
Contemporary Clinical Trials 54 (2017) 18–24

Contents lists available at ScienceDirect

Contemporary Clinical Trials

j ourna l homepage: www.e lsev ie r .com/ locate /conc l in t r ia l

Improving precision by adjusting for prognostic baseline variables in
randomized trials with binary outcomes, without regression
model assumptions

Jon Arni Steingrimssona, Daniel F. Hanleyb, Michael Rosenbluma, c,*
aDepartment of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States
bDepartment of Neurology, Brain Injury Outcomes Coordinating Center, Johns Hopkins University, Baltimore, MD 21231, United States
cDepartment of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States

A R T I C L E I N F O

Article history:
Received 9 August 2016
Received in revised form 21 December 2016
Accepted 31 December 2016
Available online 4 January 2017

Keywords:
Covariate adjustment
Post-stratification

A B S T R A C T

In randomized clinical trials with baseline variables that are prognostic for the primary outcome, there
is potential to improve precision and reduce sample size by appropriately adjusting for these variables.
A major challenge is that there are multiple statistical methods to adjust for baseline variables, but little
guidance on which is best to use in a given context. The choice of method can have important consequences.
For example, one commonly used method leads to uninterpretable estimates if there is any treatment effect
heterogeneity, which would jeopardize the validity of trial conclusions. We give practical guidance on how
to avoid this problem, while retaining the advantages of covariate adjustment. This can be achieved by using
simple (but less well-known) standardization methods from the recent statistics literature. We discuss these
methods and give software in R and Stata implementing them. A data example from a recent stroke trial is
used to illustrate these methods.

© 2016 Published by Elsevier Inc.

1. Introduction

In a recent regulatory guideline on the analysis of clinical tri-
als, the European Medicines Agency states “in case of a strong or
moderate association between a baseline covariate(s) and the pri-
mary outcome measure, adjustment for such covariate(s) generally
improves the efficiency of the analysis and avoids conditional bias
from chance covariate imbalance” [1]. Such covariate adjustment
is not uncommon; Pocock et al. [2], who surveyed 50 clinical trial
reports from major medical journals, found that 36 used some form
of adjustment for baseline variables. However, they concluded that
“the statistical properties of covariate-adjustment are quite complex
and often poorly understood, and there remains confusion as to what
is an appropriate statistical strategy.” A more recent survey reached
a similar conclusion [3]. We attempt to resolve some of this confu-
sion by addressing two important misconceptions about covariate
adjustment for binary outcomes.

The first misconception involves the logistic coefficient estimator,
defined as the estimated coefficient on the treatment term in a main
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effects logistic regression of the outcome on treatment and baseline
variables. This is a commonly used method for covariate adjustment
when outcomes are binary [4–8]. An underappreciated vulnerability
of the logistic coefficient estimator is that it is uninterpretable unless
one assumes the conditional treatment effect (on the log odds scale)
is precisely the same value for every possible stratum of the covari-
ates adjusted for. In contrast, there are covariate adjusted estimators
that don’t have this drawback, described below.

A second misconception about binary outcomes is that covari-
ate adjustment involving logistic regression models cannot be used
to estimate the marginal risk difference or relative risk. Austin
et al. [3] state “For binary outcomes, risk differences and relative
risks (assuming a uniform relative risk) are collapsible estimators.
However, their use precludes the use of regression adjustment”.
This claim is correct in so far as “regression adjustment” refers only
to the logistic coefficient estimator, which is the setting of their
paper. However, logistic regression models can (and we argue often
should) be used to construct covariate adjusted estimators of the
marginal risk difference or relative risk, by using the standardized
estimator developed by Moore and van der Laan [9] as described
below.

Moore and van der Laan proved theoretical properties of covariate
adjusted estimators for marginal effects based on the general theory
of targeted maximum likelihood estimation [9]. Unlike the logistic
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coefficient estimator, these estimators are interpretable without
requiring any parametric model assumptions. They can also have
greater precision compared to the unadjusted estimator (which
ignores baseline variables). Despite their appealing properties, these
estimators are rarely used in clinical trials. In order to make these
estimation techniques accessible to a wider audience, we describe
in a non-technical manner the simplest of these estimators (called
the standardized estimator). We then compare the properties of the
standardized estimator to the logistic coefficient and the unadjusted
estimator. We compare the performance of these estimators in a real
data example from a completed stroke trial, as well as in simulations.
We then make practical recommendations and provide software to
calculate the standardized estimator.

