
Appendix 5
The Geometry of Vectors and Matrices:

Eigenvalues and Eigenvectors
Much of the presentation that follows is in matrix notation, and for this I offer no apology
as this has rapidly become an essential tool of any serious student of animal breeding.

Henderson (1973)

The basic concepts of matrix algebra were introduced in LW Chapter 8 and LW Appen-
dix A3, and we assume the reader has this level of understanding (which includes matrix
multiplication, inverses, and determinants). If not, a quick review of LW Chapter 8 before
proceeding will be helpful. A deeper understanding of multivariate issues in quantitative
genetics requires an appreciation ofmatrix geometry. Our primary intent here is to introduce
the reader to the idea of vectors and matrices as geometric structures, and thus viewing
matrix operations as transformations converting one vector into another by a change in
geometry (rotation and scaling), which is completely summarized by the eigenvalues (scal-
ing), and their associated eigenvectors (rotation), of a matrix.

THE GEOMETRY OF VECTORS ANDMATRICES

As there are numerous excellent texts on matrix algebra, we made little effort to prove
most of the results given below. For statistical applications, concise introductions can be
found in the chapters on matrix methods in Johnson and Wichern (1988) and Morrison
(1976), while Dhrymes (1978) and Searle (1982) provided more extended treatments. Wilf’s
(1978) short chapter on matrix methods provides a very nifty review of methods useful in
applied mathematics. Franklin (1968), Horn and Johnson (1985), and Gantmacher (1960),
respectively, presented increasingly sophisticated treatments of matrix analysis.

Comparing Vectors: Lengths and Angles
As Figure A5.1A shows, a vector, x, can be treated as a geometric object, consisting of
an arrow leading from the origin to an n-dimensional point whose coordinates are given
by the elements of x. By changing coordinate systems, we change the resulting vector,
potentially changing both its direction (rotating the vector) and length (scaling the vector).
This geometric interpretation suggests several ways for comparing vectors, such as the
angle between two vectors and the projection of one vector onto another.

Consider first the length (or norm) of a vector. The most common measure of length is
the Euclidean distance of the vector from the origin, ||x||, defined as

||x|| =
√

x2
1 + x2

2 + · · · + x2
n =

√
xT x (A5.1a)

For any scalar a, ||ax|| = |a| ||x||. Similarly, the squared Euclidean distance between the
vectors x and y is

||x − y||2 =
n∑

i=1

(xi − yi)2 = (x − y)T (x − y) = (y − x)T (y − x) (A5.1b)

Vectors can differ by length, direction, or both. The angle, θ, between two vectors (x
andy) provides ameasure of howmuch theydiffer indirection (FigureA5.1C). If the vectors
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Figure A5.1 Some basic geometric concepts of vectors. While we use examples from two
dimensions, these concepts easily extend to n dimensions. A: A vector x can be thought of as
an arrow from the origin to a point in space whose coordinates are given by the elements of
x. B:Multiplying a vector by−1 results in a reflection about the origin. C:One measure of the
difference in direction between two vectors is the angle (θ) between them.D: Proj(b ona) is
the vector resulting from the projection ofb onto a. Note that the resulting projection vector is
either in the samedirection asaor in thedirectionof the reflectionofa, as seen for Proj(c ona).

satisfy ax = y, they both point in exactly the same direction (θ = 0; they are codirectional)
when a > 0. If a < 0, they are exactly 180 degrees apart and differ in direction only by a
reflection about the origin (Figure A5.1B). At the other extreme, two vectors can be at right
angles to each other (θ = 90◦ or 270◦), in which case they are said to be orthogonal. Orthog-
onal vectors of unit length are further said to be orthonormal. For any two n-dimensional
vectors, θ satisfies

cos(θ) =
xT y

||x|| ||y|| =
yT x

||x|| ||y|| (A5.2a)

Hence,

θ = cos−1

(
yT x

||x|| ||y||

)
(A5.2b)

If both x and y are of unit length, then θ = cos−1(yT x), which reveals the close connection
between vector angles and inner products. Note that because cos(90◦) = cos(270◦) = 0, two
vectors are orthogonal if, and only if, their inner product is zero, xT y = 0.

Anotherway to compare twovectors is to consider theprojection vector of one onto the
other. Proj(x ony), the projection of x on y, is a vector in the direction of y, whose length is
given by howmuch of the vector x lies along the direction of y. For any two n-dimensional
vectors, the projection of x on y is defined by

Proj(x ony) =
xT y
yT y

y =
xT y
||y||2 y =

(
cos(θ)

||x||
||y||

)
y (A5.3a)

The term in the parentheses (which follows from Equation A5.2a) is a scalar, representing
the length that x projects in the direction of y, which means that Proj(x ony) is a scaled
version of the vector y onto which we are projecting. If ||y|| = 1, then

Proj(x ony) = (xT y)y = (cos(θ) ||x|| )y (A5.3b)
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The vector resulting from the projection of x on y is in the same direction as y unless
90◦ < θ < 270◦, in which case cos(θ) < 0 and the projection vector is in exactly the opposite
direction (the reflection of y about the origin). The length of the projection vector is

||Proj(x ony)|| = | cos(θ)| ||x|| ≤ ||x|| (A5.3c)

If two vectors lie in exactly the same direction (θ = 0), the projection of one on the other
simply recovers the vector (i.e., Proj(x ony) = x). Conversely, if two vectors are orthogonal,
the projection of one on the other yields a vector of length zero.

An importantpropertyofprojectionvectors is that ify1,y2, · · · ,yn is any set ofmutually
orthogonal n-dimensional vectors, then any n-dimensional vector x can be represented as
the sum of projections of x onto the members of this set, namely,

x =
n∑

i=1

Proj(x onyi) (A5.4)

One way to think about such a decomposition is as the transformation from one set of axes
(or coordinates) into another (defined by the vectors, yi, that span, or completely cover,
the vector space). We can also consider the projection of a vector into some subspace of a
matrix (say y1, · · · ,yk, where k < n), namely, the projection onto some subset of the vectors
that span the space of the original matrix. For example, one might consider the subspace of
a covariance matrix imposed by (say) its three largest factors (eigenvalues). The notion of a
subspace of the genetic covariance matrixGwill prove useful in describing the constraints
caused by the genetic covariance structure (Volume 3).

Matrices Describe Vector Transformations
When we multiply a vector, x, by a matrix,A, to create a new vector, y = Ax,A rotates and
scales the original vector, x, into the new vector, y.A therefore describes a transformation of
the original coordinate system of x into a new coordinate system, y (which has a different
dimension from x unlessA is square).

