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Why we care

Case-control studies work because of special properties of the odds ratio; they
are limited to logistic regression.

Traditional survey statistics was largely about population counts and means.

With modern weighted estimation for complex sampling we can estimate
almost anything, so anyone who can do ordinary data analysis can analyse
complex surveys without much special knowledge.



Compared to maximum likelihood or
imputation

Often possible to get more precise estimates with semiparametric maximum
likelihood or multiple imputation – eg case-control logistic regression

Extra precision comes from additional assumptions: case-control  only
estimates the census parameter if the model is exactly correct

The robustness:efficiency tradeoff is real; it’s not clear which side you want to
be on.

More Research Is Needed.
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https://notstatschat.rbind.io/2017/03/18/case-control-efficiency/
https://notstatschat.rbind.io/2014/10/25/semiparametric-efficiency-and-nearly-true-models/
https://notstatschat.rbind.io/2016/01/13/another-view-of-thenearly-true-model/
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Estimating population totals

Population total  of  is

Horvitz-Thompson estimator is

Since ,  is unbiased as long as  for all units in the
population.
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How we usually estimate things

Maximising or minimising some objective function

Maximum likelihood

Least squares

Solving some estimating equation



Because of calculus, these are close to being equivalent:

Maximise

Solve
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Example

Linear regression minimises the residual sum of squares, with 

which is equivalent to solving the set of equations (the normal equations)
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Basic estimation question

Using just the sample, how can I get an estimate of the same quantity that I
would estimate if I had the whole population?

The whole-population answer (called the census parameter) is defined by the
estimating equation or objective function applied to the population

Those are population totals. We understand population totals. We can estimate
 or ℓ(β) U(β)



Example

In linear regression, the census parameter minimises the population residual
sum of squares:

We can get an unbiased estimate of this

and minimise  instead.

If  is close to , the  that minimises one must be close to the  that
minimises the other, so we get a good estimate of the census parameter.
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Simpler example: mean

The population mean  solves

The estimtaed mean solves

Rearranging,
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Digression: why not divide by N?

 is what the formula gives

It often gives better performance, because  and  correlated

Sometimes (eg, in cluster sampling) we don’t know 

When we do know , the weights are usually calibrated so 

N̂ 

T ̂  N̂ 

N

N = NN̂ 



When does this work?

Treating the objective function or estimating equations as a population total
works for

means, totals, contingency tables

linear and generalised-linear models

survival analysis

proportional odds and related ordinal models

quantiles and quantile regression

scatterplot smoothers

and many more



How to get the computer to do it

In Stata, most built-in and some user-written estimation commands allow a
svy: prefix that tells the computer to

use weights in the objective function/estimating equation

use the appropriate resampling or sandwich estimator for standard errors

In R, the survey package has

svymean, svyquantile

svyglm, svyolr, svyloglin

svysmooth

svykm, svycoxph

and will soon get svyivreg() for two-stage least-squares with instrumental
variables.





When doesn’t it work?

Not at all for mixed models, where the likelihood isn’t a sum over individual
observations. Mixed models are hard.

Not straightforwardly for purely predictive models, where you care about
prediction in a new sample rather than estimating the correct values of .

Not straightforwardly for rank-based statistics, because the appropriate
definition of ranks is tricky
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Standard errors

The standard error estimation is based on the (model-agnostic, or model-
robust) sandwich estimator, with the middle of the sandwich being a Horvitz-
Thompson estimator.

For surveys defined by replicate weights, the standard errors are just the
resampling standard errors.



Tests in regression

Basic idea: Rao & Scott (1981,1984) work out the sampling distribution of the
weighted likelihood ratio statistic and the Pearson  score statistic in
contingency tables

Lumley & Scott (2013,2014) extend this to Cox model and generalised linear
models with arbitrary covariates, implemented in regTermTest

Lumley & Scott (2019) extend it to AIC, implemented for svyglm objects in
R.

Currently not in any other software.
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Note: assumptions in regression

For inference about population associations:

distribution of residuals not important

getting the right functional form is important for confounders, not (as much)

for exposure of interest



Do we really need weights?

If , so the model is correctly specified and the weights are
independent of  given 

no bias from omitting weights

loss of precision from including weights

Bias/variance tradeoff: the larger the survey, the more we care about bias, so
the more we want to include the weights

The data can tell us the weights are needed – leaving them out makes a big
difference to the estimates.