2. Description of estimators

We consider trials where the primary outcome Y is binary, rep-
resenting success (Y = 1) or failure (Y = 0). For simplicity, the trial
is assumed to have two study arms: treatment and control. Study
arm assignment uses simple or block randomization independent
of the baseline variables. The study arm A is an indicator of being
assigned to the treatment arm (A = 1) or control arm (A = 0).
We adhere to the intention-to-treat principle, that is, we consider
the effect of assignment to the treatment or control arm. The vector
of baseline variables, denoted by W, can be any mix of continuous,
binary, ordinal, and categorical variables. The number of baseline
variables should be small relative to the sample size, as discussed in
Section 5.

The average treatment effect involves two proportions: the pro-
portion of the target population who would have a successful out-
come if all were assigned to treatment and the same quantity if all
were assigned to control. The average treatment effect is a contrast
between these two population proportions, such as their difference
(called the risk difference), their ratio (called the relative risk) or
their log odds ratio. The unadjusted estimator of the average treat-
ment effect involves replacing the population proportions by sample
proportions using data from the completed trial.

When discussing estimators that involve a logistic regression
model, we focus on the commonly used case where this model
includes an intercept and main terms for study arm and baseline
variables (and no interaction terms). We discuss the implications of
including interactions in Section 6.

No assumptions are made on the relationships among Y, A, W,
except that study arm A is assigned independent of the baseline vari-
ables W (which holds by randomization). In particular, we do not
assume that a logistic regression model correctly captures the rela-
tionships among these variables. We assume each participant i in
the trial contributes data vector (Wi, Ai, Yi), which is an independent,
identically distributed draw from the unknown, joint distribution on
(W, A, Y).

2.1. Logistic coefficient estimator

The logistic coefficient estimator is defined as the fitted coeffi-
cient on A from a logistic regression model with intercept and main
terms for A and each component of W. It estimates the conditional
treatment effect within strata of baseline variables, on the log odds
scale (under the assumption that the logistic regression model is
correct). The logistic coefficient estimator and the unadjusted esti-
mator do not estimate the same quantity. The former estimates a
conditional effect, while the latter estimates an unconditional (also
called marginal, or average) effect. Conditional and unconditional
effects can substantially differ, both in value and in interpretation,
as emphasized by Freedman in the article “Randomization Does Not
Justify Logistic Regression” [10].

Which type of effect is preferred depends on the study objective.
Diggle et al. [11] recommend marginal effects when the aim of
the study is to make population based inference (which is our
focus) and the conditional effect when interest lies in model-
ing participant-specific effects. Knowing the true conditional effect
would give a more fine-grained understanding of treatment effects
and heterogeneity, compared to the marginal effect. But, estimating
the conditional effect typically requires strong model assumptions.
For example, the logistic coefficient estimator requires the logis-
tic regression model to be correctly specified. A logistic regression
model is misspecified when it does not correctly capture the rela-
tionship between the outcome and the treatment and baseline
variables. If there is any treatment effect heterogeneity, i.e., if the
conditional treatment effect varies depending on the baseline vari-
ables, then the conditional treatment effect cannot be represented
by a single number. In such a case, the logistic regression model
with main terms is guaranteed to be misspecified, and therefore the
logistic coefficient estimator is uninterpretable.

The above discussion highlights an important vulnerability of
the logistic coefficient estimator, i.e., it is only interpretable under
the assumption that the treatment has the same effect (on the log
odds scale) for every stratum of baseline covariates. This is a strong
assumption since there is no a priori reason to believe that a treat-
ment would lead to exactly the same benefit for every type of patient
(regardless of, e.g., age and disease severity). The state of knowledge
about an experimental treatment is typically quite limited before
starting a trial (hence the reason for running the trial), making
such an assumption hard to justify. Also, it is difficult to verify this
assumption holds when the covariates include continuous or cate-
gorical variables with many levels, since then there are few or no
participants in some strata.

