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Short-term Changes in the Mean:

1. The Breeder’s Equation
Prediction is very difficult, especially if it’s about the future. Niels Bohr

The topic of selection on quantitative traits, and its consequences, comprises the remain-
der of this book. We start by discussing the simplest situation—the expected change in the
mean of a single character following a single generation of selection from an unselected
base population. This response is reasonably predictable in a wide variety of settings, using
a regression framework and the appropriate covariances between relatives. By contrast,
the response after a number of generations is much less predictable, as allele- and gamete-
frequency change alter genetic variances (and hence the resemblance between relatives)
from their initial values. Provided that each locus has only a small effect on the trait, only
small allele-frequency changes are expectedover thefirst several generations. In the extreme
under the infinitesimal model (the limit of a very large number of loci, each with a vanish-
ingly small effect), the additive genic variance (that part of the additive genetic variance that
is independent of any disequilibrium effects) remains essentially unchanged during selec-
tion. Short-term response refers to these early generations, where allele-frequency change
has a negligible effect on the initial additive variance. As discussed in Chapters 16 and 24,
gametic-phase disequilibrium is generated by even a single generation of selection, chang-
inggametic frequencies (andhencegenetic variances) even in theabsenceof allele-frequency
change. As detailed in Chapter 16, such short-term changes in the additive variance from
disequilibrium are easily computed under the infinitesimal model. Over longer time scales,
allele-frequency evolution results in substantial changes in the variance that are extremely
difficult to predict; this is the setting for long-term response (Chapters 25–28).

Selection can occur in a myriad of ways. Our focus in this chapter is individual (or
mass) selection under random mating, wherein individuals are chosen solely on the basis
of their phenotypic value (i.e., information from relatives and other such factor are ignored).
Family selection, whereby individuals are chosen based on their familymean and/or rank-
ing within a family, is discussed in Chapter 21. Chapter 22 discusses the setting in which
individuals interact in groups (kin selection if they are related) and selectionmay operate at
the individual and/or group level (group selection), whileChapter 23 examines response in
inbred populations. Using additional information, such as the trait value in relatives and/or
the values of other traits in the focal individual, can improve the accuracy in predicting an
individual’s breeding value and hence increase the expected selection response relative to
individual selection. One way to accomplish this is by index selection, which generalizes
to BLUP-based selection (Chapters 19, 20, and 22; LW Chapter 26), both of which, along
with a number of other important selection schemes (such asmultivariate selection,marker-
assisted and genomic selection, selection for outcross performance, pure-line selection, and
selection in age-structured populations) are largely deferred until Volume 3.

There is a huge literature on breeding schemes that exploit specific features of the
reproductive biology of a target organism (such as artificial insemination in animals and
complex crossing schemes in selfing plants). See Lush (1945), Turner and Young (1969),
Pirchner (1983), Ollivier (1988), Weller (1994), Cameron (1997), Simm (1998), and Kinghorn
et al. (2000) for applications in animal breeding, and Namkoong (1979), Wricke and Weber
(1986), Mayo (1987), Stoskopf et al. (1993), Bos and Caligari (1995), Gallais (2003), Hallauer
et al. (2010), and Bernardo (2010) for applications in plant breeding.
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482 CHAPTER 13

SINGLE-GENERATION RESPONSE: THE BREEDER’S EQUATION

The Breeder’s Equation: A General Approximation for Response
Previous chapters developed explicit expressions for a single generation of response in
themean of a trait, based on either specific population-genetic models (Equations 5.23c and
5.27b) or completely general covariance-based expressionsusingPrice’s theorem (Equations
6.12, 6.39, and 6.40). These results show that either a large number of underlying loci of small
effect and/or a linearparent-offspring regressiongenerallywill recover the simplebreeder’s
equation

R = h2 S (13.1)

plus correction terms that are often small. This approximation is perhaps the most well-
known expression in quantitative genetics, and its myriad of extensions form the backbone
of the quantitative-genetic theory of short-term response. Although the actual origin of the
breeder’s equation is somewhat unclear, elements of it (in multivariate form) appear in the
early writings of Pearson (1903), and it was popularized by Lush (1937). Indeed, Ollivier
(2008)made thequite reasonable suggestion that it be called theLushequation. Its simplicity
is compelling, as it relates the change in mean across a generation (the response, R) to the
product of the within-generation change (the selection differential, S) and a measure of
how the character value is passed across generations (the heritability, h2).

As discussed in Chapter 6, a necessary (but not sufficient) condition to recover the
breeder’s equation is a linear parent-offspring regression, with the phenotypic value, zo, of
an offspring whose parents have the mean phenotypic value, zmp, given by

zo = µ + bo|mp(zmp − µ) + e

where bo|mp is the slope of the midparent-offspring regression, which in this chapter is
usually assumed to be equivalent to the narrow-sense heritability, h2 (but is generalized
later). If we take the average over all selected parents, then Es[zmp − µ] = S, while the
difference between the expected value of the offspring from such parents and the overall
mean is the selection response, R, which yields

Es[zo − µ] = R = bo|mp Es[zmp − µ] = bo|mp S = h2S

Recall (Equation 6.12) that two other technical restrictions are also required to formally
obtain R = bo|mp S. First, it is assumed that the residuals of the linear parent-offspring
and fitness-phenotype regressions are uncorrelated with each other. Second, it is assumed
that the mean does not change in the absence of selection. As will be discussed below,
cases do exist in which the mean and/or variance can change under random mating as
disequilibrium induced by prior selection decays (Chapters 15 and 16). In our treatment we
either assume that these potential complications introduce only very small errors, or we
explicitly model their effects (e.g., Chapters 15, 20, 22, and 23).