Example A5.1. Consider the Lande version of the multivariate breeder’s equation, R =
Gβ (Equation 13.26a). Here R is the change in the vector of phenotypic means resulting
from selection, G is the covariance matrix of additive-genetic values (breeding values) of the
characters, and β is the directional selection gradient (the direction of change in character
means that results in the greatest increase in mean population fitness; Chapters 13 and 30).
Suppose

G =
(

4 −2
−2 2

)
and β =

(
1
3

)
, yielding R = Gβ =

(
−2

4

)

The resulting direction of change in character means is different from that most favored by
natural selection. Selection (β) favors an increase in trait one (z1), but when the genetic co-
variance structure is taken into account, the resulting change in the mean of z1 is negative. If
we take the appropriate inner products, we find ||β|| =

√
10, ||R|| =

√
20, and βTR = 10.

Equation A5.2a returns

cos(θ) =
βT R

||R || ||β|| =
1√
2

The resulting angle between the selection gradient and response vector is cos−1(1/
√

2) =
45◦, implying that the constraints introduced by the genetic covariance matrix rotate the re-
sponse vector considerably away from the directionmost favored by natural selection (Figure
A5.2).
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Figure A5.2 If we use the values of β and G from Example A5.1, observe that G translates
the directional selection gradient vector (β) ino the response vector (R) in a counterintuitive
fashion.Whileβ shows that fitness ismaximized by increasing both traits 1 and 2, the resulting
response vector, R, increases trait 2 but decreases trait 1. This behavior results from the strong
negative additive-genetic covariance between z1 and z2, as will becomemore obvious shortly,
when we consider the eigenvectors of G (Figure A5.3). As shown in Example A5.1, the angle
between the vectors β and R is 45 degrees.

Orthonormal Matrices: Rigid Rotations
Akey building block on ourway to the partitioning of amatrix into its rotational and scaling
components is the idea of an orthonormal matrix. Writing a square n × n matrix, U, as a
row vector whose n elements are 1×n column vectors,U = (u1,u2, · · · ,un), thenU is said
to be orthonormal if

ui
T uj =

{
1 if i = j

0 if i %= j

Namely, each columnofU is ofunit lengthand is orthogonal to everyother column.Matrices
with this property are also referred to as unitary and satisfy

UT U = UUT = I (A5.5a)

As a result, the inverse of a unitary matrix is simply its transpose,

UT = U−1 (A5.5b)

The coordinate transformation induced by an orthonormal matrix has a very simple geo-
metric interpretation: it is a rigid rotation of the original coordinate system—axes of the
original coordinates are all rotated by the same angle to create the new coordinate system. To
see this, first note that orthonormal matrices preserve all inner products. Taking y1 = Ux1

and y2 = Ux2

y1
T y2 = x1

T (UT U)x2 = x1
T x2 (A5.5c)

Thus, orthonormal matrices do not change (scale) the length of vectors, as ||y1|| = y1
T y1 =

x1
T x1 = ||x1||. Using these results, note that if θ is the angle between the vectors x1 and x2,

then following transformation by an orthonormal matrix

cos(θ |y1,y2) =
y1

T y2√
||y1|| ||y2||

=
x1

T x2√
||x1|| ||x2||

= cos(θ |x1,x2) (A5.5d)

which shows that the angle between the two vectors remains unchanged following their
transformation by the same orthonormal matrix.

Eigenvalues and Eigenvectors
The eigenvalues, and their associated eigenvectors, of a square matrix describe its transfor-
mational geometry. Eigenvalues describe how the original coordinate axes are scaled in the
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new coordinate system that is described by the eigenvectors (i.e., how the original axes are
rotated).

Tomore formally introduce eigenvalues and eigenvectors, suppose, for a squarematrix
A, that the vector y satisfies the matrix equation

Ay = λy (A5.6)

for some scalar value, λ. Geometrically, this means that the new vector resulting from
transformation of y byA points in the same direction as y (or is exactly reflected about the
origin if λ < 0). For such vectors, the only action of the matrix transformation is to scale
themby some amount, λ. These vectors thus represent the inherent axes associatedwith the
transformation given byA, and the set of all such vectors, along with their corresponding
scalar multipliers, completely describes the geometry of this transformation. Vectors that
satisfy EquationA5.6 are referred to as eigenvectors, and their associated scaling factors are
eigenvalues, and together they jointly describe the eigenstructure (the intrinsic geometry)
of the square matrix, A. If y is an eigenvector, then ay is also an eigenvector, as A(ay) =
a(Ay) = λ(ay). Note, however, that the associated eigenvalue, λ, remains unchanged.
Hence, we typically scale eigenvectors to be of unit length to yield unit or normalized
eigenvectors. In particular, if yi is any eigenvector associated with the ith eigenvalue, then
the associated normalized eigenvector is ei = yi/||yi||.

The eigenvalues of an n-dimensional square matrix,A, are solutions of Equation A5.6,
which can be written as (A−λ I)y = 0. This implies that the determinant of (A−λ I)must
equal zero, which gives rise to the characteristic equation, |A − λI| = 0, whose solution
yields the eigenvalues of A. This equation can be also be expressed using the Laplace
expansion,

|A − λI| = (−λ)n + S1(−λ)n−1 + · · · + Sn−1(−λ)1 + Sn = 0 (A5.7)

where |A| denotes the determinant ofA and Si is the sum of all principal minors (minors
including diagonal elements of the original matrix) of order i (minors, which are subsets
of the full matrix, were defined in LW Chapter 8). Finding the eigenvalues thus requires
solving a polynominal equation of order n, implying that there are exactly n eigenvalues
(some of which may be identical, i.e., repeated). In practice, for n > 2 this is accomplished
numerically, and most statistical analysis packages offer routines to accomplish this task.

Two of these principal minors are easily obtained and provide information on the
nature of the eigenvalues. The only principal minor having the same order of the matrix is
the full matrix itself, which means that Sn = |A|, the determinant of A. S1 is also related
to an important matrix quantity, the trace. This is denoted by tr(A), and is the sum of the
diagonal elements of the matrix, namely,

tr(A) =
n∑

i=1

Aii

Observe thatS1 = tr(A), as the only principalminors of order one are the diagonal elements
themselves, the sum of which equals the trace. Both the trace and determinant can be
expressed as functions of the eigenvalues, with

tr(A) =
n∑

i=1

λi and |A| =
n∏

i=1

λi (A5.8)

Hence A is singular (|A| = 0) if, and only if, at least one eigenvalue is zero. As we will
see, ifA is a covariance matrix, then its trace (the sum of its eigenvalues) measures its total
amount of variation, as the eigenvalues of a covariance matrix are nonnegative (λi ≥ 0).