Fig. 1 illustrates a case where the treatment effect differs within
strata of a single, ordinal variable W, representing a disease sever-
ity score at baseline. Let logit(x) = log(x/(1 − x)). The first plot in
Fig. 1 depicts logit(P(Y = 1|A = 0, W)), i.e., the log odds of the
probability of obtaining a successful outcome when assigned to con-
trol, within strata of the baseline variable W. The second plot shows
the analogous function under assignment to treatment, logit(P(Y =
1|A = 1, W)). The third plot shows the conditional treatment effect,
i.e., the difference between the curves in the second and first plots:
logit(P(Y = 1|A = 1, W))− logit(P(Y = 1|A = 0, W)). The logistic
coefficient estimator is only interpretable if the curve in the third
plot is a horizontal line. The main terms logistic regression model
not only assumes the conditional effect is constant, but also assumes
that the conditional probabilities (on the log-odds scale) shown in
the first two plots in Fig. 1 are straight lines with the same slope.
(The curves in Fig. 1 are based on smoothing the data from our trial
example in Section 3, using only National Institutes of Health Stroke
Scale as the baseline variable W, as described in Section A.5 of the
online supplement.)

Even if the conditional effect could be represented by a single
number, there can be several additional reasons for model mis-
pecification, such as missing interaction terms among the baseline
variables or using the wrong form for the baseline variables, e.g. not
log transforming when a log transformation is appropriate. In the
case of continuous baseline variables there are infinitely many possi-
ble transformations to choose from. This makes it hard to determine
the appropriate transformation in order to establish a linear relation-
ship to the log odds of the probability of success. In confirmatory
randomized trials, the model and variables used for covariate adjust-
ment need to be prespecified in the study protocol, and hence can
only be based on prior information such as scientific knowledge and
earlier phase trial data [1]. This makes evaluating the correctness of
the model difficult, with goodness of fit tests often having low power.
As a consequence, the final logistic regression model is expected to
be at least somewhat misspecified.
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Fig. 1. An example of a conditional effect that depends on the value of the baseline variables and cannot be represented using a single number. The formulas for the quantities on
the vertical axes are given in the main text.

2.2. Standardized estimator

The standardized estimator of Moore and van der Laan [9] esti-
mates the average treatment effect (the same effect estimated by the
unadjusted estimator) defined as a contrast between the proportion
of the target population who would have a successful outcome under
treatment versus control. The standardized estimator first estimates
each of these proportions; then any contrast such as the risk differ-
ence, relative risk, or log odds ratio can be estimated by plugging in
these two proportions. For the risk difference, the standardized esti-
mator is a special case of the method of Scharfstein et al. [12] applied
to randomized trials.

To estimate the above proportions using the standardized estima-
tor, one first fits a main effects logistic regression model. Using the
model fit, the predicted probability of a successful outcome under
treatment is calculated for each participant i (regardless of actual
study arm) by setting the study arm variable to A = 1 and using
that participant’s baseline variables Wi. Similarly, a predicted proba-
bility under control is calculated for every participant setting A = 0.
This gives two predictions for each participant in the dataset, one
corresponding to assignment to treatment and the other to con-
trol. The final estimator for the population proportion who would
have a successful outcome under assignment to treatment (con-
trol) is the average of the predictions with the study arm variable
set to treatment (control); each average is taken over the entire
set of study participants (pooling both arms). We refer to these

estimated proportions as estimated success probabilities. Intuitively,
the purpose of the above steps is to correct for chance imbalances
in baseline variables between treatment and control arms, e.g., more
high disease severity patients assigned to one of the arms by chance.

Both the standardized and the logistic coefficient estimators
require specifying a logistic regression model. The standardized
estimator is a consistent estimator of the average treatment effect
even if the model is arbitrarily misspecified, as proved by Moore
and van der Laan [9]. Hence, the standardized estimator, unlike the
logistic coefficient estimator, does not rely on any regression model
assumptions in order to be consistent.

Table 1 summarizes the key properties of the unadjusted,
standardized, and logistic coefficient estimators. A more technical
description of the estimators is given in the online supplement
accompanied by R and Stata code for computing the standardized
estimator along with a corresponding confidence interval for the

Table 1
Properties of the unadjusted, standardized, and logistic coefficient estimators.

Estimator Effect it estimates Requires regression
model assumptions?

Adjusts for
baseline
variables?

