
Session 9:
Risk Prediction



> The genetic architecture of polygenic complex traits
– A large number genetic variants contribute to disease risk
– Each risk variant typically has a small effect, ranging from OR 1.01-1.2

> Collectively, these variants can lead to better risk prediction than any 
given variant on its own

Complex traits are often influenced by many variants



What are Polygenic Risk Scores?

Definition1: Polygenic scores quantify genetic predisposition to a heritable trait, calculated 
as a sum of genetic alleles weighted by corresponding variant-specific effect sizes.
• Polygenic Risk Score (PRS)/Genetic Risk Score (GRS): Estimates genetic contribution to disease risk
• Polygenic Score (PGS): Estimates genetic contribution to any phenotype (e.g., disease, biomarkers, height)
• Integrated Risk Model: Estimates disease risk by combining PRS/PGS with other established clinical risk factors

Potential Clinical Utility2: 
1. PRS-informed disease screening: Decision to initiate and the interpretation of screening (disease risk 

prediction/stratification)
2. PRS-informed therapeutic intervention: Selection of interventions to treat or prevent disease (disease subtyping, 

prediction of prognostic outcomes/response to therapy)
3. PRS-informed life planning: Personal utility of PRS, even in the absence of clinical intervention (e.g., Alzheimer’s 

disease PRS: may inform financial, legal, and care planning)

1 Wand, Lambert et al., Nature 2021, Improving reporting standards for polygenic scores in risk prediction studies.
2 Torkamani et al., Nature Reviews Genetics 2018, The personal and clinical utility of polygenic risk scores.



Calculating Polygenic Risk Scores

PRS is calculated as a weighted sum of genetic risk alleles, weighted by 
corresponding variant-specific effect sizes à Higher PRS = Higher genetic risk

PRSperson1 = 0.50*1 + 0.13*1 + 0.28*0 + 0.10*2 = 0.83
PRSperson2 = 0.50*2 + 0.13*0 + 0.28*0 + 0.10*1 = 1.10
PRSperson3 = …

Risk 
Allele

Non-
Risk 

Allele

𝛽 (risk 
allele) P

SNP1 G C 0.50 5.3E-20

SNP2 A C 0.13 2.2E-13

SNP3 T A 0.28 5.6E-10

SNP4 T C 0.10 4.0E-08

𝛽 = weight of variant 𝑚
𝐺	= # risk alleles variant 𝑚	in individual i

𝑀 = total # variants

Extract variants & effects from 
a genome-wide association 

study (GWAS)
Use identified variants and 

weights to calculate PRS in an 
external sample

Example

* This is an example of a genome-wide significant PRS, 
but there are many other ways to develop a PRS
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How to identify weights and variants?



Selecting Polygenic Risk Scores
Using an existing PRS based on large GWAS is a simple and powerful approach

pgscatalog.org Lambert et al., Nature Genetics 2021
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Convert genomic coordinates between builds: 
UCSF LiftOver https://genome.ucsc.edu/cgi-bin/hgLiftOver
NCI Remap: https://www.ncbi.nlm.nih.gov/genome/tools/remap

Selecting Polygenic Risk Scores
Using an existing PRS based on large GWAS is a simple and powerful approach

Conti, Darst et al. Nature Genetics 2021

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://www.ncbi.nlm.nih.gov/genome/tools/remap


Selecting Polygenic Risk Scores

How to select the optimal PRS for your study?
• Matching your trait

• Closely matching the trait under investigation in the testing data (i.e., the study the PRS is 
being applied to) to the one used in the training data (i.e., the GWAS used to develop the 
PRS) will improve the accuracy of the PRS

• Sample Size
• The larger the training data, the more accurate the PRS

• Population
• Matching the training population to the ancestral background of the testing population 

could optimize results
• However, large training sample sizes are important for PRS accuracy

PRS accuracy is also dependent on trait heritability (h2)
• Traits with low h2 typically lead to poor predictive models



Breakout Activity

pgscatalog.org Lambert et al., Nature Genetics 2021

You received a grant to investigate 
whether the effect of a polygenic 
score is impacted by dietary factors 
(e.g., GxE interactions). 