The Importance of Linearity
A variety of factors, such as a major gene with dominance, can result in a nonlinear
parent-offspring regression (Chapter 6; LW Chapter 17). In such cases, the mean of the
selected parents (and hence the selection differential, S) is not sufficient to predict the
offspring mean. As Figure 13.1 shows, two selected parental populations with the same
mean, but different variances, can have different expected responses when this regres-
sion is nonlinear. Even if phenotypes are normally distributed and the character is com-
pletely determined by additive loci (no dominance or epistasis), if the underlying dis-
tribution of genotypic values is skewed, selection on the variance (e.g., selection for, or
against, extreme phenotypes) also results in a change in the mean (see Equation 5.27b).
In this case, S is again not sufficient to describe the expected response to selection. While
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Figure 13.1 The importance of linearity in the parent-offspring regression. If this regression is
nonlinear, different subsets of the population with the same mean can have different offspring
means. Suppose equal numbers of parents with values za and zb are chosen. If we denote the
expected value of offspring from parents with value zx by E[ z | zx ], the offspring mean in
this case is given by (E[ z | za ] + E[ z | zb ])/2. In contrast, choosing parents all with value
(za + zb)/2 gives the same parental mean as in the case of mixed parents, and hence the same
S, but the expected offspring mean is now E[ z | (za + zb)/2 ], which, as shown above, can
deviate considerably from E[ z | za ] + E[ z | zb ])/2when nonlinearity is significant.

a sufficient condition for linearity is that the joint distribution of breeding and phenotypic
values be bivariate normal (LW Chapter 8), selection generally causes the distribution of
genotypic values to depart from normality (Chapters 16 and 24), creating at least slight
departures from linear parent-offspring regressions. The selection response under strongly
nonnormal distributions can be very complicated, depending on summary statistics of the
underlying genetic architecture, which do not easily translate into standard (and measur-
able) variance components (Chapter 24).

Response is the Change in Mean Breeding Value
Under the infinitesimal model and a linear parent-offspring regression, a key concept is
that the response equals the mean breeding value of the selected parents. Recall that (non-
inbred, sexually reproducing) parents pass along only a fraction of their total genotypic
value, namely, their breeding value,A, to their offspring. Under the infinitesimalmodel, the
expected offspring value is simply the average breeding values of its parents (LW Chapter
4).

Trait improvement by artificial selection is achieved by choosing parents with themost
favorable breeding values. The problem is that we cannot completely predict the breeding
value of an individual from its phenotype alone (unless h2 = 1). Because the phenotype of
an individual is an imperfect indicator of its breeding value, the offspring of phenotypically
exceptional parents are generally not themselves as exceptional. From standard regression
theory (LWChapter 3), the predicted breeding value, Â, for an individualwith a phenotypic
value of z (given no other information) is

Â − µA =
σ(A, z)

σ2
z

(z − µz) or Â = h2(z − µz)

whereµz andµA are themeanphenotype andbreedingvalue, respectively, andσ(A, z) is the
covariance between the breeding value and the phenotype. This expression follows because
the regression y = a + bx can be expressed as y − µy = b(x − µx), where b = σ(x, y)/σ2

x.
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For the regression of A on z, the means are µA = 0 and µz , respectively, while the slope is
σ(z, A)/σ2

z = σ2
A/σ2

z = h2, which follows because

σ(z, A) = σ(G + E, A) = σ(A + D + E, A) = σ(A, A) = σ2
A

The expected breeding value for a set of selected parents thus becomes

Es[Â ] = Es[h2(z − µz)] = h2Es[z − µz] = h2S

The change in the mean value of their offspring (relative to the base population) is simply
the mean breeding value of the selected parents, because (by definition) µA = 0 in the base
population. Thus, the response equals h2S, and we recover the breeder’s equation. A key
assumption is Es[h2] = h2, namely, that the regression using the selected parents is the
same as (or extremely close to) the regression in the absence of selection, an assumption
discussed at length in Chapter 6.

Response Under Sex-Dependent Parent-Offspring Regressions
It is not uncommon for a trait to show different variances between the sexes or to have
a less than perfect correlation across the sexes. In such cases, the coefficients for parent-
offspring regressions can vary with the sex of both the parents and of the offspring. We
denote the phenotypic values of the father and mother by zfa and zmo and an offspring
by zo (if its sex is unimportant) or by zso and zda for sons and daughters (respectively)
if sex is important. Let E[zo | zfa, zmo] be the expected phenotypic value of an offspring
whose parents have phenotypic values zmo and zfa. The importance of this conditional
expectation (the biparental regression) is that the expected character value in the next
generation (assuming there are no fertility differences) is the average of this expectation over
all selected parents. Taking expectations is straightforward when the biparental regression
is linear, i.e.,

E[zo | zfa, zmo] = µo + bo,fa (zfa − µfa) + bo,mo (zmo − µmo) (13.2)

where µfa and µmo are the mean character values of males and females before selection,
and µo is the mean for the offspring sex being considered. Taking the expectation over all
selected parents, the expected offspring mean after selection is

Es

[
E(zo | zfa, zmo)

]
= µo + bo,fa Es

[
(zfa − µfa)

]
+ bo,mo Es

[
(zmo − µmo)

]

= µo + bo,fa Sfa + bo,mo Smo (13.3)

where Sfa and Smo are the directional selection differentials for fathers and mothers.
Given that Equations 13.2 and 13.3 acknowledge the presence of differences between

sexes in regression coefficients, separate equations for sons and daughters are required (e.g.,
Example 13.1). For example, the expected change in the mean character value of daughters,
Rda, equals the expected mean of daughters of selected parents minus the mean of females
before selection. Applying Equation 13.3,

Es

[
E(zda | zfa, zmo)

]
= µmo + bda,fa Sfa + bda,mo Smo

implying
Rda = bda,fa Sfa + bda,mo Smo (13.4a)

where bda,fa is the regression coefficient of daughters on fathers and bda,mo is the mother-
daughter regression coefficient. Likewise, for sons

Rso = bso,fa Sfa + bso,mo Smo (13.4b)

