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Two-phase sampling

Take a sample (or pretend that your cohort is a sample), then based on the
data you have, take a subsample

Technically, even traditional case-control designs are two-phase sampling,
but they are special because the analysis is based on a likelihood.

Here we cover

+case-control sampling depending on covariates as well as outcome
- stratified and unstratified case-cohort sampling
- other designs

These are analysed based on survey methodology, using sampling weights.
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Full analysis

Two phases of sampling: - specify clusters, strata and sampling probabilities
at each phase

Simplified because

- often no clusters

- often no strata at Phase |

- sampling probabilities at Phase | are often equal

- sampling probabilities at Phase Il can be computed by the program
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InR

twophase () function declares a two-phase design

id: list of two id formulas (usually 1ist(~1, ~1))
strata: list of two strata formulas (first one is usually NULL)
subset: logical vector indicating whether an observation is in Phase |l
data: data frame with Phase | and Phase Il data

+ method: "simple" when there is no clustering or Phase-| strata
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Approximate analysis

If phase | variables only used for stratifying Phase Il sampling, and
population is large or infinite a good approximate analysis is

- ignore phase |

- treat phase Il as sampled from population
For case-control the approximation is exact
The approximation is useful when using software other than R

For case-cohort, the approximation is called "Barlow's method"
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Case-cohort design

If X is an expensive predictor variable in a large cohort study with a low
event rate, then

initially measure X on, eg, 10% of cohort (subcohort)

* follow up and measure X on all cases

Would expect nearly full efficiency because information is mostly in cases.

Can use the same subcohort for different case groups, or after more cases
accumulate, save more money

For very large cohorts (eg national health data) use case-cohort sampling to
save computer time.
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Practical problems

X may be measured at different times for different people (even if on stored
samples taken at the same time)

For biochemical measurements, laboratory drift may be a problem, and will
be confounded with case/subcohort status

In contrast, for matched case-control sampling you would always measure X
on case and matched controls at the same time.

Problem doesn't arise when entire measurement is retrospective and the
order of lab processing can be randomised.
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Efficiency

If there is only one event variable, case-cohort sampling is less efficient than
matched case-control sampling (Langholz & Thomas, Biometrics 1991)

If there are multiple event variables case-cohort sampling is typically more
efficient because the subcohort and the cases of the first event can be
reused as controls for the second event.
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Analysis

Analysis has always been by weighted Cox regression, initially with
complicated time-dependent weighting schemes

- Prentice, Self & Prentice

The complications were to make the weights predictable, ie, depending on
the past and not the future. Necessary for 1990s mathematical theory using
martingales.
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Modern analysis uses retrospective sampling from the full cohort data set:
weights can depend on any phase | data.

* m; = 1 for cases (whether or not part of subcohort)

* m; for non-cases in subcohort is proportion of non-cases that are in
subcohort

Modern approach is easier, (slightly) more efficient, allows for clustering,
allows for calibration
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Example

Cohort of 10,000 people, subcohort of 500

203 cases occur, 12 in subcohort members.

Sampling probability is z; = 1 for all 203 cases

500—-12

Sampling probability is z; = =5~ for non-cases
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Stratified case-cohort design

A small subcohort may have very few people with a rare exposure
Makes sense to oversample groups of people who

* do have a rare value of a phase | exposure/confounder Z

*are likely to have a rare value of the phase Il variable X

In traditional analysis, the stratifying variable had to be available at baseline
(predictable)

In modern survey analysis, the stratifying variable can be measured at any
time: z; can depend on arbitrary Phase | data.
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Design examples

- Low potassium is more common in people taking thiazide drugs for blood
pressure, so oversample people with high blood pressure

- If medication data is available at Phase |, oversample people taking
thiazides.

- in study of genetics and heart attack, oversample people at high predicted
risk of heart attack (Framingham risk score)
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Worked example: Wilms' Tumour study

+ Wilms' Tumour is a rare kidney cancer in children

+ Most US children with the cancer are in the National Wilms' Tumour Study
Group clinical trials