Look through the PGS Catalog and 
choose a PGS for your trait of 
interest (any trait you are interested 
in). Justify to the grant funders the 
reason you chose that PGS.  



Evaluating Polygenic Risk Scores

1 Choi et al., Nature Protocols 2020, A guide to performing polygenic risk score analyses.
2 Chatterjee et al., Nature Reviews Genetics 2016, Developing and evaluating polygenic risk prediction models for stratified disease prevention.

22 24 26 28

EUR.ONCO.Weighted.Conditional.meta.PRS.Y.Plot

PRS

De
ns
ity

Cases
Controls

Few risk 
variants

Many risk 
variants

Average: everyone probably has 
some of these variants, since most 
are common in GWAS



Evaluating Polygenic Risk Scores

1 Choi et al., Nature Protocols 2020, A guide to performing polygenic risk score analyses.
2 Chatterjee et al., Nature Reviews Genetics 2016, Developing and evaluating polygenic risk prediction models for stratified disease prevention.
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EUR.ONCO.Weighted.Conditional.meta.PRS.Y.Plot

PRS

De
ns
ity

Cases
Controls

PRS could be analyzed as a:
• Continuous predictor

• Standardize PRS (subtract mean & divide by SD 
for each individual)

• Interpretation: “1 SD increase in PRS associated 
with …”

• Categorical predictor
• Compare individuals between deciles/quantiles 

(e.g., Disease OR for individuals in 90-100% vs 
40-60% PRS)

• Interpretation: “Individuals in the 90-100% PRS 
category have x-fold higher odds of disease than 
those in the 40-60% PRS category”40-60% 90-100%0-10%



Evaluating Polygenic Risk Scores

1 Choi et al., Nature Protocols 2020, A guide to performing polygenic risk score analyses.
2 Chatterjee et al., Nature Reviews Genetics 2016, Developing and evaluating polygenic risk prediction models for stratified disease prevention.

22 24 26 28

EUR.ONCO.Weighted.Conditional.meta.PRS.Y.Plot

PRS

De
ns
ity

Cases
Controls Evaluate performance for dichotomous trait

Logistic regression
• Effect on trait (OR & P-value)
• Area under the curve (AUC)
• Net reclassification index (NRI)
• Variance explained (Pseudo R2)

Evaluate performance for continuous traits
Linear regression
• Effect on trait (beta & P-value)
• Variance explained (R2)

Adjust for age, sex, population stratification 
(principal components of ancestry)
Few other factors can be true “confounders” but 
additional adjustment may be necessary

40-60% 90-100%0-10%



Factors that Impact Polygenic Risk Score Performance

1 Zhang et al., Nature Communications 2020, Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers.
2 Mucci et al., JAMA 2016, Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. (provided heritability estimates above)

Total sample size (in thousands) assuming 1:1 case:control ratio
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PRS accuracy is 
highly dependent on 
sample size and trait 

heritability (h2)



Impact of sample size 
on PGS performance

Abdellaoui, AJHG 2023

As the sample size of height 
GWAS increases, the 
predictive ability of polygenic 
scores (PGS) have improved



Summary: Developing & Evaluating Polygenic Risk Scores

PRS development, testing, and 
validation process

Wand, Lambert et al., Nature 2021
(Choi et al., Nature Protocols 2020 has a 

similar diagram)

Training sample. Used to develop 
the PRS: run GWAS, optimize the 
PRS (i.e., test many different PRS 
models and determine which has 
the best performance).

Validation sample. Independent 
data used to evaluate the 
optimized PRS.