The data can’t tell us they aren’t needed (the bias can’t be estimated
accurately enough)

E[Y|X = x] = xβ
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Examples

We will use data from the Scottish Household Survey (slightly modified for
confidentiality). The survey is stratifed by local authority (roughly, county in
US) and by ten socioeconomic categories at the postcode level.

The survey uses cluster sampling for rural areas, but samples individuals for
areas with higher population density, so the primary sampling unit is
sometimes the individual and sometimes a cluster



survey design

shs<-read.csv("shs.csv") 

names(shs)

##  [1] "X"        "psu"      "uniqid"   "ind_wt"   "shs_6cla" "council"  
##  [7] "rc5"      "rc7e"     "rc7g"     "intuse"   "groupinc" "clust"    
## [13] "stratum"  "age"      "sex"      "emp_sta"  "grosswt"  "groc"

dshs<-svydesign(id=~psu,weights=~grosswt,strata=~stratum, 

                data=shs) 

dshs

## Stratified 1 - level Cluster Sampling design (with replacement) 
## With (11937) clusters. 
## svydesign(id = ~psu, weights = ~grosswt, strata = ~stratum, data = shs)



summaries of internet use

svymean(~intuse, design=dshs, na.rm=TRUE)

##           mean     SE 
## intuse 0.34156 0.0034

svymean(~sex, design=dshs, na.rm=TRUE)

##              mean     SE 
## sexfemale 0.55815 0.0033 
## sexmale   0.44185 0.0033

svymean(~age, design=dshs, na.rm=TRUE)

##       mean     SE 
## age 48.224 0.1227



svyhist(~age,design=dshs)





Graph by age and sex

byagesex<-svyby(~intuse,~age+sex,svymean, design=dshs,na.rm=TRUE) 

m<-svysmooth(intuse~age,design=subset(dshs,sex=="male")) 

f<-svysmooth(intuse~age,design=subset(dshs,sex=="female")) 

plot(rep(16:80,2),coef(byagesex),pch=c(1,19),ylim=c(0,1), 

     xlab="Age",ylab="Proportion internet users") 

lines(m,lty=2) 

lines(f,lty=1)





with logistic regression

agemodel<-svyglm(intuse~(pmin(age,30)+pmax(age,30)),design=dshs, 

                 family=quasibinomial) 

coef(summary(agemodel))

##                  Estimate  Std. Error    t value     Pr(>|t|) 
## (Intercept)    1.68279935 0.144283650  11.663133 2.932990e-31 
## pmin(age, 30)  0.01853921 0.005454601   3.398821 6.790367e-04 
## pmax(age, 30) -0.06119598 0.001150673 -53.182750 0.000000e+00



fittedage<-predict(agemodel,newdata=data.frame(age=16:80),type="response") 

plot(rep(16:80,2),coef(byagesex),pch=c(1,19),ylim=c(0,1), 

     xlab="Age",ylab="Proportion internet users") 

lines(16:80,(fittedage),col="sienna")





Scatterplots?



NHANES (14000 points)



Hard because

data often large

want to incorporate weights

want to incorporate correlation within sampling units

Approaches:

alpha-blending

hexagonal binning



Code (not Stata)

svyplot(): style can be transparent or hex, grayhex,

svycoplot(): style can be transparent or hexbin



Alpha-blending

Use partially-transparent points:

overplotting can still be seen

amount of ink proportional to sampling weight

can still use colour to identify groups



NHANES: 14000 points



NHANES: 14000 points



Hexagonal binning

Divide plotting area into hexagons

Collapse all the points in a grid cell into a small hexagon at the centre of

mass

Fast, gives small files, even for very large data

Outliers are still visible

(Dan Carr, 1987)



NHANES, again



Scatterplot smoothers

We only need the curve, not a standard error estimate, so this is easy

For local linear/polynomial regression smoothers (eg loess) just add weights

to local regressions

For quantile smoothers,

use regression splines and weights in a quantile regression

Both are done by svysmooth() in R: method="quantreg" or
method="locpoly"



NHANES blood pressure trends



Conditioning plots

Show relationships in more than two dimensions by plotting Y~X conditioned
on a range of Z

“Trellis” graphics, invented by Bill Cleveland

Implemented in R “lattice” package

survey versions in survey package: transparent or hexbin

svycoplot(y~x|z, style="transparent")



Blood pressure, age, and sex



Blood pressure, age, and sex


