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Introductions
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Introduce yourselves (briefly). What do you want to get from
the course



Why complex surveys?

The case-control design can be understood without considering the sampling in
detail, but other modern designs cannot.

Weighted survey ideas are helpful in thinking about designs

Weighted estimation is a simple unifying approach; maximum likelihood may
not be available and need not be much more efficient

When more efficient estimates exist, they are more sensitive to model
assumptions (if non-response is not an issue).
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Important Notice

Please ask questions.

That’s the benefit of having me here rather than just a pile of papers.





Survey sampling

Three basic concepts

stratification

oversampling

clustering



Stratification

A sample of 6000 people from the US would on average contain

140 people from Washington (State)

11 people from Washington, DC

but the actual number from each region would vary.

Part of the variance of any statistic computed from the sample comes from the
variation in the number of people from each region.

The mean of a sample with 7 people from DC will be different from a sample
with 15



Stratification

If we can fix the number of people sampled in each region, we can eliminate
between-region differences from the variance of our statistics, increasing
precision. This is called a stratified sample, the regions are strata

Taking a stratified sample is possible only if we have a population list that
includes the stratum for each person. (sampling frame)

The extra precision comes from using the extra information in this population
list.

Stratification always decreases variance, perhaps not by very much.



Oversampling

Individuals need not be sampled with the same probabilities

some may be more informative than others (cases vs controls)

we might want to report statistics for subpopulations and need large enough

sample size for them

The former decreases variance; the latter increases it for population summaries
but decreases it for subpopulations



Clustering

If a survey involves a physical visit to each participant, it is less expensive to
sample people who are physically close together

homes in the same neighbourhood

students in the same classroom

workers in the same factory

medical records in the same hospital

We often sample a small number of clusters and then sample people from each
cluster.

Cluster sampling increases variance for the same sample size, but may
reduce variance for the same cost

Clustering may lead to variation in sampling probabilities





Multistage sampling

Take a sample, then take a subsample from it

Sample schools, then sample classrooms within schools

Sample counties, then sample neighbourhoods within counties

Sample universities, then sample academics stratified by department within

each university

= Pr(chosen	at	stage	1) × Pr(chosen	at	stage	2|in	stage	1)̑ i



Notation

 population size
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 probability that unit  would be sampled
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Estimating population totals

Population total  of  is

Horvitz-Thompson estimator is

Since ,  is unbiased as long as  for all units in the
population.
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Estimating variances

Estimate this using observed pairs 
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Telling the computer

The Horvitz-Thompson formula needs . The computer can work these out

from  and the strata and clusters.

If you designed the survey, you know all this information.

With public-use data you typically know only the sampling weights ( ) and
the first-stage strata and clusters.
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Describing (multistage) surveys to R

Identifiers for sampling units (at each stage, optionally)

Identifiers for strata (at each stage, optionally)

Weights (or sampling probabilities at each stage, or population sizes at each

stage)

Population sizes at each stage (optionally)

svydesign() returns a survey design object containing data and design
information.



Describing (multistage) surveys to Stata

at the beginning: svyset describes the clusters, strata, sampling weights,

population sizes (optionally)

then use svy: prefix before any analysis command



What data to include

You need to describe the design for the whole sample

even if you only want to analyse for avocado farmers, use svydesign()
or svyset on the whole data set

(it’s ok subset on strata, eg state for ACS)

but there could be records in your data file that aren’t part of the sample

eg, for NHANES if you want the clinical examination sample you need to drop records

for people who aren’t part of it (WTMEC2yr missing)



Example: California schools

Academic Performance Index: standardised test in schools

Population: 6194 schools in California, in 757 districts.

a cluster sample of all schools in 15 districts

a stratified unequal sample of 100 elementary schools, 50 middle schools, 50

high schools

a two-stage cluster sample of 40 districts and up to 5 schools from each



Cluster sample

Using 

dclus1<-svydesign(id=~dnum, fpc=~fpc, data=apiclus1) 

svytotal(~enroll, dclus1)

##          total      SE 
## enroll 5076846 1389984

= M/mwi



Cluster sample

Rescaling  to sum to known 

dclus1r<-svydesign(id=~dnum, weights=~pw, data=apiclus1,fpc=~fpc) 

svytotal(~enroll, dclus1r)

##          total     SE 
## enroll 3404940 932235

Estimate is improved: true 

wi N = 6194

= 3811472Tenroll



Stratified sample

dstrat<-svydesign(id=~snum, strata=~stype, fpc=~fpc, data=apistrat) 

svytotal(~enroll, dstrat)

##          total     SE 
## enroll 3687178 114642

dstrat<-svydesign(id=~1, strata=~stype, fpc=~fpc, data=apistrat) 

svytotal(~enroll, dstrat)

##          total     SE 
## enroll 3687178 114642



Two-stage cluster sample

Using 

dclus2<-svydesign(id=~dnum+snum, data=apiclus2,fpc=~fpc1+fpc2) 

svytotal(~enroll, dclus2, na.rm=TRUE)

##          total     SE 
## enroll 2639273 799638

Rescaling  to sum to known 

dclus2<-svydesign(id=~dnum+snum, weights=~scaledw,  

                  data=apiclus2,fpc=~fpc1+fpc2) 

svytotal(~enroll, dclus2, na.rm=TRUE)

##          total     SE 
## enroll 3187501 965738
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More typical public-use data

data(nhanes) 

design <- svydesign(id=~SDMVPSU, strata=~SDMVSTRA, 

              weights=~WTMEC2YR, nest=TRUE,data=nhanes) 

design

## Stratified 1 - level Cluster Sampling design (with replacement) 
## With (31) clusters. 
## svydesign(id = ~SDMVPSU, strata = ~SDMVSTRA, weights = ~WTMEC2YR,  
##     nest = TRUE, data = nhanes)



Stata

use apiclus1 
svyset dnum [pw=pw] 
svyset dnum [pw=pw], fpc(fpc) 
use apiclus2 
svyset dnum [pw=pw], fpc(fpc1) || _n, fpc(fpc2) 
svy: total enroll 
use nhanes 
svyset SDMVPSU [pw=WTMEC2YR], strata(SDMVSTRA)



Resampling

Analogs of the bootstrap and jackknife:

JK1 jackknife leaving out one cluster at a time

JKn stratified version of JK1

BRR split data into half, lots of times

bootstrap resample clusters (several variants exist)

Usually implemented by including replicate weights in the data file (set a
weight to 0 to omit a cluster)

Used by, eg, American Community Survey, California Health Interview Survey



Replicates

(or use  instead of )

Jackknife has , bootstrap and BRR have .

Public-use data will tell you what multiplier to use: if they don’t, use 1.0. They
tend to just use the one multiplier, not different ones per replicate

ACS: , 

CHIS: , 
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