Let ei be the (unit-length) eigenvector associatedwith eigenvalue λi. If the eigenvectors
of A can be chosen to be mutually orthogonal, namely, eT

i ej = 0 for i %= j, then we can
expressA as

A = λ1e1eT
1 + λ2e2eT

2 + · · · + λneneT
n (A5.9a)
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This is called the spectral decomposition ofA, and it is derived below in Equation A5.10d.
Because ||ei|| = 1, Equation A5.3b gives the projection of x on ei as (xT ei)ei. Note that
ei(eT

i x) = (eT
i x)ei = (xT ei)ei, as eT

i x is a scalar, which implies that eT
i x = (eT

i x)T = xT ei.
Hence, from Equation A5.3b, we have

Ax = λ1e1eT
1 x + λ2e2eT

2 x + · · · + λneneT
nx

= λ1

(
eT
1 x

)
e1 + λ2

(
eT
2 x

)
e2 + · · · + λn

(
eT

nx
)
en

= λ1Proj(x on e1) + λ2Proj(x on e2) + · · · + λnProj(x on en) (A5.9b)

If we again apply Equation A5.3b, we can express this decomposition as

Ax = ||x||
n∑

i=

[λi · cos(θ|x, ei)] ei (A5.9c)

where θ|x, ei denotes the angle between the vectors x and ei. Thus, one can view a matrix
as a series of vectors that form the projection space (the eigenvectors), so when a vector is
multipled by this matrix, the resulting vector is the weighted (by the eigenvalues) sum of
projections over all of the vectors (the ei) that span the space defined by the matrix.

Example A5.2. Determine the eigenstructure of the genetic covariance matrix G shown in
Example A5.1. Writing the characteristic equation, and recalling the expression for the deter-
minant of a 2 × 2matrix ( LW Equation 8.12a), yields

|G − λI| =
∣∣∣∣

(
4 − λ −2
−2 2 − λ

)∣∣∣∣

= (4 − λ)(2 − λ) − (−2)2 = λ2 − 6λ+ 4 = 0

Alternatively, if we use the Laplace expansion (Equation A5.7), and note that tr(G) = 4+2 = 6
and |G|= 4 · 2 - (-2)2 = 4, we will also recover the characteristic equation, which has solutions

λ1 = 3 +
√

5 ' 5.236 λ2 = 3 −
√

5 ' 0.764

The associated unit eigenvectors (which as easily obtained, along with the eigenvectors, by
using the R command eigen) are

e1 '
(
−0.851

0.526

)
e2 '

(
0.526
0.851

)

These are orthogonal as eT
1 e2 = 0.

The eigenstructure of G shows why the vector of responses, R, is rotated away from the
direction of the vector that corresponds to the direction of selection, β. From Example A5.1,
||β|| =

√
10, while eT

1 β ' 0.727 and eT
2 β ' 3.079. Because ||e1|| = ||e2|| = 1, Equation

A5.2a simplifies to

cos(θ|e1, β) ' 0.727√
10

' 0.230 and cos(θ|e2, β) ' 3.079√
10

' 0.974

giving the angle between e1 and β as θ(e1,β) ' 76.7◦, while θ(e2,β) ' 13.2◦. Applying
Equation A5.3b, the corresponding scaled projections of β on these eigenvectors are

λ1Proj(β on e1) = λ1 cos(θ|e1, β) ||β|| e1 =
(
5.236 · 0.230 ·

√
10

)
e1

= 3.803
(
−0.851

0.526

)
=

(
−3.236

2

)

λ2Proj(β on e2) = λ2 cos(θ|e2, β) ||β|| e2 =
(
0.764 · 0.974 ·

√
10

)
e2

= 2.353
(

0.526
0.851

)
=

(
1.236

2

)
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Figure A5.3 Left: The scaled eigenvectors associated with the covariance matrix, G, from
ExampleA5.1, plotted alongwith the selection gradient,β. Note that e1 and e2 are orthogonal
and hence can be thought of as describing a new coordinate system. Because λ1 ( λ2, the
leading eigenvector, e1, largely dominates the transformation.Right: This is shown by taking
the projections of β on each of these eigenvectors (shown here on a magnified scale relative
to the left figure). Even thoughβ is nearly parallel to e2 (θ|e1,β = 13.2◦), the projection ofβ
on e1 yields a vector of greater length than the projection ofβ on e2 (3.803 versus 2.353). From
Equation A5.9b, the vector of responses to selection, R, is the sum of these two projections.

From Equation A5.9b, we can express the response, R, as the sum of the projections of β onto
the eigenvalues of G, returning

R = Gβ = λ1Proj(β on e1) + λ2Proj(β on e2)

=
(
−3.236

2

)
+

(
1.236

2

)
=

(
−2

4

)

As Figure A5.3 shows, the eigenstructure ofG explains the unusual behavior of the selection
response seen in Figure A5.2. The eigenvector associated with the leading eigenvalue, λ1,
accounts for most of the variation inherent in G (87%, as λ1/(λ1 + λ2) = 0.87), and this
eigenvector corresponds to a strong negative correlation between the additive-genetic values
of z1 and z2. Hence, even though β points in very much the same direction as e2, because
λ1 ( λ2, the projection of β on e1 yields a vector of greater length than the projection of β
on e2 (3.803 versus 2.353), and it is this e1 projection vector that results in the decrease in µz1 .

PROPERTIES OF SYMMETRIC MATRICES

Many of the matrices encountered in quantitative genetics are symmetric, satisfying A =
AT (and therefore necessarily square). Examples include covariance matrices and the γ
matrix of quadratic coefficients in the Pearson-Lande-Arnold fitness regression (Chapter
30). Symmetric matrices have a number of useful properties (proofs of which can be found
in Dhrymes 1978; Horn and Johnson 1985; and Wilf 1978):
1. IfA is symmetric, then ifA−1 exists, it is also symmetric.
2. The eigenvalues and eigenvectors of a symmetric matrix are all real.
3. For any n-dimensional symmetric matrix, a corresponding set of n orthonormal eigenvec-

tors can be constructed, namely, we can obtain a set of eigenvalues ei for 1 ≤ i ≤ n
that satisfies

ei
T ej =

{
1 if i = j

0 if i %= j

In particular, this guarantees that a spectral decomposition of A exists (Equation
A5.9a).
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4. A symmetric matrixA can be diagonalized as

A = UΛUT (A5.10a)

where Λ is a diagonal matrix and U is an orthonormal matrix (U−1 = UT ). If λi

and ei are the ith eigenvalue and its associated unit eigenvector ofA, then

Λ = diag(λ1,λ2, · · · ,λn) =





λ1 0 · · · 0
0 λ2 · · · 0
... . . . ...
0 · · · · · · λn



 (A5.10b)

and
U = ( e1, e2, · · · , en ) (A5.10c)

Geometrically,U is a unitymatrix and thus describes a rigid rotation of the original
coordinate system to anewcoordinate systemgivenby the eigenvectors ofA, while
the diagonal elements ofΛ give the amount by which vectors of unit length in the
original coordinate system are scaled in the transformed system. If we use the
decomposition Λ =

∑n
i=1 Λi, where Λi is a diagonal matrix whose elements are

all zero, except for λi, then Equation A5.10a becomes

A = U

(
n∑

i=1

Λi

)
UT =

n∑

i=1

UΛiUT =
n∑

i=1

λieieT
i (A5.10d)

recovering the spectral decomposition (Equation A5.9a). The last step in Equation
A5.10d follows because eT

i ej = 0 for i %= j. Because of this feature, EquationA5.10a
is also called the spectral factorization or eigendecomposition ofA.