Equations 13.4a and 13.4b require that the biparental regression be linear, in which case
bo,fa and bo,mo are partial regression coefficients and can be obtained from the sex-specific
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covariances between relatives.Again, linearity is ensured if the joint distributionof breeding
values in both parents and their offspring is multivariate normal. If there is no correlation
between the phenotypes of the parents (which is guaranteed under random mating), the
partial regression coefficients are standard univariate regression coefficients (LW Chapter
8) and applying LW Equation 3.14b yields

bo,fa =
σ(zo, zfa)
σ2(zfa)

and bo,mo =
σ(zo, zmo)
σ2(zmo)

If mating is random, and genotype× environmental interactions, shared environmen-
tal effects, epistasis, and sex-specific effects (i.e., the need for separate regression coeffi-
cients) can all be neglected, the regression slope (for each parent-offspring combination)
is bo,p = h2/2 (LW Chapters 7 and 17). If we define the total selection differential as the
average of both parental values, S = (Sfa + Smo)/2, we again will recover the breeder’s
equation

R =
h2

2
Sfa +

h2

2
Smo = h2 S (13.5)

Equation 13.5 shows howdifferential selection on parents is incorporated into the breeder’s
equation. For example, consider selection on dioecious plants. If plants that form the next
generation are chosen after pollination, fathers (pollen donors) are chosen at random with
respect to the character under selection (Sfa = 0), yielding R = (h2/2)Smo. If parents are
selected before pollination with equal amounts of selection (S) on both sexes, R = h2S.
Chapter 21 examines family-based breeding schemes that ensure equal selection on both
pollen and seed parents.

Example 13.1. Coyne andBeecham (1987) estimated the following parent-offspring regression
coefficients for abdominal bristle number in laboratory populations ofDrosophila melanogaster:

Mother-son bso,mo = 0.39 ± 0.08
Mother-daughter bda,mo = 0.32 ± 0.08
Father-son bso,fa = 0.13 ± 0.10
Father-daughter bda,fa = 0.40 ± 0.08

Note that the father-son regression has a significantly smaller slope than the three other parent-
offspring sex combinations.OtherDrosophila exampleswhere the regressions differ significantly
between sons and daughters were given by Gimelfarb and Willis (1994).

Suppose that different amounts of selection are applied to fathers and mothers, with
selected fathers showing an increase of two bristles, while selectedmothers show a decrease of
onebristle.What is the expectedchange inmeanbristlenumber in themale and femaleoffspring
using these estimated regression coefficients, assuming all parent-offspring regressions are
linear? Here Smo = −1 and Sfa = 2, and from Equation 13.4a, the expected change in bristle
number in females becomes

Rda = bda,fa Sfa + bda,mo Smo = 0.40 (2) + 0.32 (−1) = 0.48

Likewise, from Equation 13.4b, the expected change in males is

Rso = bso,fa Sfa + bso,mo Smo = 0.13 (2) + 0.39 (−1) = −0.13

This expected response of a decrease in males and an increase in females is the exact opposite
of the pattern of selection on the sexes.
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The Selection Intensity, ı
While the selection differential (S) is a convenient and simple measure of selection on the
mean, it does not tell us the actual strength of selection. Consider selection acting on the
same character in two different populations. In one, the largest 5% of measured individuals
are allowed to reproduce, while in the second, the largest 25% reproduce. Clearly, selection
is more intense in the first population. However, under truncation selection on a normally
distributed trait, the selection differentials for these two populations are S1 = 2.06σ1 and
S2 = 1.27σ2, respectively, where σ2

k is the phenotypic variance in population k (Equation
14.3a). Thus, if the second population is more variable than the first, it may have the larger
selection differential even though it clearly experiences less intense selection.

For this reason, in many applications, a more informative measure of the strength of
selection is the selection intensity (or standardized selection differential), which is the
selection differential expressed in phenotypic standard deviations

ı = S/σz (13.6a)

and also denoted by i or ı in the literature (we will use ı throughout to avoid any confusion
with i as an indexvariable). The selection intensity accounts fordifferences in thephenotypic
variances, in the same way that a correlation coefficient is a better measure of the strength
of association than a covariance (LW Chapter 3). Substituting ıσz for S gives the selection-
intensity version of the breeder’s equation

R = h2 ıσz = ı hσA = σ2
A ı/σz (13.6b)

which follows from
h2σz =

σ2
A

σ2
z

σz =
σA

σz
σA = hσA

The various forms of Equation 13.6b will prove to be useful starting points for general-
izations (developed below) of the breeder’s equation to accommodate more general types
of selection. A second reason why breeders and experimentalists generally work with ı is
that specifying the fraction (p) of adults saved to form the next generation determines the
expected value of ı, and hence S = ıσz , in some future selection experiment.

The Robertson-Price Identity, S = σ(w, z)
As introduced in Chapter 6, the selection differential can be written as the covariance be-
tween relative fitness and trait value

S = σ(w, z) (13.7a)

This is the Robertson-Price identity (Equation 6.10), which was first noted by Robertson
(1966a) and later elaboratedonbyPrice (1970, 1972a). Chapter 6 showedhow this expression
directly follows from Price’s theorem. For an alternative derivation, let zi, pi, and wi be
the trait value, frequency before selection, and relative fitness, respectively, of class i. The
selection differential is simply the mean after selection minus the mean before

S = µs − µ =
∑

zi wi pi −
∑

zi pi = E[ z w ] − E[ z ]

Because E[ w ] = 1 by definition, we can write this as

S = E[ z w ] − E[ z ] E[ w ] = σ(w, z)

thus recovering the Robertson-Price identity. The last step follows from the standard defi-
nition of a covariance (LW Equation 3.8).
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If, instead of considering the phenotypic value (z) of a trait, we consider its breeding
value, Az , then from the Robertson-Price identity, the expected change in breeding value
following selection is

∆µAz = RAz = σ(Az, w) (13.7b)

Under the conditions of the breeder’s equation, this change in the breeding value in the
selected parents equals the change in the offspring mean (Chapter 6), thereby equating this
covariance with the response (R) in the phenotypic mean of the trait. Equation 13.7b is the
1966 version of Robertson’s secondary theorem of natural selection (Equation 6.25a). The
more restricted 1968 version, R = σ(Az, Aw), based on the breeding value of relative fitness
(Aw versus w, Equation 6.24a), appears in the literature as well (Chapters 6 and 20). These
covariance-based identities for S and R play important roles in evolutionary quantitative
genetics. Chapter 20 examines applications of Equation 13.7b in predicting the selection
response in natural populations, while Equation 13.7a routinely appears in selection theory
(Chapters 15, 20–23, 29, and 30).