How can you newly construct and evaluate PRS?
● 1) Generate/obtain GWAS summary statistics
● 2) Determine variant inclusion threshold

○ Often based on P-values (e.g., 5x10-8)
○ For “genome-wide” PRS, could include 1.2M HapMap3 variants

● 3) Account for LD
○ Often limit to independent variants (e.g., r2<0.10)
○ Genome-wide PRS approaches often reweight variants to account for LD rather 

than limiting to independent variants
● 4) Calculate PRS in dataset independent of that used to develop the PRS
● 5) Evaluate PRS performance



Breakout Activity: Calculate PRS
*Participant 1’s outcome is not considered 

Genetic Variant Risk allele Risk weight
Participant 1 

Genotype Participant 1 PRS
rs1234 A 0.02 AA
rs2345 G 0.04 GT
rs3456 C 0.05 CT
rs4567 A 0.09 AC
rs5678 T 0.004 TT
rs6789 T 0.07 CC
rs7891 G 0.01 TT
rs8912 C 0.015 AA

Polygenic risk 
score

𝛽 = weight of variant 𝑚
𝐺	= # risk alleles variant 𝑚	in individual i

𝑀 = total # variants
𝑃𝑅𝑆! =%
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Breakout Activity: Calculate PRS

Genetic Variant Risk allele Risk weight
Participant 1 

Genotype Participant 1 PRS
rs1234 A 0.02 AA +0.02 * 2
rs2345 G 0.04 GT +0.04 * 1
rs3456 C 0.05 CT +0.05 * 1
rs4567 A 0.09 AC +0.09 * 1
rs5678 T 0.004 TT +0.004 * 2
rs6789 T 0.07 CC 0
rs7891 G 0.01 TT 0
rs8912 C 0.015 AA 0

Polygenic risk 
score 0.228

*Participant 1’s outcome is not considered 

𝛽 = weight of variant 𝑚
𝐺	= # risk alleles variant 𝑚	in individual i

𝑀 = total # variants
𝑃𝑅𝑆! =%
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PRS Across Diverse Populations



Martin et al., Nature Genetics 2019
Duncan et al., Nature Communications 2019
Fatumo et al., Nature Medicine 2022

Diversity of GWAS over time relative to the global population

Polygenic predictive ability relative to European ancestry individuals, ~20 traits

Prostate Cancer Breast Cancer Colorectal Cancer
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Lack of Diversity in GWAS Could Contribute to Health Disparities



Modifiable/
Other Non-Genetic

Germline Genetics

Age 70% cases >65

Exercise, adiposity, 
smoking, tomato intake

h2~58%

Prostate Cancer
Risk Factors

40% cases >65

Exercise, adiposity, 
alcohol use, HRT, 

reproductive history

h2~31%

Breast Cancer
Risk Factors

56% cases >65

Exercise, adiposity, 
smoking, alcohol use, red 

and processed meat 
intake, fiber intake

h2~15%

Colorectal Cancer
Risk Factors

Heritability (h2) estimates: Mucci et al., JAMA 2016

Established Risk Factors of Common Cancers



4 European & East Asian: Jia*, Ping* et al., 
AJHG 2022 à 222 variants
5 European & African: Adedokun et al., Nat 
Comm 2021 à 6 loci
6 Hispanic: Fejerman et al., Nat Comm 2014 
à 1 loci
7 European & East Asian: Michailidou et al., 
Nature 2017 à 180 loci
A Mavaddat et al., BCR 2010

Prostate Cancer1-3 Breast Cancer4-7 Colorectal Cancer8-11
Population Cases Controls Total Cases Controls Total Cases Controls Total

African 19,391 61,608 80,999 9,241 10,193 19,434 1,894 4,703 6,597
East Asian 10,809 95,790 106,599 27,116 112,407 139,523 25,395 220,368 245,763
European 122,188 604,640 726,828 133,384 113,789 247,173 78,706 170,949 247,655
Hispanic 3,931 26,405 30,336 1,497 3,212 4,709 1,611 4,330 5,941

Total 156,319 788,443 944,7621 132,218 116,167 410,839 105,606 400,350 505,956
Largest Published 

GWAS to Date* 107,247 127,006 234,2533 160,500 226,196 386,6962 100,204 154,587 254,7915