Unadjusted Marginal effect No No
Standardized Marginal effect No Yes
Logistic coefficient Conditional effect Yes Yes



J. Steingrimsson et al. / Contemporary Clinical Trials 54 (2017) 18–24 21

marginal risk difference. Precision gains from covariate adjustment
translate into shorter confidence intervals compared to the unad-
justed estimator (asymptotically).

3. CLEAR III trial application

The Clot Lysis Evaluation of Accelerated Resolution of
Intraventricular Hemorrhage (CLEAR III) trial [13] is a completed
phase III randomized trial comparing removal of intraventricular
hemorrhage (IVH) using a low dose of recombinant tissue plas-
minogen activator versus standard of care. The primary outcome
is a measure of disability evaluated using a dichotomized modified
Rankin scale (mRS) (≤3 vs > 3) at 180 days. The study protocol has
been described in detail elsewhere [14]. We use data from the 491
uncensored participants, out of 500 enrolled.

Phase II data and prior scientific knowledge indicated that base-
line (pre-randomization) age, intracerebral hemorrhage volume, IVH
volume, Glasgow coma scale, and the National Institutes of Health
Stroke Scale (NIHSS) are prognostic baseline variables; we let W
denote these variables, which are used by the adjusted estimators.
Using the CLEAR III trial data, we calculated the approximate prog-
nostic value of these variables using a modified R2 computation [15]
described in our online supplement; the result was R2 = 0.35. This
indicates that the baseline variables are moderately to strongly prog-
nostic in the CLEAR III trial. This information would not be available
when planning a trial and was not used to select the baseline vari-
ables. It is presented to show an example where efficiency gains may
be expected using estimators that adjust for baseline variables.

The logistic coefficient estimator is only interpretable if the con-
ditional treatment effect is the same for all combinations of baseline
age, intracerebral hemorrhage volume, IVH volume, Glascow coma
scale, and NIHSS. In contrast, the unadjusted estimator and the
standardized estimators do not require any such assumption to be
consistent for the average treatment effect.

Table 2 shows point estimates and 95% confidence intervals based
on each of the three estimators, applied to the CLEAR III data set
of 491 participants. The effects are estimated for both the primary
mRS outcome and survival at 180 days (as a binary indicator), the
latter being a secondary outcome. The unadjusted and standardized
estimators target the marginal risk difference. The logistic regres-
sion estimator aims to estimate a conditional effect within strata of
baseline variables on the log odds scale. Here and in our simulations,
the 95% confidence interval based on each estimator is constructed
using the nonparametric bootstrap with 1000 replicated data sets, as
implemented by the R and Stata code in the online supplement.

For each estimator, the 95% confidence interval excludes 0
when the outcome is 180 day survival; the opposite holds when
the outcome is 180 day mRS. The unadjusted estimator and the
standardized estimators are similar. The confidence interval for the
standardized estimator is 10% narrower for mRS and 17% narrower
for 180 day survival, compared to the unadjusted estimator.

Table 2
Re-analysis of the CLEAR III trial using the unadjusted, standardized, and logistic coef-
ficient estimators. The first two estimate the marginal risk difference, and the third
aims to estimate the conditional log odds ratio. Each cell gives the corresponding point
estimate followed by the 95% confidence interval. The middle column corresponds to
the primary outcome being the indicator of 180 days modified Rankin score≤3; the
right column corresponds to the primary outcome being the indicator of 180 days
survival.

Outcome type:

Modified Rankin score ≤ 3 Survival at 180 days

Estimator:
Unadjusted 0.03 (−0.07, 0.10) 0.11 (0.03,0.19)
Standardized 0.01 (−0.07, 0.08) 0.10 (0.03, 0.17)
Logistic coefficient 0.05 (−0.45, 0.55) 0.68 (0.19, 1.17)

The logistic coefficient estimator has wider confidence intervals
than the other estimators, for each outcome; that remains true even
if the unadjusted and standardized estimators are transformed to the
log odds scale. However, it is difficult to make a direct comparison
since the logistic coefficient estimator aims to estimate a conditional
rather than unconditional treatment effect.