- We have data for everyone, but we can simulate two-phase sampling
strategies such as case-cohort
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Simple case-cohort

library(survival)

data(nwtco)

dcchs<-twophase(id=list(~seqno,~segno), strata=list(NULL,~rel),
subset=~I(in.subcohort | rel), data=nwtco)

dcchs

## Two-phase sparse-matrix design:

## twophase2(id = id, strata = strata, probs = probs, fpc = fpc,
## subset = subset, data = data)

## Phase 1:

## Independent Sampling design (with replacement)

## svydesign(ids = ~seqno)

## Phase 2:

## Stratified Independent Sampling design

## svydesign(ids = ~seqno, strata = ~rel, fpc = " *phasel*")
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Cox model

model <- svycoxph(Surv(edrel,rel)~factor(stage)+factor(histol)+I(age/12),
design=dcchs)

rel) ~ factor(stage) + factor(histol) +

model

## Call:

## svycoxph(formula = Surv(edrel,

## I(age/12), design = dcchs)

##

## coef exp(coef) se(coef)
## factor(stage)2 0.69 2.00 0.16
## factor(stage)3 0.63 1.87 0.17
## factor(stage)d 1.30 3.67 0.19
## factor(histol)2 1.46 4.30 0.15
## I(age/12) 0.05 1.05 0.02
##

## Likelihood ratio test= on 5 df, p=

## n= 1154, number of events= 571

N & BN

10

2e-05
2e-04
6e-12
<2e-16
0.05
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s<-predict(model, type="curve",newdata=
data.frame(stage=c(1,1,4,4),histol=c(1,2,1,2),age=c(12,12,12,12)))

plot(s[[1]1]); lines(s[[2]],1lty=2)

lines(s[[3]],col="red"); lines(s[[4]],1lty=2,col="red")

1.0

06 0.8
I

Proportion surviving
0.4

0.2
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Two-phase case-control designs

Ordinary case-control study samples on Y only.

Sample on other Phase | variables Z as well:

- surrogates for exposure

+interaction variables
Survey analysis is easy: 7;(Z,Y) are just the sampling probabilities

Semiparametric maximum likelihood analysis is possible, can be more
accurate, makes more assumptions
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Examples

Gene:environment interaction, with genetic data measured at phase Il -
sample balanced numbers of cases and controls with and without

environmental exposure

Surrogate for exposure: eg self-report vs examination of medical records -
sample so that you expect to get equal numbers exposed and unexposed
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Worked example: Wilms' Tumour study

-+ Wilms' Tumour is a rare kidney cancer in children

+ Most US children with the cancer are in the National Wilms' Tumour Study
Group clinical trials
-+ One important predictor of survival is histology (bad/good)

- the study group central pathologist is much better at measuring
histology

- could use local hospital measurements as a surrogate

-+ We have central-lab and local-hospital measurements for everyone, but
we can simulate two-phase sampling strategies
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Wilms' Tumour: Sampling strategies

Bad histology is rare (about 10%). Relapse is rare (14%)

-+ random: random sample of 1200

- case-control: obtain central-lab histology on all cases, random subset of
controls

- risk-based: obtain central-lab histology on all with bad histology
according to local lab, random subset of others

- balanced: all cases, all bad histology, subsample of remainder

[exercise: balanced+stage: same, but stratified on disease stage (I-1V) as
well]
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Random

data(nwtco,package="survival")

random <- nwtco[sample(nrow(nwtco), 1200), ]

coef (summary(glm(rel~factor (histol)*factor(stage),data=random,

family=binomial)))

(Intercept) -2
factor (histol)2
factor(stage)2
factor(stage)3

factor(histol)2:factor(stage)2
factor (histol)2:factor(stage)3

TEEEEEEEe

factor(histol)2:factor(stage)4

1
1
1
factor(stage)4 1.
0
0
0

16539

.07402
.61824
.76250

O O O O O o o o

Estimate Std. Error
.93183
.63255
.01396
.12733

.2239
.5121
.2952
.2829
.3297
.6370
.6282
. 7159

z value

-13.
.1878
.4347
.9854
.5347
.1162
.9841
.0651

P O O W W W Ww

0916

N WO & 0 kW

Pr(>|z|)
.678e-39
.434e-03
.933e-04
.737e-05
.082e-04
.075e-01
.250e-01
.868e-01
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Case-control

cases <- subset(nwtco, rel==1)

controls <- subset(nwtco,rel==0)[sample (3457, 629),]
casecontrol <- rbind(cases,controls)

coef (summary(glm(rel~factor (histol)*factor (stage),data=casecontrol,

family=binomial)))