Using Equation A5.10a, it is easy to show that

A−1 = UΛ−1UT (A5.11a)

To see this, note that

A−1A =
(
UΛ−1UT

) (
UΛUT

)
= UΛ−1

(
UT U

)
ΛUT = UΛ−1ΛUT = UUT = I

Similar logic yields

A1/2 = UΛ1/2UT (A5.11b)
A−1/2 = UΛ−1/2UT (A5.11c)

Ak = UΛkUT for any integer k (A5.11d)

where the square root matrix,A1/2, satisfiesA1/2A1/2 = A, andA−1/2 satisfiesA−1/2A =
AA−1/2 = A1/2, as well asA−1/2A1/2 = A1/2A−1/2 = I.

BecauseΛ is diagonal, the ith diagonal elements ofΛ−1,Λ1/2,Λ−1/2, andΛk are λ−1
i ,

λ1/2
i , λ−1/2

i , and λk
i , respectively, implying that if λi is an eigenvalue of A, then λ−1

i , λ1/2
i ,

λ−1/2
i , and λk

i , respectively, are eigenvalues of thematricesA−1,A1/2,A−1/2, andAk. Note
that Equations A5.11a–A5.11d further imply that thematricesA,A−1,A1/2,A−1/2, andAk

all have the same eigenvectors, namely the columns of U. Finally, using Equation A5.10a,
we see that premultiplyingA byUT and then postmultiplying byU gives a diagonalmatrix
whose elements are the eigenvalues ofA

UT AU = UT (UΛUT )U = (UT U)Λ(UT U) = Λ (A5.12)
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5. The Rayleigh-Ritz theorem gives useful bounds on quadratic products associated
with the symmetric matrix A. It states that if the eigenvalues of A are ordered as
λmax = λ1 ≥ λ2 ≥ · · · ≥ λn = λmin, then for any vector of constants c (for ||c|| > 0)

λ1 ||c|| ≥ cT Ac ≥ λn ||c|| (A5.13a)

If c is of unit length, then all quadratic products are bounded by

λ1 ≥ cT Ac ≥ λn (A5.13b)

The maximum and minimum quadratic products occur, respectively, when c = e1

and c = en, the eigenvectors associated with λ1 and λn. This is a useful result
for bounding variances. Consider a univariate random variable, y = cT x, formed
by a linear combination of the elements of a random vector, x. Recall from LW
Equation 8.19 that the variance of a sum y = cT x is σ2(y) = cT Vxc, where Vx is
the covariance matrix for x. If we apply Equation A5.13a we obtain

λ1||c||2 ≥ σ2(y) ≥ λn||c||2 (A5.14)

where λ1 is the largest (leading or dominant) eigenvalue and λn is the smallest
eigenvalue of the covariance matrixVx.

Example A5.3. Consider the additive-genetic covariance matrixG from Examples A5.1 and
A5.2. Recalling the results from Example A5.2 and using Equation A5.10a, we can express G
as UΛUT , where

Λ =
(

5.241 0
0 0.765

)
and U = ( e1 e2 ) =

( (
−0.851

0.526

) (
0.526
0.851

) )

From Equation A5.11a, the eigenvalues of A−1 are (5.241)−1 ' 0.191 and (0.765)−1 '
1.307, while from Equation A5.11b, the eigenvalues of A1/2 are

√
5.241 ' 2.289 and√

0.765 ' 0.875.

Correlations Can Be Removed by a Matrix Transformation
A powerful use of diagonalization is that it allows one to extract a set of n uncorrelated
variables for any n × n nonsingular covariance matrix,Vx. Consider the transformation

y = UT x (A5.15a)

where U = (e1, e2, · · · , en) contains the normalized eigenvectors of Vx. Because U is
an orthonormal matrix, this transformation is a rigid rotation of the axes of the original
(x1, · · · , xn) coordinate system to a new system given by (e1, · · · , en). Applying LW Equa-
tion 8.21b and Equation A5.12, respectively, the covariance matrix for y is

Vy = UT Vx U = Λ (A5.15b)

where Λ is a diagonal matrix whose elements are the eigenvalues ofVx,

σ(yi, yj) =
{
λi if i = j

0 if i %= j
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Figure A5.4 The transformation (EquationA5.15a) generating a set of independent variables
for the covariancematrixG fromExampleA5.4 results in a rigid rotation of axes of the original
traits onto the new, uncorrelated set. Left: The direction of the new axes are given by the
eigenvectors e1 and e2. The angle between the new axis, e1, and the original z1 axis is given
by the angle between e1 and z1 = (1, 0)T . Here, || e1 || = || z1 || = 1 and e1

T z1 = 0.851,
giving θ = cos−1(0.851) ' 32◦. As this transformation is a rigid rotation, the angle between
e2 and the z2 = (0, 1)T axis is also 32◦.Right: On the (y1, y2) coordinates, the angle between
R and β remains unchanged. See Example A5.4 for further details.

The rigid rotation introduced byU creates a set of n uncorrelated variables, the ith of which
is

yi = ei
T x (A5.15c)

Because the ei are of unit length, from Equation A5.3b we have that yi = ei
T x is the length

of the projection of x onto the ith eigenvector ofVx, which implies that the axes of the new
coordinate system are given by the orthogonal set of eigenvectors ofVx.

Defining the matrix B as
B = UΛ−1/2 (A5.15d)

thevectory = BT xhasa covariancematrixofVy = I, whichmeans that this transformation
creates a set of uncorrelated variables, each with unit variance. To see this, note that

Vy = BT Vx B =
(
UΛ−1/2

)T (
UΛUT

) (
UΛ−1/2

)

= Λ−1/2
(
UT U

)
Λ

(
UT U

)
Λ−1/2

= Λ−1/2 Λ Λ−1/2 = I (A5.15e)

An alternative to Equation A5.15d is the Cholesky decomposition, A = CT C, of a
square, symmetric matrixA, whereC is an lower triangular matrix (all elements above the
diagonal are zero). IfC is the Cholesky decomposition forVx, then y = C−1x also returns
a covariance matrix of I.