* Based on number of cases

8 European & East Asian: Fernandez-Rozadilla 
et al., Nat Gen 2023 à 205 variants
9 European & East Asian: Xin et al., Genome 
Med 2023 à 48 variants
10 African: Wang et al., IJC 2017 à 1 loci
11 Hispanic: Schmit et al., Carcinogenesis 2016 
à 4 loci

1 Multi-ancestry: Wang et al., under 
revision à 451 variants
2 African: Chen et al., Eur Urol 2023 à 9 
novel variants
3 Multi-ancestry: Conti*, Darst* et al., 
Nat Gen 2021 à 269 variants

78.2% 77.9% 74.5%

Current State of GWAS of Common Cancers



4 European & East Asian: Jia*, Ping* et al., 
AJHG 2022 à 222 variants
5 European & African: Adedokun et al., Nat 
Comm 2021 à 6 loci
6 Hispanic: Fejerman et al., Nat Comm 2014 
à 1 loci
7 European & East Asian: Michailidou et al., 
Nature 2017 à 180 loci

Prostate Cancer1-3 Breast Cancer4-7 Colorectal Cancer8-11
Population Cases Controls Total Cases Controls Total Cases Controls Total

African 19,391 61,608 80,999 9,241 10,193 19,434 1,894 4,703 6,597
East Asian 10,809 95,790 106,599 27,116 112,407 139,523 25,395 220,368 245,763
European 122,188 604,640 726,828 133,384 113,789 247,173 78,706 170,949 247,655
Hispanic 3,931 26,405 30,336 1,497 3,212 4,709 1,611 4,330 5,941

Total 156,319 788,443 944,7621 132,218 116,167 410,839 105,606 400,350 505,956
Largest Published 

GWAS to Date* 107,247 127,006 234,2533 160,500 226,196 386,6964 100,204 154,587 254,7918

* Based on number of cases
Proportion of genetic variation accounted for by known genetic risk variants

Prostate Cancer Breast Cancer Colorectal Cancer
269 known common risk variants3 180 known common risk variants7 205 known common risk variants8

African 43.2% -- --
East Asian 33.6% 11% 19.7%
European 42.6% 18% 19.7%
Hispanic 39.3% -- --

8 European & East Asian: Fernandez-Rozadilla 
et al., Nat Gen 2023 à 205 variants
9 European & East Asian: Xin et al., Genome 
Med 2023 à 48 variants
10 African: Wang et al., IJC 2017 à 1 loci
11 Hispanic: Schmit et al., Carcinogenesis 2016 
à 4 loci

1 Multi-ancestry: Wang et al., under 
revision à 451 variants
2 African: Chen et al., Eur Urol 2023 à 9 
novel variants
3 Multi-ancestry: Conti*, Darst* et al., 
Nat Gen 2021 à 269 variants

78.2% 77.9% 74.5%

Current State of GWAS of Common Cancers



Total sample size (in thousands) assuming 1:1 case:control ratio

PRS accuracy is 
highly dependent on 
sample size and trait 

heritability (h2)
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*Current (2023)

(2020)

Zhang et al., Nat Comm 2020
Mucci et al., JAMA 2016

Limitation: Estimates 
based on European 
ancestry individuals 

Estimated PRS Predictive Ability Trajectories for Common Cancers



1 Chen*, Darst* et al., eLife 2022

PRS Training Data
269 Variants and Weights (Conti*, 

Darst* et al., Nat Gen 2021)
Population Cases Controls

African 10,368 10,986
East Asian 8,611 18,809
European 85,554 91,972
Hispanic 2,714 5,239

Pop AUC (95% CI)a ΔAUCb 99-100% OR (95% CI), P

African 0.66 (0.65-0.66) +0.14 4.98 (4.27-5.79), P=5x10-95

Hispanic 0.68 (0.67-0.70) +0.15 6.91 (4.97-9.60), P=1x10-30

European 0.69 (0.69-0.70) +0.11 7.32 (6.76-7.92), P=<5x10-324

PRS Testing Data1

Population Cases Controls
African 8,794 55,657

European 22,049 414,249
Hispanic 1,082 20,601
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*Current (2023)