(Intercept)

factor(histol)2

factor(stage)2

factor(stage)3

factor(stage)4

factor (histol)2:factor(stage)2
factor(histol)2:factor(stage)3

TEEEEEEEE

factor (histol)2:factor(stage)4

Estimate Std. Error z value

-0.
.2165
.7514
.7728
.8367
.1853
.3963
.8550

o O O O O O B+

9420

O O O O O O O o

.1229
.3282
.1745
.1817
.2128
.4645
.4454
.5484

-7.
.7061
.3054
.2531
.9326
.3989
.8897
.5590

R O O W & & W

6645

P W o 0 N P, N -

Pr(>|z])
.795e-14
.105e-04
.667e-05
.109e-05
.404e-05
.900e-01
.736e-01
.190e-01
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Balanced, ignoring two-phase structure

full <- subset(nwtco, (rel==1) | (instit==2))

sampled <- subset(nwtco, (rel==0) & (instit==1))[sample(3207, 379),]
balanced <- rbind(full,sampled)

coef (summary(glm(rel~factor (histol)*factor (stage),data=balanced,

TEEEEEEEE

family=binomial)))

(Intercept)

factor(histol)2

factor(stage)2

factor(stage)3

factor(stage)4

factor (histol)2:factor(stage)2
factor(histol)2:factor(stage)3
factor (histol)2:factor(stage)4

Estimate Std. Error z value

.5216
.4936
.5050
.5612
.5216
.4092
.6876
.8407

O O O O O O O o

.1316
.2680
.1844
.1927
.2215
.3592
.3508
.4478

.964
.842
.739
.913
.355
.139
.960
<111

O O O O O O O O

Pr(>|z|)

.00007386
.06548986
.00616218
.00358400
.01852773
.25459547
.04998117
.00003941
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Balanced with weights

balanced$wt <- with(balanced, ifelse(rel==1 | instit==2, 1, 3207/379))
bdesign <- svydesign(id=~1, strata=~interaction(rel,instit),

weights=~wt,data=balanced)

coef (summary(svyglm(rel~factor (histol)*factor (stage),design=bdesign,

family=quasibinomial)))

(Intercept)

factor(histol)2

factor(stage)2

factor(stage)3

factor(stage)4

factor (histol)2:factor(stage)2
factor(histol)2:factor(stage)3

TEEEEEEEE

factor (histol)2:factor(stage)4

Estimate Std. Error t value

-2

P P O O O O

.5680
.1205
.4993
.6468
.8209
.4890
.0343
.9736

O O O O O O O o

.1138 =22
.2995
.1877
.1985
.2365
.4267
.3841
.4796

= DR W N W

.570
.741
.660
.258
.471
.146
.693
.116

S9N OO RN W

Pr(>|t])
.664e-94
.920e-04
.912e-03
.153e-03
.365e-04
.519%e-01
.179e-03
.130e-05
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Balanced: proper two-phase

balanced2 <- merge(balanced[,c("segno","histol")], nwtco[,-3],

balanced2$Sinsample <- !is.na(balanced2$Shistol)

by="seqno",all=TRUE)

summary (balanced2[,1:4])

TEEEEEEE

seqno

Min.

1st Qu.

Median
Mean

3rd Qu.

Max.

1
1009

22022
:2026

3039

:4088

histol

Min.

Mean

3rd Qu.:

Max.
NA's

:1.
1st Qu.:
Median :

NN R

o W O O o

.0

+2828

instit

: 1.
1st Qu.:
Median :

Min.

Mean

3rd Qu.:

Max.

o0 o0
N R R
[ ] [ ] [ ] [ ] [ ]

o O kB O O O

stage

Min.

1st Qu.:
Median :

Mean

3rd Qu.:

Max.

= W DN R

.00
.00
.00
.07
.00
.00
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b2design <- twophase(id=list(~1,-~1),
strata=list (NULL,~interaction(rel,instit)),
subset=~insample,data=balanced2, method="simple")
coef (summary(svyglm(rel~factor (histol)*factor(stage),design=b2design,
family=quasibinomial)))

7 Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.5680 0.1249 -20.567 1.172e-80
## factor(histol)?2 1.1205 0.3074 3.645 2.785e-04
## factor(stage)2 0.4993 0.1876 2.662 7.871e-03
## factor(stage)3 0.6468 0.1984 3.260 1.145e-03
## factor(stage)4 0.8209 0.2364 3.473 5.336e-04
## factor(histol)2:factor(stage)2 0.4890 0.4262 1.147 2.514e-01
## factor(histol)2:factor(stage)3 1.0343 0.3846 2.690 7.254e-03
## factor(histol)2:factor(stage)4 1.9736 0.4796 4.115 4.132e-05

[Very little impact of proper two-phase analysis]
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Related designs

CHARGE-S DNA resequencing study to follow up results from GWAS in 10
phenotypes

+ Random subcohort + people with extreme values on the 10 phenotypes

- all people can be used in all analyses
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Genetics, maternal weight, birthweight, leading to heart/diabetes risk in
(adult) children

Phase Il is blood measurements on children, mothers, and the genetics

- Stratify on maternal weight and birthweight to undersample 'normal’
families

29/54



Basic message

If you can't sample everyone, you can choose the most interesting people to
sample in any way you like as long as everyone has a chance of being

chosen.