Example A5.4. If we apply the change of variables suggested by Equation A5.15a to the vec-
tor, z, of characters with associatedGmatrix used in Example A5.1 and using the eigenvalues
and vectors obtained in Example A5.2 yields

y = UT z =
(

e1
T

e2
T

) (
z1

z2

)

=
(
−0.851 0.526

0.526 0.851

) (
z1

z2

)

=
(
−0.851z1 + 0.526z2

0.526z1 + 0.851z2

)
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From Equation A5.15b, Vy = Λ as given in Example A5.3, showing that y1 and y2 are
uncorrelated with σ2(y1) = λ1 = 5.241 and σ2(y2) = λ2 = 0.765. Hence, by considering
the new coordinate system with

y1 = e1
T z = −0.851z1 + 0.526z2 and y2 = e2

T z = 0.526z1 + 0.851z2

we can transform the original coordinate system into a new system on which there are no
additive-genetic correlations between these new characters. Figure A5.4 shows that this trans-
formation is simply a rigid rotation of the axes.

Likewise, from Equation A5.15d, the transformation that yields uncorrelated variables
with unit variance is

y = Λ−1/2UT z =
(

1/
√
λ1 0

0 1/
√
λ2

) (
e1

T

e2
T

) (
z1

z2

)

=
(

1/
√

5.236 0
0 1/

√
0.764

) (
−0.851 0.526

0.526 0.851

) (
z1

z2

)

=
(
−0.372 0.230

0.602 0.974

) (
z1

z2

)

Hence, the transformed variables y1 = −0.372z1 + 0.230z2 and y2 = 0.602z1 + 0.974z2

are uncorrelated, and each has unit variance.
An alternative set of uncorrelated random variables follows from the Cholesky decom-

position, which can be compute in R using the chol command. (As an aside, chol returns the
upper-triangular version of the decomposition, which is simply the transpose of the lower-
triangular version). The resulting decomposition is

G =
(

4 −2
−2 2

)
= CCT =

(
2 0

−1 1

) (
2 −1
0 1

)

yielding

y = C−1z =
(

0.5 0
0.5 1

) (
z1

z2

)

or
y1 = z1/2 and z2 = z1/2 + z2

as a new set of uncorrelated variables , each with unit variance. One nice feature about using
a Cholesky decomposition is that we can always isolate a given variable of interest (simply
by putting first in the vector). Because C is lower-triangular, it always returns the first new
uncorrelated variable as a scalar times the first original variable (rather than some linear
combination of all the variables, as was the case for the first decomposition in this example).

Simultaneous Diagonalization
An extension of the notion of diagonalization is the simultaneous diagonalization of two
symmetric matrices, P andG, of the same dimension. There exists a matrix T such that

TT PT = I and TT GT = D (A5.16)

where D is a diagonal matrix, whose elements are the eigenvalues of P−1G. Hence, the
same transformation simultaneously diagonalizes bothP andG. If one has a series of traits
with both genetic (G) and phenotypic (P) covariances, they can be transformed to a scale
where the new traits (based on linear combinations of the original traits) are genetically
and phenotypically uncorrelated, where the elements ofD correspond to the heritabilities
of these new traits.
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Example A5.5. To find the matrix, T, that simultaneously diagonalizes both P andG, we
first use Equation A5.10a to write

P = UΛUT

where Λ is a diagonal matrix and UT U = UUT = I. Defining B = UΛ−1/2, Equation
A5.15e showed that BT PB = I. Next, note for M = BT GB, that M = MT (i.e., M is
symmetric), as

MT =
(
BT GB

)T
= BT GT B = BT GB = M

Hence, we can also diagonalizeM,

CT MC = D

whereD is a diagonal matrix andCT C = CCT = I. Thus,

CT MC = CT
(
BT GB

)
C = (BC)T G (BC) = D

Defining
T = BC = UΛ−1/2C

we have from the previous expression that

TT GT = D

Likewise,

TT PT = (BC)T P (BC) = CT
(
BT PB

)
C = CT C = I

showing that the matrixT satisfies Equation A5.16.

CANONICAL AXES OF QUADRATIC FORMS

The transformation y = UT x given by Equation A5.15a applies to any symmetric matrix,
and is referred to as its canonical transformation. This simplifies the interpretation of the
quadratic form xT Ax, as rotation of the original axes to align them with the eigenvectors
ofA removes all cross-product terms (xixj for i %= j) on this new coordinate system. Recall
(Equation A5.5b) thatU is a unitary matrix and henceUT = U−1. Thus,

Uy = UUT x = x

Applying Equations A5.15a and A5.12 transforms a quadratic form to one in which the
square matrix is diagonal, which greatly simplifies the resulting quadratic product, as

xT Ax = (Uy)T AUy = yT (UT AU)y
= yT Λy

=
n∑

i=1

λi y2
i , with yi = ei

T x (A5.17a)

where λi and ei are the eigenvalues and associated (normalized, i.e., ||ei|| = 1) eigen-
vectors of A. The new axes defined by the ei vectors are the canonical (or principal)
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a

(1.143*c)e2

(0.437*c)e1

b

Figure A5.5 The general shape of surfaces of constant variance for the additive-genetic
covariance matrix,G, given in Example A5.1. Defining a new composite character y = az1 +
bz2, the rotated ellipse represents the set of weights (a, b) that give y the same additive-
genetic variance, c2. The major axis of the ellipse is along e2, the eigenvector associated with
the smallest eigenvalue of G, where λ2 ' 0.765, giving 1/

√
λ2 ' 1.143. The minor axis

of the ellipse is along e1, the eigenvector associated with the largest eigenvalue of G, where
λ1 ' 5.241, giving 1/

√
λ1 ' 0.437.

axes ofA. Because y2
i ≥ 0, Equation A5.17a immediately shows the connection between the

signs of the eigenvalues of a matrix and whether that matrix is positive definite, negative
definite, or indefinite.

If all eigenvalues are positive (all λi > 0), then any quadratic form is always positive
(unless all the yi are zero) and henceA is positive definite. If one ormore of the eigenvalues
are zero, while the rest are positive, thenA is said to be positive semidefinite, implying that
quadratic products are either zero (corresponding toλi = 0) orpositive. If all eigenvalues are
negative (all λi < 0), thenA is negative definite as any quadratic form is always negative,
while A is said to be negative semidefinite if the eigenvalues are either zero or negative.
If A has both positive and negative eigenvalues it is said to be indefinite, as quadratic
products can be either positive or negative.