(2020)

a AUC includes age, PCs, and PRS
b AUC adding PRS to age and PCs

Zhang et al., 2020
Mucci et al., 2016

Total sample size (in thousands) assuming 
1:1 case:control ratio

Current PRS Predictive Ability
Prostate Cancer

PRS developed from genome-
wide significant variants, with 
fine-mapping to identify variants 
most likely to be causal.
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1 Du et al., JNCI 2021
2 Ho et al., Nat Comm 2020
3 Shieh et al., JNCI 2020
4 Mavaddat et al., AJHG 2019

PRS Testing Data1-4

Population Cases Controls
African 9,241 10,192
Asian 17,262 17,695

European 11,428 18,323
Latino 4,658 7,622

PRS Training Data
313 Variants and Weights

(Mavaddat et al., AJHG 2019)
Population Cases Controls
European 94,075 75,017

Pop AUC (95% CI)a 99-100% OR (95% CI)

Asian 0.62 (0.60-0.63) 2.72 (2.24-3.29)

African 0.57 (0.56-0.58) 2.01 (1.53-2.63)

European 0.65 (--) 4.37 (3.59-5.33)

Hispanic 0.63 (0.62-0.64) 1.90 (1.41-2.65)

Total sample size (in thousands) assuming 
1:1 case:control ratio

a AUC adjusts for PCs and studyZhang et al., 2020
Mucci et al., 2016

PRS Training N

PRS Training N

Current PRS Predictive Ability
Breast Cancer

PRS developing using hard-
thresholding (P<10-5) stepwise 
forward regression



Total sample size (in thousands) assuming 
1:1 case:control ratio
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(h2=15%)
(2020)

Pop AUC (95% CI) 99-100% OR
(approx.)

African 0.59 (0.57-0.61) 2.0

Asian 0.63 (0.62-0.64) 2.6

European 0.65 (0.64-0.66) 2.7

Hispanic 0.62 (0.60-0.63) 2.5

PRS Testing Data1

Population Cases Controls
African 1,954 11,869
Asian 2,420 9,605

European 3,651 115,105
Hispanic 1,681 8,696

PRS Training Data
Genome-wide PRS (Fernandez-

Rozadilla et al., 
Nat Gen 2023)

Population Cases Controls
European 78,473 107,143

Asian 21,731 47,444

1 Thomas et al., medRxiv 2023

*Current (2023)

Zhang et al., 2020
Mucci et al., 2016 a AUC adjust for age, sex, and PCs

0.99

Current PRS Predictive Ability
Colorectal Cancer

PRS developed using PRS-CSx 
(Ruan et al., Nature Genetics 
2022) with 1.2M HapMap3 
variants.



Total sample size (in thousands) assuming 
1:1 case:control ratio
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(2020)

Pop AUC (95% CI) 99-100% OR
(approx.)

African 0.59 (0.57-0.61) 2.0

Asian 0.63 (0.62-0.64) 2.6

European 0.65 (0.64-0.66) 2.7

Hispanic 0.62 (0.60-0.63) 2.5

PRS Testing Data1

Population Cases Controls
African 1,954 11,869
Asian 2,420 9,605

European 3,651 115,105
Hispanic 1,681 8,696

PRS Training Data
Genome-wide PRS (Fernandez-

Rozadilla et al., 
Nat Gen 2023)

Population Cases Controls
European 78,473 107,143

Asian 21,731 47,444

1 Thomas et al., medRxiv 2023

*Current (2023)

Zhang et al., 2020
Mucci et al., 2016 a AUC adjust for age, sex, and PCs

Have we reached the performance threshold for PRS?

0.99

Current PRS Predictive Ability
Colorectal Cancer

Unlikely! 
• LD differences between populations à opportunity 

for improved performance within and across 
populations

• Crucial next step: increase the representation of non-
European ancestry individuals



Ethical question



Ethical question