You know the sampling probabilities for each person, they can be used in
the analysis.
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Using the whole cohort...



Available information

In a classical case-control study, only Y is known for the whole cohort.

Often we know more

' variables Z that are in our outcome model, maybe as confounders

* variables A that are not in our outcome model but are predictive either of
XorofY

We'd like to use this information
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How to use the information

A general approach is to adjust the weights slightly, so that the estimated

whole-cohort total for like A and Z matches the known
truth.

You get improved estimation for totals of anything correlated with A or Z.

In survey statistics this is called or . In theoretical
biostatistics these are estimators. Direct standardisation (in
epidemiology) is a special case.
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We want regression coefficients

Totals of variables Y or A or Z are not strongly correlated with regression
coefficients

We need to use or as the auxiliary variables for
reweighting

To do this, we need to X for everyone in the cohort
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Procedure

1. Impute X to get X.

2. Fit your outcome model Y ~ X + Z using X instead of X for everyone. Call
this the whole-cohort model

3. Extract the influence functions from the whole-cohort model and
calibrate using them

4. Fit your outcome model Y ~ X + Z to the calibrated phase-two
subsample. Using twophase () does matter now.

[It's even better to use multiple imputation]
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National Wilms' Tumour Group data

set.seed(2017-12-3)
nwts <- read.table("nwts-share.txt", header=TRUE)

names (nwts)

## [1] "trel" "tsur" "relaps" "dead" "study" "stage" "histol"
# [8] "instit" llagell Ilyrll llspecwgtll "tumdialrl"
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New variables

A linear spline in age

nwts$agel <- with(nwts, pmin(age, 1))
nwts$Sage2 <- with(nwts, pmax(age, 1))
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The full-cohort model

Histology:age interaction and stage:tumour-diameter interaction

fullmodel <- glm(relaps~histol*(agel+age2)+ I(stage>2)*tumdiam,

family=binomial, data=nwts)

coef (summary (fullmodel))

(Intercept)

histol

agel

age2

I(stage > 2)TRUE

tumdiam

histol:agel

histol:age2

I(stage > 2)TRUE:tumdiam

TEEEEEEEEE

Estimate Std.

-2

.61048
5.
-0.

66253
73020

0.12198
1.50690
0.07219

.19225
.03064
.08947

o O B O O O O O O

Error z value

.34241
.97790
.34976
.01920
.29682
.01591
.05085
.04752
.02355

.6238
.7905
.0877
.3544

5.0768

.5386
.9894
.6448
.7984

R Ol & U1 W N W I DN

Pr(>|z|)
.463e-14
.018e-09
.682e-02
.093e-10
.838e-07
.663e-06
.625e-05
.191e-01
.456e-04
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Case-control sample

Here we take all the cases and a random sample of controls

nwts$id <- l:nrow(nwts)
cases <- subset(nwts, relaps==1)
noncases <- subset(nwts, relaps==0)
controlsample <- sample(noncases$id, nrow(cases))
ccsample<- rbind(cases, noncases[noncases$id %in% controlsample, ])
ccsampleSweight<-with(ccsample,
ifelse(relaps==1, 1, nrow(noncases)/nrow(cases)))
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We can compare the maximum likelihood estimator and the survey

estimator;

library(survey)

ccmle <- glm(relaps~offset(log(weight))+histol*(agel+age2)+

I(stage>2)*tumdiam, family=binomial, data=ccsample)

coef (summary(ccmle))

TEEEEEEEEE

(Intercept)

histol

agel

age2

I(stage > 2)TRUE

tumdiam

histol:agel

histol:age2

I(stage > 2)TRUE:tumdiam

Estimate Std.