Equations of the form

xT Ax =
n∑

i=1

n∑

j=1

Aijxixj = c2 (A5.17b)

arise fairly frequently in quantitative genetics. For example, they describe surfaces of con-
stant variance (Figure A5.5) or constant fitnesses in quadratic fitness regressions (Chapter
30). Solutions to Equation A5.17b describe quadratic surfaces—for two dimensions, these
are the familiar conic sections (ellipses, parabolas, or hyperbolas). Equation A5.17a greatly
simplifies the interpretation of these surfaces by removing all cross product terms, yielding

xT Ax =
n∑

i=1

λiy
2
i = c2 (A5.17c)

Because (yi)2 and (−yi)2 have the same value, the canonical axes of A are also the axes of
symmetry for the quadratic surface generated by quadratic forms involving A. When all
eigenvalues of A are positive (as occurs with nonsingular covariance and other positive-
definitematrices), EquationA5.17c describes an ellipsoidwhose axes of symmetry are given
by theeigenvectorsofA. Thedistance fromtheorigin to the surface along theei axis isλiy2

i =
c2 oryi = cλ−1/2

i , as canbeen seenbysettingall theyk equal to zeroexcept foryi, whichyields
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z1

z1

µ

(0.875*c)e2

(2.289*c)e1

z2

z2

Figure A5.6 Surfaces for a multivariate normal (MVN) distribution. Left: Surfaces of equal
probability assuming that the additive-genetic values associated with the characters z1 and
z2 in Example A5.1 are ∼MVN(µ,G). These surfaces are ellipses centered at µ, with the
major axis of the ellipse along e1 and the minor axis along e2, whose lengths (for a fixed c)
are, respectively,

√
λ1 = 2.289 and

√
λ2 = 0.875. Right: A plot of the associated probability

density. Slicing along either themajor orminor axis gives a normal curve. Because the variance
in the major axis is greater, the curve is much broader along this axis. The covariance between
the breeding values of z1 and z2 rotates the distribution so that the principal axes (e1, e2) do
not coincide with the original (z1, z2) axes.

xT Ax = λiy2
i = c2.

Consider a new variable (y) that is a weighted combination y = ax1 + bx2 = bT x of
the original vector (x) of random variables, where bT = (a, b). Its resulting variance is

σ2(y) = a2σ2(x1) + 2abσ(x1, x2) + b2σ2(x2) = bT Vx b

As shown in Figure A5.5, the collection of a, b values that result in the same variance (c2) is
the ellipse given by c2 = bT Vx b. Variableswith a large amount of variance require smaller
weights to achieve the constant value (c2) than do variables with lower variances. Thus, on
a constant-variance surface, minor axes correspond to directions with the most variance,
while major axes correspond to the directions with the least variability. This is in contrast to
surfaces of equal probability (FigureA5.6), wheremajor axes correspond to directionswith
the most variance. The reason for this reversal of roles is that constant-variance surfaces are
functions of λ−1/2

i , whereas constant-probability surfaces are functions of λ1/2
i .

Implications for the Multivariate Normal Distribution
Recall the probability density function for themultivariate normal distribution (LWChapter
8)

φ(x) = (2π)−n/2 |Vx|−1/2 exp
[
−1

2
(x − µ)T V -1

x (x − µ)
]

(A5.18a)

Because only the quadratic product in the exponential varies with x, surfaces of equal
probability for MVN distributed vectors satisfy

(x − µ)T V -1
x (x − µ) = c2 (A5.18b)

From the discussion following EquationA5.17c, these surfaces are n-dimensional ellipsoids
centered at µ whose axes of symmetry are given by the principal components (the eigen-
vectors) of the covariance matrix,Vx. The length of the ellipsoid along the ith axis is c

√
λi

where λi is the eigenvalue associated with the eigenvector ei (Figure A5.6).
Equation A5.18b motivates theMahalanobis distance

D =
√

(x − µ)T V -1
x (x − µ) (A5.19)
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which measures the distance of a point from its mean µ, correcting for its covariance struc-
ture,Vx (Mahalanobis 1938). As we detail shortly, D provides one metric for tests of mul-
tivariate normality.

Applying the canonical transformation (Equation A5.15a), we can change coordinate
systems by a rigid rotation to remove any correlations between the variables in x. If x ∼
MVN(µ,Vx), then for y = UT (x − µ), it follows that

y ∼MVN(0,Λ) (A5.20a)

where Λ and U are the matrices defined by Equations A5.10b and A5.10bc for the diago-
nalization ofVx. In particular,

yi = eT
i (x − µ) where yi ∼ N(0,λi) (A5.20b)

Note from Equation A5.20a that because the yi are uncorrelated, they are also independent
as the joint probability density is the product of n individual univariate normal densities.
We can further transform the original vector by taking

zi =
eT

i (x − µ)√
λi

giving zi ∼ N(0, 1) (A5.20c)

Applying the transformation
z = Λ−1/2UT (x − µ) (A5.20d)

results in z ∼MVN(0, I), namely that the n elements of the vector y are each independent
unit normal random variables.

Principal Components of the Variance-Covariance Matrix
We are often interested in how the variance of a random vector can be decomposed into
independent components. For example, even though we may be measuring n variables,
only one or two of these may account for the majority of the variation. If this is the case, we
maywish to exclude those variables contributing very little variation from further analysis.
More generally, if random variables are correlated, then certain linear combinations of the
elements of x may account for most of the variance. The procedure of principal compo-
nent analysis (PCA) extracts these combinations by decomposing the variance of x into
the contributions from a series of orthogonal vectors, the first of which explains the most
variation possible for any single vector, the second the next possible amount, and so on
until we account for the entire variance of x.

Consider Figure A5.5. Because the set of points comprising the ellipse represents the
set of linear combinations (i.e., the set of weights) of the random variables of z that yield
equal variance, a little thought shows that the closer a point on this curve is to the origin,
the more variance there is in that direction. The points closest to the origin are those that lie
along the axis defined by e1, while those furthest away lie along the axis defined by e2. Here
e1 and e2 are the principal components ofG, with the first principal component accounting
for most of the variation ofG. In particular, the ratio of additive variances for the characters
y1 = eT

1 z and y2 = eT
2 z is σ2(y1)/σ2(y2) = σ2(eT

1 z)/σ2(eT
2 z) = eT

1 Ge1/eT
2 Ge2 = λ1/λ2 '

5.241/0.765 ' 6.85, so that a character in the direction of e1 has almost seven times as much
additive variance as a character lying in the direction of e2.