4. Simulations based on the CLEAR III trial data

4.1. Data generating distributions

We constructed data generating distributions for our simulations
to mimic certain features of the CLEAR III data. This was done by
resampling with replacement from the CLEAR III trial, and then mak-
ing modifications described below. The reason we simulate from a
trial rather than a parametric model is that we believe the former
more accurately reflects complexities in real trial data distributions.
All simulated trials have total sample size 491. The same variables are
used as in the previous section. We simulate two different settings
(distributions) adapted from Colantuoni and Rosenblum[15]:

• Setting 1. Baseline variables prognostic for the outcome.
• Setting 2. Baseline variables independent of the outcome.

Setting 1 is constructed to mimic the following features of the
CLEAR III data: the correlation structure within the baseline vari-
ables, and the relationship between the baseline variables and the
outcome. Setting 2 only mimics the former feature.

In both settings, the simulated distributions were constructed
to have an average treatment effect of 13% on the risk difference
scale. This choice was based on the sample size calculations for the
CLEAR III trial described in Ziai et al. [14], which was powered to
detect approximately this magnitude of average treatment effect.
Modifications to the resampling distribution were made in order to
achieve the 13% treatment effect; full details are given in the online
supplement.

An important consideration when choosing the analysis tech-
nique for a randomized trial is the power of the corresponding
hypothesis test. Each of the three estimators (the unadjusted, the
logistic coefficient, and the standardized estimator) can be converted
to a corresponding Wald statistic by dividing the estimator by its
standard error. We focus on testing the null hypothesis of no average
treatment effect, i.e., H0 : P(Y = 1|A = 1) − P(Y = 1|A = 0) = 0.
When the logistic regression model is correctly specified (which is
required in order for the logistic coefficient estimator to be inter-
pretable), this null hypothesis is equivalent to the coefficient on the
treatment term in that model being equal to 0; in this case, the
Wald statistic based on each estimator leads to a test of H0 with
asymptotically correct Type I error.

The one-sided test at level a is implemented by computing the
Wald statistic for a given estimator, and rejecting the null hypothesis
H0 if the Wald statistic exceeds V−1(1 − a), where V is the standard
normal cumulative distribution function. Similarly, a two-sided test
at level a involves replacing the rejection threshold V−1(1 − a) by
V−1(1 −a/2), and using the absolute value of the Wald statistic; this
test is equivalent to comparing the square of the Wald statistic to
the 1 − a quantile of the chi-squared distribution with 1 degree of
freedom. The power of the tests based on different estimators can
differ, as described next.

The power of a Wald test is directly related to the mean of the
Wald statistic, i.e., the estimator mean divided by its standard error;
this quantity is called the signal to noise ratio of the estimator. Each
of the three estimators has a different signal to noise ratio. The larger
the signal to noise ratio of an estimator is, the larger the power of
the corresponding Wald test is. Following the literature [5,7,16,17],
we define the relative efficiency (RE) for testing H0 using the Wald
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statistic based on one estimator compared to the Wald statistic based
on a second estimator as the square of the following: the signal to
noise ratio of the first estimator divided by the signal to noise ratio of
the second. The formal justification for this definition of RE is given
by van der Vaart [18].

Relative efficiency has a direct relationship to sample size sav-
ings. The relative reduction in the required sample size for the Wald
statistic based on one estimator to achieve the same power for test-
ing H0 as another estimator is 1 − (1/RE). We refer to this formula
as the “reduction in sample size” (RSS) from using one estimator vs.
another, to achieve the same power for a Wald test of H0.

4.2. Simulation results

In simulation setting one, the baseline variables are prognostic for
the outcome. Therefore, adjusted estimators have potential to lever-
age information in baseline variables to improve efficiency compared
to the unadjusted estimator. In setting two, the outcome is indepen-
dent of the baseline variables, i.e., the baseline variables are pure
noise; this setting is used to get an idea of how much efficiency loss
(if any) occurs when the baseline variables are not prognostic.

A summary of the results from 10,000 simulated trials is given in
Table 3. The evaluation measures used are: value of the estimators
averaged over the 10,000 simulations, the empirical standard error of
the estimators, relative efficiency, and reduction in sample size; the
last two measures are comparisons with the unadjusted estimator.

In setting one, the standardized estimator has smaller variance
than the unadjusted estimator, with relative efficiency of 1.41. This
corresponds to the standardized estimator requiring 29% smaller
sample size than the unadjusted estimator to have the same power.
In setting two, where the baseline variables are independent of the
outcome, the standardized and unadjusted estimators have similar
efficiency, with relative efficiency of 0.99. This corresponds to the
standardized estimator requiring 1% larger sample size to achieve the
same power as the unadjusted estimator. The simulations show that
both the standardized and unadjusted estimators are approximately
unbiased for the marginal treatment effect in both settings.