.18981
.46106
.13596
.21786

2.24581

.08634
.08221
.09580
.12564

o O B O O O O + O

Error z value

.43829
.17825
.45543
.02899
.43128
.02093
.30854
.08115
.03408

.996
.786
.494
.515

5.207

.125
.591
.181
.686

N NP W O PO,

Pr(>|z|)
.847e-07
.530e-04
.262e-02
.682e-14
.916e-07
.707e-05
.116e-01
.378e-01
.275e-04
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survey cc <- svydesign(id=~1, weights=~weight, strata=-~relaps,

data=ccsample)

ccest <- svyglm(relaps~histol*(agel+age2)+I(stage>2)*tumdiam,

family=quasibinomial, design=survey cc)

coef (summary(ccest))

o O B O O O O = O

## Estimate Std.
## (Intercept) -2.52284
## histol 3.48903
## agel -0.84587
## age2 0.14745
## I(stage > 2)TRUE 1.58083
## tumdiam 0.06201
## histol:agel -1.87789
## histol:age2 -0.05041
## I(stage > 2)TRUE:tumdiam -0.08340

Error t value

.42664
.03643
.42832
.02757
.41423
.02136
.15740
.08116
.03295

.9133
.3664
.9749
.3477
.8163
.9036
.6225
.6211
.5308

H O R W R R DD

Pr(>[t])
.258e-09
.834e-04
.849e-02
.048e-07
.417e-04
.750e-03
.049e-01
.346e-01
.149e-02
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The two seem fairly comparable: we know that asymptotically the maximum
likelihood estimator must be better, but the difference is small enough to
not show up in a single comparison

round (cbind(coef (ccmle), coef(ccest))-coef(fullmodel), 3)

## [,1] [,2]
## (Intercept) 0.421 0.088
## histol -1.201 -2.173
## agel ~0.406 -0.116
## age2 0.096 0.025
## I(stage > 2)TRUE 0.739 0.074
## tumdiam 0.014 -0.010
## histol:agel 2.110 2.314
## histol:age2 -0.065 -0.020
## I(stage > 2)TRUE:tumdiam -0.036 0.006
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Using a twophase() objet

The simple survey estimator does not use the full cohort; we can declare a
twophase object that does. We do not need to specify weights because the
software can work out what they are.

nwts twophase <- twophase(id=list(~1,~1), strata=list(NULL, ~relaps),
subset=~I((relaps==1)| id %in% controlsample),
data=nwts)
twophaseest <- svyglm(relaps~histol*(agelt+age2)+ I(stage>2)*tumdiam,
family=quasibinomial, design=nwts twophase)
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coef (summary (twophaseest))

(Intercept)

histol

agel

age2

I(stage > 2)TRUE

tumdiam

histol:agel

histol:age2

I(stage > 2)TRUE:tumdiam

b g b g g g g R g

Estimate Std.

.52284
.48903
.84587

0.14745

.58083

0.06201

.87789
.05041
.08340

o O B O O O O = O

Error t value

.42862
.03619
.42811
.02756
.41407
.02135
.15711
.08114
.03294

.8859
.3672
.9758
.3498
.8177
.9049
.6229
.6213
.5318

= U= W R R g

Pr(>[t])
.007e-09
.811e-04
.838e-02
.036e-07
.409e-04
.735e-03
.048e-01
.345e-01
.146e-02

We still aren't using the whole cohort for anything, so the two analyses are

almost identical
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Using the whole cohort

We'll try to use the whole cohort now. First, just use instit instead of
histol

First, fit the model to the full data

phaselmodel <- glm(relaps~instit*(agel+age2)+ I(stage>2)*tumdiam,
family=binomial, data=nwts)
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Extract the influence functions and create a new design object

inffun<-model.matrix(phaselmodel)*resid(phaselmodel, type="response")

colnames (inffun)<-pasteO("if",l:ncol(inffun))

aug twophase <- twophase(id=list(~1,~1), strata=list(NULL, ~relaps),
subset=~I((relaps==1)| id %in% controlsample),
data=cbind(nwts,inffun), method="simple")
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Calibrate, and fit the model of interest (ie, with histol) to the calibrated
sample

calformula <- make.formula(colnames(inffun))

cal twophase <- calibrate(aug twophase, calformula, phase=2)

svyest instit<-svyglm(relaps~histol*(agel+age2)+ I(stage>2)*tumdiam,
family=quasibinomial, design=cal twophase)
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coef (summary(svyest instit))

## Estimate Std. Error t value
## (Intercept) ~2.57714  0.35437 -7.2725
## histol 5.08895 1.24088 4.1011
## agel -0.71401 0.34869 -2.0477
## age2 0.11668 0.02090 5.5836
## I(stage > 2)TRUE 1.44579 0.31421 4.6013
## tumdiam 0.06940 0.01674 4.1461
## histol:agel -3.83311 1.32028 -2.9033
## histol:age2 0.01252 0.05966 0.2099
## I(stage > 2)TRUE:tumdiam -0.08282  0.02488 -3.3292