An important application of the Robertson-Price identity follows if we consider the
slope of the least-squares linear regression of relative fitness (w) on phenotypic value, z

w = a + βz + e (13.8a)

The interpretation of the slope is that a unit change in z results in a change in relative
fitness of β (Chapter 29 examines this regression in detail). From the theory of least-squares
regression (LW Chapter 3)

β =
σ(z, w)

σ2
z

=
S

σ2
z

(13.8b)

Substituting S = σ2
z β into Equation 13.1 yields

R = σ2
A β (13.8c)

which relates the strengthof association,β, between trait valueandfitnesswith the response.
This is theunivariate versionof themultivariate Lande equation (R = Gβ), to be introduced
shortly (Equation 13.26a).

Correcting for Reproductive Differences: Effective Selection Differentials
In artificial selection experiments, S is usually estimated as the difference between themean
of the selected adults and the sample mean of the population before selection. However,
selection need not stop at this stage. For example, strong artificial selection to increase a
character might be countered by natural selection associated with a decrease in the fertility
of individuals with extreme trait values. This is the simplest example of a partitioning of
episodes of selection (multiple rounds of selectionwithin the same generation), in this case
a single episode of viability selection followed by fertility selection, which will be explored
more broadly in Chapter 29.

Biases introduced by such differential fertility in experimental or breeding settings
can be removed by randomly choosing the same number of offspring from each selected
parent, thus ensuring equal fertility. Alternatively, differential fertility can be accounted for
by using the effective (or realized) selection differential, Se,

Se =
1
np

np∑

i=1

( ni

n

)
(zi − µz) (13.9)

where zi and ni are the phenotypic value and total number of offspring of the ith parent, np

is the number of parents selected to reproduce, n is the average number of offspring from
the selected parents, and µz is the mean before selection. If all selected parents have the
same number of offspring (ni = n for all i), then Se reduces to S. If there is variation in the
number of offspring among selected parents, Se can be considerably different from S.
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The derivation of Equation 13.9 follows directly from the Robertson-Price identity. If
we examine a total of N individuals, np of which are selected as parents, then

S = σ(z, w) = E[ w z ] − E[ z ] E[ w ] =
1
N

N∑

i=1

(
Wi

W

)
zi − µz · 1

where the fitness of individual i is Wi = ni (with ni = 0 for individuals not chosen as
parents). The mean fitness becomes

W =
1
N

N∑

i=1

ni =
n np

N
where n =

N∑

i=1

ni/np

and therefore n is the mean number of offspring left by the adults that were selected to
reproduce. Hence

wi =
Wi

W
=

ni N

n np
, yielding σ(z, w) =

1
np

n∑

i=1

zi
ni

n
− µz

Rearranging recovers Equation 13.9.

Example 13.2. Consider a trait with heritability 0.3 and a before-selectionmean of 30. Suppose
five parents are selected, with the following trait values and offspring numbers:

Parent Phenotypic value Number of offspring
1 45 1
2 40 2
3 35 3
4 33 5
5 32 5

The unweighted phenotypic mean of the selected parents is 37, yielding S = 37 − 30 = 7 and
an expected response ofR = 0.3 · 7 = 2.1. Is the predicted response altered when differential
fertility is taken into account? Computing the effective selective differential by weighting the
selected parents by the number of offspring they leave yields

i zi ni ni/ n
1 45 1 0.313
2 40 2 0.625
3 35 3 0.938
4 33 5 1.563
5 32 5 1.563

1
np

np∑

i=1

( ni

n

)
zi = 34.70

Hence, Se = 4.70, yielding an expected response of R = 0.3 · 4.70 = 1.41. In this case, not
using the effective differential results in a 50% overestimation of the expected response.

EXPANDING THE BASIC BREEDER’S EQUATION

The basic breeder’s equation predicts the mean breeding value of the set of parents cho-
sen to form the next generation because of their exceptional phenotypic values. However,
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Figure 13.2 Thegeneral selectionproblem: Theultimategoal is topredict the selection response
in some response trait (whose values are denoted by y), based on the values of a potentially
different—but genetically correlated—selected trait (whosevalues aredenotedby z). Thevalues
of the selected trait are measured on one set of individuals (indexed by xi). For example, the
value (zx) of the selected trait in individual x may be an index that weights x’s value for the
response trait, as well as the values of the response trait in several of x’s relatives. In the figure,
x3 has the highest value of the selected trait, but instead of using x3 as a parent for the next
generation (which would correspond to individual selection), we instead use a relative, R, of
x3, with o denoting an offspring from R. The covariance required for predicting the mean
change in the response trait is σ(zx, yo), namely, the covariance between the selection trait
value (zx) in individual x and the response trait value (yo) in the offspring of parentR. Under
our infinitesimal assumption that the expected value of an offspring is the average of the two
parental breeding values, this covariance is also σ[zx, Ay(R)/2], half the covariance between
the phenotypic value of the selection trait in x and the breeding value for the response trait in
x’s relative,R.

breeders, experimentalists, and natural selection all may use additional information in
determining the fitness of individuals. For example, one may measure traits in one set of
individuals and then use this information to predict the mean breeding value for a second
set of related individuals that will be the actual parents of the next generation. One such
setting is family selection, wherein onemeasures the values of a number of familymembers
(for example, by growing seed from a family over a number of environments) and, based on
their means, selects the exceptional families. Remnant seeds from these families (i.e., seeds
whose phenotypes are not scored) are then used to form the next generation. The prediction
of the selection response now involves predicting the breeding value of a family member
given the mean of other family members. The breeder’s equation is easily extended to
these more complex settings, as we now demonstrate. The structure of the general selection
problem is given by Figure 13.2.

