160,500	226,196	386,696 ⁴	100,204	154,587	254,791 ⁸

* Based on number of cases

Proportion of genetic variation accounted for by known genetic risk variants

	Prostate Cancer	Breast Cancer	Colorectal Cancer
	269 known common risk variants ³	180 known common risk variants ⁷	205 known common risk variants ⁸
African	43.2%		
East Asian	33.6%	11%	19.7%
European	42.6%	18%	19.7%
Hispanic	39.3%		
	¹ Multi-ancestry: Wang et al., under	⁴ European & East Asian: Jia*, Ping* et al.,	⁸ European & East Asian: Fernandez-Rozadilla
	revision → 451 variants	<i>AJHG</i> 2022 → 222 variants	et al., Nat Gen 2023 → 205 variants
	² African: Chen et al., <i>Eur Urol</i> 2023 → 9	⁵ European & African: Adedokun et al. <i>, Nat</i>	⁹ European & East Asian: Xin et al., <i>Genome</i>
	novel variants	Comm 2021 → 6 loci	Med 2023 → 48 variants
	³ Multi-ancestry: Conti*, Darst* et al.,	⁶ Hispanic: Fejerman et al., <i>Nat Comm</i> 2014	¹⁰ African: Wang et al., <i>IJC</i> 2017 → 1 loci
	Nat Gen 2021 → 269 variants	\rightarrow 1 loci	¹¹ Hispanic: Schmit et al., Carcinogenesis 2016
		⁷ European & East Asian: Michailidou et al.,	\rightarrow 4 loci
		Nature 2017 → 180 loci	

Estimated PRS Predictive Ability Trajectories for Common Cancers

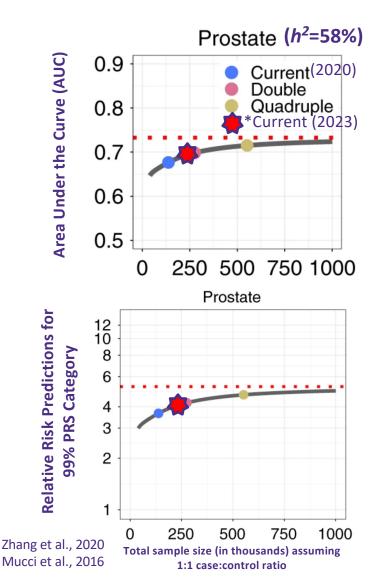
PRS accuracy is highly dependent on sample size and trait heritability (*h*²)

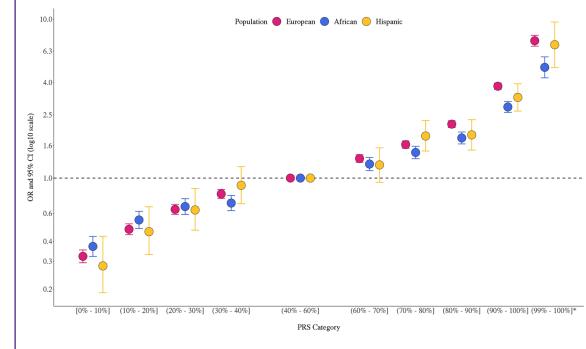
> Limitation: Estimates based on European ancestry individuals

Zhang et al., *Nat Comm* 2020 Mucci et al., *JAMA* 2016

Current PRS Predictive Ability

Prostate Cancer


PRS developed from genomewide significant variants, with fine-mapping to identify variants most likely to be causal.