In general, suppose we have an n-dimensional covariance matrix, Vx. If we order
the eigenvalues of Vx as λ1 ≥ λ2 ≥ · · · ≥ λn, then Equation A5.13b gives the maximum
variance for any linear combination of the elements of x (y = cT

1 x, subject to the constraint
that ||c1|| = 1), as

max σ2(y) = max
||c1||=1

σ2(cT
1 x) = cT

1 Vxc1 = λ1

which occurs when c1 = e1 (the normalized eigenvector associated with the leading eigen-
value λ1). This vector is the first principal component (often abbreviated as PC1), and
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accounts for the fraction λ1/tr(Vx) of the total variation in x. We can partition the remain-
ing variance in x after the removal of PC1 in a similar fashion. For example, the vector c2,
that is orthogonal to PC1 (cT

2 c1 = 0) and maximizes the remaining variance can be shown
to be e2, which accounts for a fraction λ2/tr(Vx) of the total variation in x (e.g., Morrison
1976; Johnson and Wichern 1988). By proceeding in this fashion, we can see that the ith PC
is given by ei, and that the amount of variation it accounts for is

λi

/ n∑

k=1

λk =
λi

tr(Vx)
(A5.21)

Hence
∑

λi = tr(Vx) is the total variance of the vector x, while λi/tr(Vx) is the fraction of
that total variance explained by the linear combination eT

i x.

Example A5.6. Again let us consider the additive-genetic covariance matrix, G, as shown
in Examples A5.1 and A5.2. Because λ1 ' 5.241, λ2 ' 0.765, and tr(G) = 4 + 2 = 6,
the first PC explains 5.241/6 ' 0.8735, or 87% of the variance in G. While the first PC
accounts for the majority of variation over the entire space of the variables (x), the amount of
variation explained by PC1 for any particularweighted combination, y = bT x, of the original
variables depends on the projection of b onto PC1. For example, if b = e2 (the weight vector
corresponds to the second eigenvector), then the projection ofb onto PC1 has a length of zero,
because PC1 is orthogonal to e2, and hence PC1 explains none of the variation of this new
variable.

Example A5.7 serves as a brief introduction to the important field of morphometrics,
which is concerned with quantification and comparison of sizes and shapes of organisms.
The reader is referred to Pimentel (1979), Reyment et al. (1984), Elewa (2004), Claude (2008)
and especiallyBookstein et al. (1985), Rohlf andBookstein (1990), Reyment (1991), Bookstein
(1997), Slice (2005), and Zelditch et al. (2012) for detailed treatments.

Example A5.7. Jolicoeur and Mosimann (1960) measured three carapace characters in 24
males of the painted turtle (Chrysemys picta marginata). Letting z1 be the carapace length, z2 be
the maximun carapace width, and z3 be the carapace height, the resulting sample covariance
matrix (Sz, the sample estimate ofVz) for these data was found to be

Sz =




138.77 79.15 37.38
79.15 50.04 21.65
37.38 21.65 11.26





Hence, tr(Sz) = 138.77+50.04+11.26 = 200.07. Using R, the eigenvalues ofSz are found
to be

λ1 = 195.280, λ2 = 3.687, λ3 = 1.103
which (as expected) sum to the value of the trace, 200.07. The associated (normalized) eigen-
vectors are similarly found to be

e1 =




0.840
0.492
0.229



 , e2 =




0.488

−0.870
0.079



 , e3 =




0.213
0.043

−0.971





PC1 accounts for 97.6% of the variation (195.281/200.07 = 0.976), while PC2 and PC3 account
for 1.84% and 0.55%, respectively. Jolicoeur andMosimann interpret PC1 asmeasuring overall
size, as the new variable

y1 = eT
1 z = 0.840z1 + 0.492z2 + 0.229z3
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corresponds to a simultaneous change in all three variables in the samedirection, as is expected
as individuals change their overall size. Likewise, PC2 and PC3 are

y2 = eT
2 z = 0.488z1 − 0.870z2 + 0.079z3

y3 = eT
3 z = 0.213z1 + 0.043z2 − 0.971z3

which Jolicoeur and Mosimann interpreted as measures of shape. Because the coefficient
on z3 is small relative to the others in PC2, they interpret PC2 as measuring the tradeoff
between length (z1) and width (z2). Thus, after removing the variation in size, 1.84% of the
remaining variation can be accounted for by differences in the shape measured by length
versus width. Likewise, because the PC3 coefficient for z2 is very small, PC3mainly measures
shape differences due to length (z1) versus height (z3).

This example points out some of the advantages, and possible pitfalls, of using prin-
cipal component analysis for dimensional reduction of the data. Namely, replacing the
n-component vector z by an m < n component vector y composed of linear combinations
of the z, i.e., ym×1 = Mm×nzn×1, whereM = (e1, · · · , em)T , with yi = eT

i z. Essentially all
(over 97%) of the variance in the three measured characters is accounted for by variation
in overall size, with the remaining variation accounted for by differences in shape. While
the temptation is strong to simply consider overall size and ignore all shape information,
it might be the case that selection is largely ignoring variation in size and instead focusing
on (size-independent) shape differences. In this case, an analysis ignoring shape (as would
occur if only the new character generated by PC1 were considered) would be very mis-
leading. A further complication with principal component analysis is that it can often be
difficult to give biological interpretations to the new characters resulting from the rotation
of the coordinate system.

TESTING FORMULTIVARIATE NORMALITY

Multivariate normality is often assumed in statistical procedures, but it is less often tested.
In LWChapter 11 we briefly discussed two approaches for testing univariate normality, one
graphical and the other based on deviations of observed skewness and/or kurtosis from
Gaussian expectations. As we now demonstrate, both of these approaches can be extended
to testing for multivariate normality. Additional methods are reviewed by Malkovich and
Afifi (1973), Gnanadesikan (1977), Cox and Small (1978), Seber (1984), Looney (1995), and
Henze (2002).

Graphical Tests: Chi-square Plots
A fairly simple graphical test can be developed by extending the notion of the normal
probability plot that is used to check univariate normality (LWChapter 11), where observa-
tions were ranked and then plotted against their ranked expected values under normality.
Departures from linearity signify departures from normality, and we can apply this same
approach to check for multivariate normality. From Equation A5.20d, if z ∼ MVN(µ,Vz),
then each element of the vector

y = Λ−1/2UT (z − µ)

is an independent unit normal, so that y ∼ MVN(0, I). Recalling that U−1 = UT , we can
rearrange this expression to yield

(z − µ) = UΛ1/2y
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Figure A5.7 Plots of ranked distance data (d 2
(j) being the jth smallest distance) versus the

expected correspondingχ2 value for the data of Jolicoeur andMosimann from Example A5.8.
Left: The untransformed data do not appear to depart significantly from linearity, although
they depart slightly from the intercept (0) and slope (1) of the expected regression under
multivariate normality. Right: Log-transforming the data gives a slightly better linear fit
(r2 = 0.983 versus r2 = 0.952), with the best-fitting line passing through the origin as
expected if the distance data follow a χ2 distribution, and has a slope of essentially one. See
Example A5.8 for more details.