Accuracy
Suppose our goal is increasedmilkproduction. The top females are easy to score, butwithno
selection onmales (who do not display the trait), Equation 13.5 gives the selection response
as h2(S/2). Selection on males is made possible, however, by choosing brothers of the top-
scoring females as the sires for thenextgeneration, asbreedingvaluesare correlatedbetween
relatives. Predicting selection response in this case depends upon the genetic covariance
between the phenotypic value (zx) of individual x and the phenotypic value (zo) in a relative
(o) of x. Here, zx is milk-yield in female x, whose relative,R (her brother), is then used as a
parent for the next generation andwhose resulting offspring are denoted by o (Figure 13.2).

Figure 13.2 shows the most general setting, where selection is based on one trait (the
selected trait), while our interest is the resulting response in another, genetically correlated,
trait (the response trait). Let zx and yo denote, respectively, the value of the selected trait
(z) in a measured individual x (upon which selection decisions are based), and the value of
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the response trait (y) in the offspring, o. Assuming that the regression of yo on zx is linear
(i.e., the same assumption as for the breeder’s equation), standard regression theory (LW
Chapter 3) yields

E[ yo − µy | zx ] =
σ(zx, yo)
σ2(z)

(zx − µz) (13.10a)

where µy and µx are the preselectionmeans of the selected and response traits, respectively.
Taking expectations over the selected parents gives the expected change in y from selection
on x as

Ry = µ∗∗
y − µy =

σ(zx, yo)
σ2(z)

( µ∗
z − µz ) =

σ(zx, yo)
σ2(z)

Sz =
σ(zx, yo)

σ(z)
ız (13.10b)

where µ∗ denotes the within-generation change in the mean following selection (but before
reproduction), µ∗∗ denotes the offspring mean, and ız is the selection intensity used when
choosing parents. The latter is a function of the fraction, p, of measured individuals chosen
to have a relative as a parent of the next generation. For example, if brothers from only the
top 5% of females are used, then p = 0.05, yielding ız # 2.06 (Example 14.1).

The selection-intensity version of Equation 13.10b can alternatively be expressed as

Ry =
σ(zx, yo)

σ(z)
ız =

σ(zx, yo)
σ(z)σ(y)

ız σ(y) = ız ρ(zx, yo)σ(y) (13.11a)

where ρ(zx, yo) is the correlation between zx and yo. This correlation is referred to as the
accuracy in predicting the value of the response trait measured in o (yo) from the selected
trait measured in x (zx). One immediately sees that by improving the accuracy of our
selection scheme, we improve the response. Expressing Equation 13.11a in terms of the
relative response, the change in y in phenotypic standard deviations, gives the expected
change in the response trait when using the selected trait measure in a relative as

Ry

σ(y)
= ız ρ(zx, yo) (13.11b)

A more powerful way of viewing Equation 13.11a is in terms of the breeding values,
Ay , for the trait of interest. Under the assumption (used throughout this chapter) that the
expected mean of the offspring equals the average breeding values of its parents (Chapter
6 examined this assumption in detail), the mean of the response trait in the offspring is
simply the mean breeding value of this trait in the parents. Hence, Ry = RAy , namely, the
difference between the mean breeding value for the response trait in the selected parents
versus that for the overall population. By taking the response trait to be the breeding value,
Ay , of the trait of interest, Equation 13.11a becomes

RAy = ız ρ(zx, Ay)σ(Ay) (13.11c)

Hence, the breeder’s equation can be considered as a special case of the more general
expression

Response = (Intensity) · (Accuracy in predicting breeding value using zx) · (Usable variation)
(13.11d)

An accuracy of special interest that arises during individual selection is the correlation
between an individual’s phenotype (z) and breeding value (A), where

ρ(z, A) = σ(zx, Ax)/(σz σA) = σ2
A/(σz σA) = σA/σz = h (13.11e)

This accuracy corresponds to individual selection (x is the parent, x = R; and the selected
and response traits are the same, y = z).When substituted intoEquation 13.11c, this recovers
Equation 13.6b.As illustrated inExample 13.4, this is a key result, aswhether someproposed
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selection scheme is more efficient than individual selection depends on the correlation
between the breeding value of a chosen parent and the selection variable used for that
scheme (e.g., zx could be x’s family mean of the response trait). If this correlation exceeds
h, then from Equation 13.11c (because ı and σ2[A] are the same), the response is larger.
Equations 13.11a through 13.11c form the foundation for most of Chapter 21, which deals
with various selection schemes using family information (e.g., family means and within-
family deviations).

The greatest selection response occurs if we take the selection variable (zx) with the
largest correlation with the breeding value for the response trait (assuming ı and σA are the
same over all comparisons). This idea forms the foundation of index selection, whereby
individuals are chosen based on some index, zx =

∑
aizi, a linear combination of trait

values in the relatives and/or correlated traits in the focal individual (Volume 3).

Example 13.3. Consider selection on clones or other pure lines, where parents pass on their
entire genome to their offspring. The phenotypic value (zo) of an offspring from a parent with
a genotypic value Gp can be written as zo = Gp + Eo, so that the parent-offspring covariance
(in the absence of any genotype× environment covariance and/or interactions) equals

σ(zo, zp) = σ(Gp + Eo, Gp + Ep) = σ(Gp, Gp) = σ(G, G)

namely, the total genetic variance, σ2
G. The resulting parent-offspring regression has a slope

bop = σ2
G/σ2

z = H2, the broad-sense heritability (LW Chapter 20), yielding

R = H2 S

Because H2 ≥ h2 (as σ2
G ≥ σ2

A), the single-generation response to selection is at least as large
for clones as for a sexual population with the same variance components. However, when
selection continues for several generations, using clones is expected to be far less effective,
as selection among clones very rapidly removes any genetic variation from the population
without any mechanism (other than mutation) to regenerate it. Likewise, the assumption of a
normal distribution of genotypic values quickly breaks down as only a few genotypes remain.
By contrast, with selection among sexually reproducing individuals, segregation and recombi-
nationwill generate an almost endless supply of new variation if a large number of segregating
loci underlie the trait. Special issues with regard to the selection and development of pure lines
are examined in Volume 3.