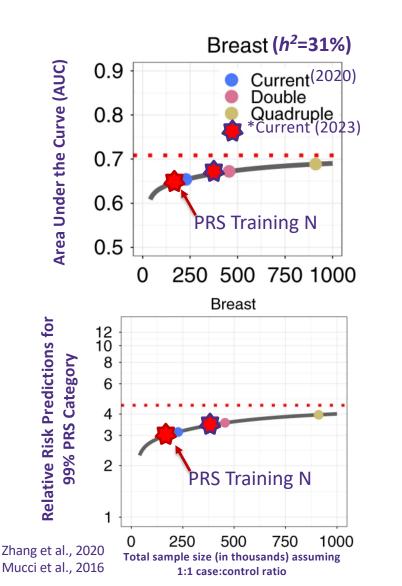

PRS Training Data

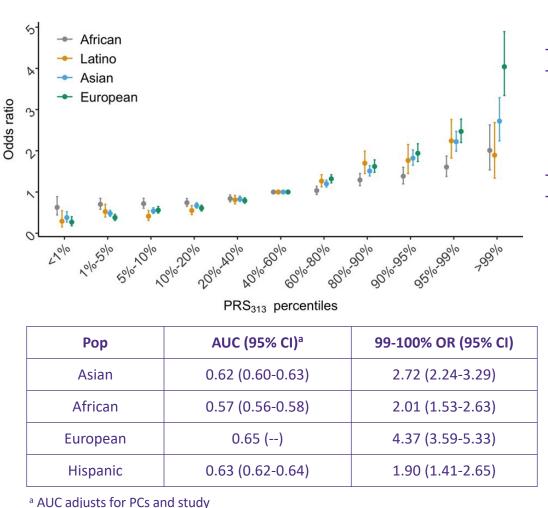
	269 Variants and Weights (Conti*,						
_	Darst* et al., Nat Gen 2021)						
	Population	Cases	Controls				
	African	10,368	10,986				
	East Asian	8,611	18,809				
	European	85,554	91,972				
	Hispanic	2,714	5,239				
	East Asian European	8,611 85,554	18,809 91,972				

PRS	Testing	Data ¹
-----	---------	-------------------

Population	Cases	Controls		
African	8,794	55,657		
European	22,049	414,249		
Hispanic	1,082	20,601		
	Population African European	African 8,794 European 22,049		

Рор	AUC (95% CI) ^a	ΔAUC ^b	99-100% OR (95% CI), P
African	0.66 (0.65-0.66)	+0.14	4.98 (4.27-5.79), P=5x10 ⁻⁹⁵
Hispanic	0.68 (0.67-0.70)	+0.15	6.91 (4.97-9.60), P=1x10 ⁻³⁰
European	0.69 (0.69-0.70)	+0.11	7.32 (6.76-7.92), P=<5x10 ⁻³²⁴

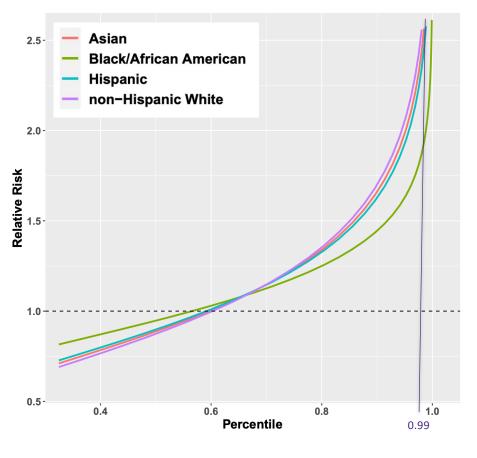

^a AUC includes age, PCs, and PRS


^b AUC adding PRS to age and PCs

¹Chen*, Darst* et al., *eLife* 2022

Current PRS Predictive Ability Breast Cancer

PRS developing using hardthresholding (P<10-5) stepwise forward regression


¹ Du et al., *JNCI* 2021 ² Ho et al., *Nat Comm* 2020 ³ Shieh et al., *JNCI* 2020 ⁴ Mavaddat et al., *AJHG* 2019

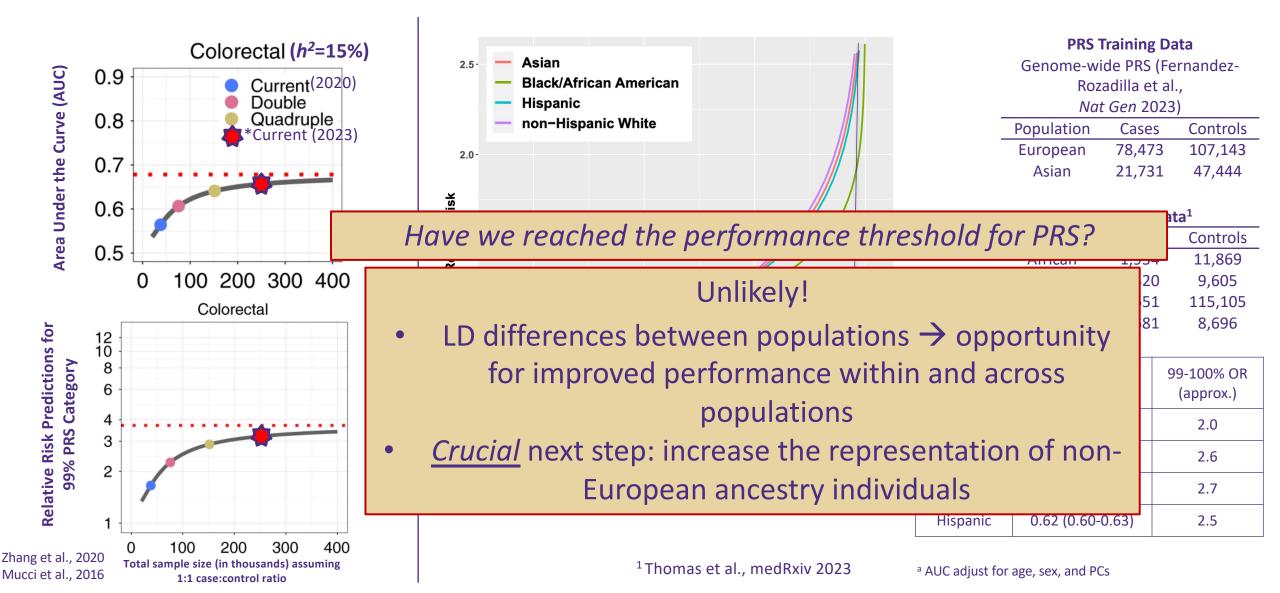
PRS Training Data					
313 Variants and Weights					
(Mavaddat et al., AJHG 2019)					
Population	Population Cases Controls				
European	94,075	75,017			