Table 3 also shows the performance of the logistic coefficient esti-
mator. The logistic regression model is likely not correct in setting 1.
(In setting 2, where the outcome is generated independent of base-
line variables, the logistic model is correct, as discussed in the online
supplement.) Therefore, in setting 1 the logistic coefficient estima-
tor is uninterpretable. Even if it were interpretable, the efficiency
gain from adjustment (RE) is slightly less for the logistic coefficient
estimator compared to the standardized estimator; the same is true
even if all estimators are converted to the log odds scale, as shown
in the online supplement. (Also, the efficiency gain of the logistic
coefficient estimator compared to the unadjusted estimator is similar
to that seen in other stroke trials [7,19].) In setting 2, both adjusted
estimators lose efficiency compared to the unadjusted, but the loss is
slightly worse for the logistic coefficient estimator.

The efficiency gains from the logistic coefficient estimator
compared to the unadjusted estimator are primarily a consequence
of the treatment effect being further away from the null, rather than
a reduction in estimator variance [16]. This is different from the
standardized estimator, where the treatment effect being estimated
(the average treatment effect) is the same as for the unadjusted
estimator, and the efficiency gains are purely a consequence of
variance reduction.

5. Recommendations for practice

For reasons described in Section 2 and illustrated using the CLEAR
III trial data in Section 3, we recommend to use the standardized
estimator combined with bootstrapped confidence intervals, when
it is expected that baseline variables will be moderately to strongly
prognostic for the outcome.

When the outcome is always observed but a substantial
proportion of the baseline variables have missing data, the
unadjusted estimator is preferred over the model standardization
estimator (since adjusting for missing data requires making addi-
tional assumptions and can result in less precise estimators).

In stroke trials, baseline stroke severity as measured by NIHSS is
a relatively strong predictor for the outcome, and can be used for
covariate adjustment. Ideally, prognostic baseline variables should
be selected based on clinical understanding, and then evaluated
using prior data sets. E.g., for a future phase III trial being planned,
phase II data can be used to evaluate the prognostic value of
the baseline variables. Colantuoni and Rosenblum [15] propose a
modified R2 method (as used earlier in our paper) for doing so. A
possible rule of thumb is to build the standardized estimator into
the phase III study protocol as the primary analysis if the modified
R2 (which approximates the reduction in sample size due to adjust-
ment) is at least 10%, based on a completed phase II randomized
trial with at least 100 participants. We caution that since the pop-
ulation enrolled in phase III may differ from phase II, there is no
guarantee that relative efficiency from the latter will be similar to the
former.

We emphasize that the statistical analysis plan in a phase III
trial must be prespecified. If this includes using a covariate adjusted
estimator, the precise details of the estimator need to be prespecified
(including the type of estimator and the corresponding model and
variables to be used). A conservative approach is to select just a few
variables that are thought to be prognostic for the outcome based on
medical knowledge and on prior data as described above.

The relative efficiency gains resulting from the use of the
standardized estimator are expected to be similar in large and mod-
erately sized trials; this holds in general for covariate adjusted
estimators, as noted by Pocock et al. [2]. This makes the potential
absolute reduction in sample size from covariate adjustment greater
in larger trials.

Table 3
Average value of estimator over the 10,000 simulations, empirical standard error, relative efficiency (RE) compared to unadjusted estimator, and reduction in sample size (RSS)
compared to the unadjusted estimator. The unadjusted and standardized estimator estimate the marginal risk difference while the logistic coefficient aims to estimate a con-
ditional effect on the log-odds scale. For both the unadjusted and standardized estimator, the true marginal treatment effect is 0.13 in both settings. In setting two, the true
conditional treatment effect on the log odds scale is 0.52. As the logistic regression model is not necessarily correct in setting one, it is unclear if the true conditional effect is
interpretable as a single number.