Example 13.4. Progeny testing uses the mean of an individual’s offspring (here, all are
assumed to be half-sibs) to predict its breeding value. In order to predict the selection response
using this scheme, we first need the correlation between the mean ( zo) of n half-sib offspring
and the breeding value (A) of the common parent. This is given by

ρ(zo, A) =
σ(zo, A)
σA · σ(zo)

To obtain this, first note that the covariance between the parent and its offspring is σ2
A/2

σ(zo, A) =
1
n

n∑

i=1

σ (zi, A) =
1
n

nσ(zi, A) = σ2
A/2

The expression for σ2(zo) requires a bit more bookkeeping, as sibs are correlated. Assuming
half-sibs and that there are no shared environmental effects, σ(zi, zj) = σ2

A/4 (for i %= j),
yielding

σ2(zo) = σ



 1
n

n∑

i=1

zi,
1
n

n∑

j=1

zj



 =
1
n2

nσ(zi, zi) +
n(n − 1)

n2
σ(zi, zj)

=
σ2

z

n
+

(
1 − 1

n

)
σ2

A

4
=

σ2
z

4n

[
4 + (n − 1)h2

]
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Combining these results yields

ρ(zo, A) =
σ2

A/2

σAσz

√
4+(n−1)h2

4n

=
σA

σz

√
4n/4

4 + (n − 1)h2
=

√
h2n

4 + (n − 1)h2
=

√
n

n + γ

where γ = (4 − h2)/h2. For large n, note that the accuracy approaches one. Substituting this
result into Equation 13.11c, the response to selection becomes

R = ı ρ(zo, A)σA = ıσA

√
n

n + γ
= ıσA

√
h2n

4 + h2(n − 1)

Recalling Equation 13.6b, the ratio of response for progeny testing (Rpt) to mass selection
(Rms) becomes

Rpt

Rms
=

ıpt ρ(zo, A)σA

ıms ρ(z, A)σA
=

(
ıpt

ıms

)
1
h

√
h2n

4 + h2(n − 1)

=
(

ıpt

ıms

) √
n

4 + h2(n − 1)

The selection intensity under progeny testing is likely to be lower, as it is easier (and cheaper)
to score a phenotype than to progeny test. When the intensities are equal, the ratio of responses
approaches 1/h for largen. Assuming ıpt = ıms, progeny testing gives a larger responsewhen
ρ(zo, A) > ρ(z, A), or when

√
n

4 + h2(n − 1)
> 1 or n >

4 − h2

1 − h2

In particular, n > 4, 5, and 7 is required for h2 = 0.1, 0.25, and 0.5, respectively, for progeny
testing to give a larger response. Hence, when the heritability of a trait is high, more offspring
must be scored for the accuracy of progeny selection to exceed that of mass selection. A high
heritability implies that an individual’s phenotype is a good predictor of its breeding value,
which requires increasingly more observations of an indirect measure (offspring values) to
obtain higher accuracy than the simple direct measure of the individual phenotype.

Example 13.5. Suppose a character of interest is extremely hard tomeasure in live individuals.
For example, one cannot directly select on individuals that have to be killed to measure a
trait such as meat quality. Similarly, consider traits expressed in only one sex, such as milk
production. How can we select on males if they do not express the trait themselves? One
solution to both of these problems is sib selection (Chapter 21), or using sibs of exceptional
individuals as the parents for the next generation (e.g., choosing males based on the milk
production of their sisters).

Under sib selection, the selection unit (x) is the trait value in sib s1, with the correlation
between its phenotypic value (zs1) and the breeding value (As2 ) of sib s2 being (LW Table 7.3)

σ(zs1 , As2) =
{

σ2
A/2 for full sibs

σ2
A/4 for half-sibs

yielding ρ(zs1 , As2) =
{

h/2 for full sibs
h/4 for half-sibs

For example, when s1 and s2 denote full sibs

ρ(zs1 , As2) =
σ(zs1 , As2)

σ(zs1) · σ(As2)
=

σ2
A/2

σzσA
=

σA

2σz
=

h

2
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with the correlation between half-sibs obtained similarly. Applying Equation 13.11c, the re-
sulting response to selection (assuming equal selection intensity on both sexes) based on the
performance of a sib is

R =
{

ı (h/2)σA for full sibs
ı (h/4)σA for half-sibs

where the selection intensity, ı, is a function of the fraction of measured sibs chosen in order
to have a relative as a parent of the next generation. For example, if only 5% of the measured
sibs are chosen to have a sib as a parent in the next generation, then ı # 2.06 (Example 14.1).
Comparison with Equation 13.6b shows that using a single full sib (in place of the measured
individual) gives a response that is half that of mass selection, while using a single half-sib
gives only a quarter of the response.

One can also have a mixture of direct and sib selection, as can occur when selection is
based on milk production. Here, there is direct selection on females (based on their trait value)
and sib selection onmales (based on the trait value of a sister). Summing the separate responses
from selection on females and males, the expected response becomes

R = (1/2) ı hσA + (1/2) ı (h/2)σA = (3/4) ı hσA

where the first term is the response fromusing superior females (Equation 13.11awith selection
on only one sex, giving ı/2), and the second term is the response using a brother of a superior
sister (full sib selection, or this term divided by two for half-sib selection). Here, we have
assumed the same intensity, ı, in both sexes, while with different amounts of selection

R = (1/2) ıd hσA + (1/2) ıs (h/2)σA = [(2 ıd + ıs)/4] hσA

While one could develop additional extensions (for example, by using progeny testing for
males), in practice, information from all relatives is handled using BLUP selection, a robust
and general approach for predicting response under very diverse schemes of selection that will
be introduced shortly.