PRS Testing Data ¹⁻⁴					
Population	Cases	Controls			
African	9,241	10,192			
Asian	17,262	17,695			
European	11,428	18,323			
Latino	4,658	7,622			

Current PRS Predictive Ability *Colorectal Cancer*

Colorectal (h²=15%) Area Under the Curve (AUC) 0.9 • Current(2020)Double Quadruple *Current (2023) 0.8 0.7 0.6 0.5 100 200 300 400 0 Colorectal **Relative Risk Predictions for** 12 10 99% PRS Category 8 6 4 3 2 200 300 400 100 0 Zhang et al., 2020 Total sample size (in thousands) assuming Mucci et al., 2016 1:1 case:control ratio

PRS developed using PRS-CSx (Ruan et al., Nature Genetics 2022) with 1.2M HapMap3 variants.

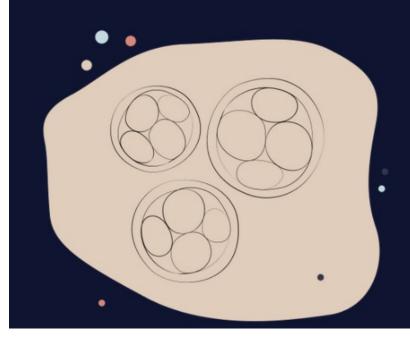

	PRS Training Data					
Genome-wide PRS (Fernandez-						
	Rozadilla et al.,					
	Nat Gen 2023)					
	Population	Cases	Controls			
	European	78,473	107,143			
	Asian	21,731	47,444			

PRS Testing Data ¹					
Population	Cases	Controls			
African	1,954	11,869			
Asian	2,420	9,605			
European	3,651	115,105			
Hispanic	1,681	8,696			

Рор	AUC (95% CI)	99-100% OR (approx.)
African	0.59 (0.57-0.61)	2.0
Asian	0.63 (0.62-0.64)	2.6
European	0.65 (0.64-0.66)	2.7
Hispanic	0.62 (0.60-0.63)	2.5

Current PRS Predictive Ability

Colorectal Cancer

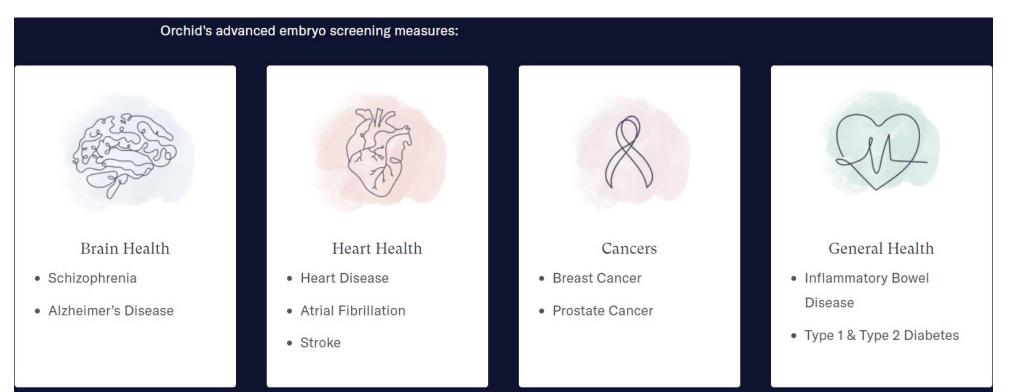

Ethical question

ORCHID

O COUPLE REPORT

EMBRYO REPORT

GET



Identify your healthiest embryo

Mitigate your family's genetic predispositions with advanced genetic screening for your embryos

Ethical question

Orchid's report relies on what are called polygenic risk scores. These scores estimate the likelihood that an individual will develop a particular condition, based on an analysis of their genome. The data