0 0 W W B N B B O

Pr(>[t])
.010e-13
.362e-05
.079e-02
.853e-08
.599%e-06
.597e-05
.754e-03
.338e-01
.948e-04
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Comparing the uncalibrated and calibrated estimates, the coefficients have

nearly all moved closer to the true full cohort value.

round(cbind(coef (twophaseest), coef(svyest instit))-coef(fullmodel),3)

b g b g g g g R g

[
(Intercept) 0.
histol -2.
agel -0.
age2 0.
I(stage > 2)TRUE 0.
tumdiam -0.
histol:agel 2.
histol:age2 -0.

I(stage > 2)TRUE:tumdiam 0.

1]
088
173
116
025
074
010
314
020
006

[,2]
.033
.574
.016
.005
.061
.003
.359
.043
.007

49/54



Calibration by imputation

It is always valid to just use a surrogate such as instit in calibration, but it
is probably not optimal.

The attenuation bias in using a mismeasured predictor translates into a loss
of precision in the calibrated estimate. We can try to construct a regression
imputation of histology instead:
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impmodel<-svyglm(histol~instit*(relaps+I(stage>3))+I(age>10)+factor(study),

family=quasibinomial,design=nwts twophase)

nwts$imphistol <-as.vector (predict (impmodel,newdata=nwts,

type="response",se.fit=FALSE))

with(nwts, by(imphistol, histol, summary))

## histol: 0
## Min. 1lst Qu.
# 0.0103 0.0154

## histol: 1
## Min. 1lst Qu.
## 0.0103 0.1072

Median
0.0279

Median
0.8309

Mean 3rd Qu. Max.
0.0426 0.0279 0.9756

Mean 3rd Qu. Max.
0.6696 0.9559 0.9756
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We now proceed as before. In particular, note that it is important to use
imphistol for all observations in the phase-1 model, even those where
histol is available - it was not available at phase 1.

phaselmodel imp <- glm(relaps~imphistol*(agel+age2)+ I(stage>2)*tumdiam,
family=binomial, data=nwts)

Extract the influence functions and create a new design object

inffun imp<-model.matrix(phaselmodel imp)*
resid(phaselmodel imp, type="response")
colnames (inffun imp)<-pasteO("if",l:ncol(inffun imp))
aug twophase imp <- twophase(id=list(~1,~1), strata=list(NULL, ~relaps),
subset=~I((relaps==1)| id %in% controlsample),
data=cbind(nwts,inffun imp), method="simple")
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Calibrate, and fit the model of interest

calformula <- make.formula(colnames(inffun imp))

cal twophase imp <- calibrate(aug twophase imp, calformula, phase=2)

svyest imp<-svyglm(relaps~histol*(agel+age2)+ I(stage>2)*tumdiam, family=quasibinomial, de
coef (summary(svyest imp))

## Estimate Std. Error t value Pr(>|t])
## (Intercept) -2.56915 0.35474 -7.2423 7.449e-13
## histol 5.05091 1.27870 3.9500 8.225e-05
## agel -0.74684 0.34810 -2.1455 3.209e-02
## age2 0.11751 0.02094 5.6110 2.445e-08
## I(stage > 2)TRUE 1.49480 0.31871 4.6901 3.012e-06
## tumdiam 0.06985 0.01702 4.1040 4.307e-05
## histol:agel -3.81602 1.36194 -2.8019 5.154e-03
## histol:age2 0.03141 0.06202 0.5065 6.126e-01
## I(stage > 2)TRUE:tumdiam -0.08516 0.02529 -3.3672 7.81le-04
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There has been a slight additional improvement; slight, because instit is

overwhelmingly the best predictor of histology.

round(cbind(coef (twophaseest), coef(svyest instit),

TEEEEEEEEE

coef (svyest imp))-coef(fullmodel),3)

[
(Intercept) 0.
histol -2.
agel -0.
age2 0.
I(stage > 2)TRUE 0.
tumdiam -0.
histol:agel 2.
histol:age2 -0.

I(stage > 2)TRUE:tumdiam O.

r1]
088
173
116
025
074
010
314
020
006

[,2]
.033
.574
.016
.005
.061
.003
.359
.043
.007

[,3]
.041
.612
.017
.004
.012
.002
.376
.062
.004
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