Reducing Environmental Noise: Stratified Mass Selection
Accuracy (and hence response) can also be increased by using designs that reduce envi-
ronmental noise. One approach is Gardner’s (1961) method of stratified mass selection:
a population is stratified into a number of blocks (potentially representing different mi-
croenvironments) and selection occurswithin each block. The motivation behind Gardner’s
method was to improve individual selection for yield in maize. At the time of his paper,
selection based solely on the observed yield of individual plants resulted in a very poor
response, largely because environmental effects overwhelm genetic differences, resulting
in very small h2 values. Simply by selecting for plants within blocks of presumably simi-
lar environments, Gardner was able to use mass selection to obtain fairly significant gains
(about 4% per year). Stratified mass selection is an important component in Burton’s (1974,
1982) method of recurrent restricted phenotypic selection (RRPS) for turf grass breeding.

To obtain the expected response under stratified mass selection, we need to compute
the accuracy, which first requires the covariance between within-block deviations and an
individual’s breeding value. Suppose n individuals are measured within each block, and
selection occurs on the deviation from the block mean, e.g., on zij − zi where zij is the jth
individual from block i and zi is the block mean. An individual’s phenotypic value can be
expressed as its genotypic value, Gij (indicating the jth individual from block i), plus an
environmental value consisting of a block effect, Bi, and the residual environmental value,
eij ,

zij = µ + Gij + Bi + eij (13.12a)

The total environmental variance equals the variance among blocks, σ2
B , plus the within-

block variance, σ2
e (the variance of the residuals eij), resulting in a total variance of

σ2
z = σ2

G + σ2
E = σ2

G + σ2
B + σ2

e (13.12b)
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For the jth individual in block i, the covariance between individual breeding value and
within-block deviation is

σ(zij − zi, Aij) = σ(zij , Aij) −
1
n

n∑

k=1

σ( zik, Aij) = σ2
A

(
1 − 1

n

)
(13.13)

as the assumption is that individualswithin blocks are unrelated. The variance of deviations
within a block is σ2

G + σ2
e , making the accuracy

ρ(zij − zi, Aij) =
σ2

A(1 − 1/n)

σA

√
σ2

G + σ2
e

=
σA(1 − 1/n)√

σ2
G + σ2

e

(13.14a)

Applying Equation 13.11c yields a the resulting response of

R = ı ρ(zij − zi, Aij)σA =
ıσ2

A(1 − 1/n)√
σ2

G + σ2
e

# ıσ2
A√

σ2
G + σ2

e

(13.14b)

where ı is the selection intensity within blocks, and the final approximation assumes a large
n.

In contrast, if the effects of blocks are ignored and individuals are simply selected from
the entire population, the between-block variance is incorporated into the variance of z,
and from Equation 13.6b the response becomes

R =
ıσ2

A√
σ2

G + σ2
B + σ2

e

(13.14c)

The relative advantage of stratification (assuming the block size is modest to large, so that
1 − 1/n # 1) is √

σ2
G + σ2

B + σ2
e

σ2
G + σ2

e

=

√

1 +
σ2

B

σ2
G + σ2

e

(13.15)

Thus, within-block selection can significantly improve the selection response when the
among-block variance accounts for a significant fraction of the total variation. Schutz and
Cockerham (1966) extend this idea of selecting within blocks to a number of other designs.

Reducing Environmental Noise: Repeated-Measures Selection
The repeated-measures design is a second example of increasing accuracy (and response)
by providing some control over environmental noise. Here the character of interest is mea-
sured n different times on each individual, and selection occurs on zi, the mean value for
individual i. For example, if we are considering the number of days to ripening, a bet-
ter approach is to use a collection of fruit, rather than a single one, to assign a value to
an individual tree. Repeated-measures selection is a common design in behavioral experi-
ments, wherein a single measure (such as wheel-running speed) may vary greatly within
an individual over time.

Our analysis depends on the repeatability (LW Chapter 6) of the trait. The character
value for the jth measure of individual i is decomposed as

zij = Gi + Ei + eij (13.16a)

where Gi and Ei are the genotypic and (permanent) environmental values common to all
measures of i, and eij is the special environmental value restricted to the jth measure of i,
with the repeatability, r, being defined as

r =
σ2

G + σ2
E

σ2
z

= 1 − σ2
e

σ2
z

(13.16b)
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yielding
rσ2

z = σ2
G + σ2

E and (1 − r)σ2
z = σ2

e (13.16c)

To obtain the accuracy in using zi to predict Ai, we need both the covariance between zi

and Ai, and the variance of zi. The former is simply

σ(Ai, zi) = σ



Ai,
1
n

n∑

j=1

zij



 =
1
n

n∑

j=1

σ(Ai, zij) =
1
n

nσ(Ai, Ai) = σ2
A (13.17a)

To obtain the variance of zi, starting with

zi =
1
n

n∑

j=1

zij = Gi + Ei +
1
n

n∑

j=1

eij (13.17b)

it immediately follows from Equation 13.16c that

σ2 (zi) = σ2
G + σ2

E + σ2
e/n

= σ2
z r + σ2

z
1 − r

n
= σ2

z

(
1 + (n − 1)r

n

)
(13.17c)

The resulting accuracy in using zi to predict Ai becomes

ρ(zi, Ai) =
σ(Ai, zi)
σA σ( zi )

=
σ2

A

σA

√
σ2

z

(
1+(n−1)r

n

) = h

√
n

1 + (n − 1)r
(13.18a)

giving the response as

R = ı ρ(zi, Ai)σA = ı h

√
n

1 + (n − 1)r
σA (13.18b)

The ratio of accuracies under repeated-measures versus (single-measure) mass selec-
tion becomes

ρ( zi, Ai)
ρ( zi, Ai)