Estimator Average value of estimator Empirical standard error RE RSS

Setting 1 Unadjusted 0.13 4.5 × 10−2 1 0
Standardized 0.13 3.8 × 10−2 1.41 29%
Logistic coefficient 0.76 0.23 1.31 24%

Setting 2 Unadjusted 0.13 4.5 × 10−2 1 0
Standardized 0.13 4.5 × 10−2 0.99 −1%
Logistic coefficient 0.53 0.19 0.94 −7%
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The ratio of the standardized estimator to its standard error can
be used as a test statistic for the null hypothesis of no average
treatment effect. Precision gains of the standardized estimator com-
pared to the unadjusted estimator lead to this test having higher
asymptotic power compared to the analogous test for the unadjusted
estimator. We emphasize that a robust standard error method, e.g.,
the nonparametric bootstrap, must be used, for which code is given
in the online supplement.

6. Discussion

The main benefits of the standardized estimator over the logistic
coefficient estimator are that (i) the former does not require correct
model specification in order to be consistent, and (ii) the former is
a consistent estimator of the average treatment effect, which always
has an interpretation as a single population value (the same as being
estimated by the unadjusted estimator), unlike the conditional treat-
ment effect (which may be a complex function rather than a single
value).

Our results illustrate the potential advantages of using the stan-
dardized estimator when analysing data from randomized trials.
They are not meant as a complete analysis of the CLEAR III trial.
One important component not considered here is that an adaptive
randomization scheme was used when randomizing participants to
study arms in the CLEAR III trial. For simplicity and since many
trials use simple or block randomization, we focused on this case.
When covariate adaptive randomization is used, it is recommended
to adjust for the covariates in the analysis [1].

Consider the case when the sampling distribution for the trial
(i.e., the data generating distribution for the trial participants) differs
from the distribution in the target population. For example, it may be
that the patients with very high disease severity are more likely to
enroll in the trial than those with low disease severity. In that case,
if the target population consists of those with both high and low dis-
ease severity, all three estimators can suffer from bias for estimating
the treatment effect in the target population. The standardized and
logistic coefficient estimators require the sampling distribution of
the covariates and outcome to match that of the target population,
in order to be consistent. The unadjusted estimator only requires the
outcome distribution to match that of the target population in order
to be consistent.

Throughout, we considered logistic regression models with main
terms only. This accords with the European Medicines Agency guide-
line on covariate adjustment, which recommends that the primary
analysis should not include treatment by baseline variable interac-
tions [1]. The standardized estimator is guaranteed to be consistent
for the marginal treatment effect whether the true population distri-
bution involves interactions or not.

Stratified block randomization can be used to balance, by design,
the levels of baseline variables across study arms. However, such a
design can only be used to balance a small number of strata. The stan-
dardized estimator can incorporate multiple variables (continuous,
ordinal, and/or categorical), and can therefore potentially leverage
more of the prognostic information compared to using stratified
block randomization on a small number of strata. Alternatively, the
standardized estimator can be used in conjunction with this ran-
domization scheme to leverage additional prognostic information in
variables that were not stratified on by design.

Sample size calculations for the standardized estimator require
specifying how prognostic the baseline variables are for the outcome.
A conservative approach is to calculate the sample size as if there
would be no precision gain compared to an unadjusted estimator,
but plan to use the standardized estimator in the primary analysis.
When the baseline variables are prognostic, this would result in
a study with higher power than originally intended. The potential
reduction in variance can result in smaller expected sample sizes

associated with the standardized estimator in group sequential trials
with information monitoring [20].

There are several covariate adjusted estimators for binary
outcomes that share the desirable properties of the standardized
estimator [15]. For simplicity, we only focused on the standardized
estimator. If some participants have missing outcomes and the
missingness probability can be correctly modeled, the standardized
estimator can adjust for the resulting bias by adding weights to
the logistic regression models [15]. The standardized estimator can
also adjust for baseline variables when responder analysis is used to
define the outcomes [21].

There are several other settings where estimators that share
the desirable properties of the standardized estimator are available.
Estimators with similar qualities have been derived for other gen-
eralized linear models such as when the outcome is continuous,
ordinal, or a count measure [22,23]. For longitudinal studies, such as
if mRS was measured at 30, 90, and 180 days, the targeted maximum
likelihood estimator [24] can be used. For group sequential designs,
precision can be improved by using the standardized estimator at
every analysis, as long as covariances are computed using a robust
method such as the nonparametric bootstrap.
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