Using this result and recalling Equation A5.11a, we have that

(z − µ)T V -1
z (z − µ) =

(
UΛ1/2y

)T (
UΛ−1UT

) (
UΛ1/2y

)

= yT Λ1/2
(
UT U

)
Λ−1

(
UT U

)
Λ1/2y

= yT y =
n∑

i=1

y2
i (A5.22)

Thus if z ∼MVN, the quadratic form given by Equation A5.22 is the sum of n independent
squared unit normal random variables. By definition, this sum is a χ2 random variable with
n degrees of freedom (LWAppendix 5), suggesting that one test for multivariate normality
is to compare the goodness of fit of the scaled distances

d 2
i = (zi − z)T S−1

z (zi − z) (A5.23)

to those generated byn (rank-ordered) draws fromaχ2
n. Here zi is the vector of observations

from the ith individual, z the vector of sample means, and S−1
z the inverse of the sample

covariancematrix. Note that the di are simply the squaredMahalanobis distances (Equation
A5.19). We use the term distance because when z is transformed to y, Vy = I, giving the
variance of the linear combination cT y as cT Vyc = cT Ic = ||c||2. Thus, regardless of
orientation, any two y vectors having the same length also have the same variance, which
equals their squared Euclidean distance.

The regression test for multivariate normality is based on ordered distances. Hence, we
first order the distances generated by Equation A5.23 from smallest to largest,

d 2
(1) ≤ d 2

(2) ≤ · · · ≤ d 2
(m)

wherem is the number of individuals sampled. Note that we use the subscription notation
where d 2

(j) denotes the jth smallest distance (the jth smallest value of Equation A5.23),
whereas d 2

i is the distance associated with the vector of observations for the ith observation.
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Let χ2
n(α) correspond to the value of a chi-square random variable, X , with n degrees of

freedom that satisfies Prob[X ≤ χ2
n(α) ] = α. Under multivariate normality, we expect the

points (
d 2
(i), χ

2
n

[
i − 1/2

m

] )
for 1 ≤ i ≤ m

to fall along a line with a slope of one and an intercept of zero, as the ith ordered distance
has i/m observations less than or equal to it (the factor of 1/2 is added as a correction
for continuity). As with univariate normal probability plots, departures from multivariate
normality are indicated by departures from linearity. More formally, one can use a standard
Kolmogorov–Smirnov test (Conover 1999) for comparing two distributions to compare the
goodness-of-fit of these ordered distances with a χ2

n.

Example A5.8. Consider again the data of Jolicoeur and Mosimann (1960) on carapace
characters in 24male turtles.Are the charactersz1 (carapace length) andz2 (maximuncarapace
width) jointly bivariate normally distributed? Here n = 2 andm = 24 and

z =
(

113.13.
88.29

)
, Sz =

(
138.77 79.15
79.15 50.04

)
, S−1

z =
(

0.0737 −0.1165
−0.1165 0.2043

)

where Sz is the sample covariance matrix. A partial list of the 24 vectors of observations is

z1 =
(

93
74

)
, · · · , z11 =

(
113
88

)
, · · · , z24 =

(
135
106

)

Applying Equation A5.23, these observations translate into the distances

d 2
1 = 4.45, · · · , d 2

11 = 0.002, · · · , d 2
24 = 9.277

After rank ordering, these correspond to d 2
(23), d

2
(1), and d 2

(24), respectively. For d 2
(23), the

matching value when distances are χ2-distributed is

χ2
2

(
23 − 1/2

24

)
= χ2

2 (0.9375)

The R command qchisq(0.9375,2) returns a value of x = 5.545, which satisfies
Pr(χ2

2 ≤ x) = 0.9375, and calculates the point generated from z1 as (4.45, 5.545). Likewise,
the χ2 values for d 2

(1) and d 2
(24) are 0.043 and 7.742, respectively. Proceeding similarly for

the other values, we obtain the regression plotted in Figure A5.7. This departs somewhat
from linearity. Further, under the assumption of multivariate normality, the best-fitting linear
regression is expected to have a slope of one and to pass through the origin, while the best
linear fit of these data shows slight departures from these values. Transforming the data by
taking logs results in a slightly better fit (Figure A5.7).

Mardia’s Test: Multivariate Skewness and Kurtosis
As was the case for univariate normality, we can test for multivariate normality by ex-
amining the sample skewness and kurtosis. Mardia (1970, 1974) proposed multivariate
extensions of skewness and kurtosis measures and suggested a large-sample test based on
the asymptotic distribution of these statistics. If there are m vectors of observations (with
each vector measuring n characters), then the multivariate skewness is estimated by

b1,n =
1

m2

m∑

i=1

m∑

j=1

[
(zi − z)T S−1

z (zj − z)
]3

(A5.24a)
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while the multivariate kurtosis is estimated by

b2,n =
1
m

m∑

i=1

[
(zi − z)T S−1

z (zi − z)
]2

(A5.24b)

If z ∼MVN, then b1,n and b2,n have expected values 0 and n(n + 2). For large values ofm,
Mardia showed that the (scaled) multivariate skewness is asymptotically distributed as a
chi-square random variable with f degrees of freedom, with

m

6
b1,n ∼ χ2

f , where f =
n(n + 1)(n + 2)

6
(A5.25a)

Likewise for large values ofm, the multivariate kurtosis (following appropriate scaling) is
distributed as a unit-normal, with

b2,n − n(n + 2)√
8n(n + 2)/m

∼ N(0, 1) (A5.25b)

If either Equation A5.25a or A5.25b is significant, then multivariate normality is rejected.

Example A5.9. Do the data considered in Example A5.8 display significant skewness or
kurtosis? Here n = 2 and m = 24. Applying Equations A5.25a and A5.25b gives b1,2 =
0.6792 and b2,2 = 7.6043. Considering skewness first, from Equation A5.25a it follows that
the value

m

6
b1,2 =

24
6

0.6792 = 2.717

is (under MVN) a draw from a chi-square distribution with f = 2(2 + 1)(2 + 2)/6 = 4
degrees of freedom. Because Prob(χ2

4 ≥ 2.717) ' 0.606, this is not significant. Turning to
kurtosis, Equation A5.25b yields

b2,n − n(n + 2)√
8n(n + 2)/m

=
7.6043 − 8

1.633
' −0.2423

which is also not significant as Prob(|N(0, 1)| ≥ 0.2423) ' 0.81. Transforming the data by
taking logs gives b1,2 = 0.2767 and b2,2 = 7.1501, and hence showing a slight decrease in
skewness and and a slight increase in kurtosis relative to the untransformed data. Reyment
(1971) presented a number of other biological examples using Mardia’s test.