=
√

n

1 + (n − 1)r
(13.19a)

which approaches 1/
√

r for large values of n. Hence, when repeatability is low (σ2
e '

σ2
G+σ2

E), repeated-measures selection can result in a considerable improvement in response.
This comparison assumes the same selection intensity under single- versus repeated-

measures selection, but one might imagine that they could differ. For example, if one has
the time and resources to only score 500 individuals, and (for breeding reasons) must keep
(at least) 50 parents, then the fraction to be saved can be as small as 50/500 = 10% under
single-measure selection.However, withfive replicatemeasures per individual, we canonly
score 100 individuals, if we are to save a fraction no smaller than 50/100 = 50%. Applying
Equation 14.4c, these translate into selection intensities of ı zi = 0.79 for repeated-measures
selection and ızi = 1.75 for single-measures selection, respectively. Such differences in the
potential selection intensity are easily incorporated into comparisons of different selection
strategies, with the comparison now being

R zi

Rzi

=
ı zi

ızi

√
n

1 + (n − 1)r
(13.19b)

Finally, we note that our analysis of repeated-measures selection assumes that the
additive-genetic correlation across individual measurements is 1.0, which is expected for
many traits. However, if measures are sufficiently separated in time that age effects are
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important, or if they represent significantly distinct events (such as litter size at different
parities, i.e., distinct litters), these correlations can be less than one. In otherwords, the traits
measured at different ages may not be the same genetically. In such cases, one should treat
these measurements as a set of correlated traits and use index-selection theory (Volume 3).
With measurements at arbitrary time points that may differ over individuals, the method
of random regression (Volume 3) is used.

Example 13.6. As an example of the consequences of basing selection decisions on single
versus multiple measurements, consider the following data set, which was simulated by as-
suming a character with h2 = 0.1, σ2

z = 100, µ = 50, and r = 0.2. The simulated values for 20
individuals for either a single measurement, z(1), or the average of five measurements, z(5),
are

j zj(1) zj(5) j zj(1) zj(5)

1 54.97 56.80 11 49.81 48.76
2 64.01 54.51 12 51.92 46.76
3 42.64 52.61 13 43.56 51.79
4 42.70 38.69 14 41.60 47.23
5 61.62 56.42 15 51.80 48.90
6 39.86 47.70 16 52.88 47.21
7 56.54 48.63 17 63.86 54.03
8 35.88 47.26 18 39.76 49.62
9 54.32 53.93 19 36.45 47.78
10 57.85 45.10 20 59.07 51.16

where j indexes the individuals. Suppose the uppermost 25% (top 5 of the 20) are chosen for
selection. Based on single measures, individuals 2, 5, 10, 17, and 20 would be chosen, while
based on fivemeasures, individuals 1, 2, 5, 9, and 17would be selected. Using the single (initial)
measurement, the overallmean is 50.05, while themean of selected individuals is 61.28, yielding
an S of 11.23.

If we use repeated-measures selection, the overall mean of the five-sample averages for
each individual is 49.74, while the mean of selected individuals is 55.14, resulting in an S of
5.39. The smaller value of S under repeated measures under the same selection intensity, ı,
is a simple consequence of the reduced variance associated with using the mean (repeated
measures) versus a single observation. To see this, note from Equation 13.6a that S z/Sz =
(ıσ z)/(ıσz) < 1, as σ z < σz (Equation 13.17c). From the breeder’s equation, the expected
response based on single measures is

R = h2S = 0.1 · 11.23 = 1.12

To express the response given by Equation 13.18b (the repeated-measures expression) in terms
of S, note that here ρ = σ2

A/(σA σz) = σA/σz , and hence R = ı ρ σA = ıσ2
A/σz =

(ıσz)σ2
A/σ2

z = Sσ2
A/σ2

z , which, using Equation 13.17c, yields

R = h2

(
n

1 + (n − 1)r

)
S = 0.1 · 2.78 · 5.39 = 1.50

Thus, the reduction in S under repeated measures (5.39 versus 11.23) is more than made up
for by increased accuracy, yielding a larger expected response relative to mass selection (i.e.,
selection based on single measures). From Equation 13.19a, the expected ratio of the accuracies
(and hence responses, assuming the same selection intensities) of the five-measure to single-
measure schemes is 1.67, which approaches 1/

√
r # 2.24 for large values of n. The value of

the response ratio for our simulated data (1.50/1.12 = 1.34) deviated from the expected value
due to the small number (20) of randomly sampled individuals.
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Adjustments for Overlapping Generations
Thus far, we have been assuming that we are examining nonoverlapping generations, with
all parents reproducing in a discrete single generation. However, domesticated animals,
perennial plants, and many species in nature can have offspring over multiple years and
for varying life spans. In such cases, generations overlap and the selection response should
be considered on an absolute time scale (typically years) rather than a per-generation scale.
To express the breeder’s equation in terms of a yearly rate of response, we first need to
compute the generation intervals, Lx (the average age of parents when progeny are born),
for both sexes.

Assuming that the variance components are independent of age and sex, the yearly
rate of response, ry , can be expressed as

ry =
(

ıs + ıd
Ls + Ld

)
h2σz =

(
ıs + ıd

Ls + Ld

)
hσA (13.20)

where ıs and ıd denote the selection intensities of the sire (father) and dam (mother). This
result (in a slightly different form) is from Rendel and Robertson (1950), although the basic
idea tracesback toDickersonandHazel (1944). Thus, oneway to increase the rateof response
is to reduce the generation intervals, for example, by using younger parents. However, the
problem here is that there is a tradeoff between generation interval and selection intensity.
In species that are reproductively limited (with few offspring per dam), using younger
dams means that a higher fraction of the dams must be kept to replace the population.
As a consequence, the selection intensity on the parents is reduced. Equation 13.20 is an
asymptotic result, as it takes time for the selection response to propagate through an age-
structured population. Volume 3 examines the effects of age structure on selection response
in greater detail.

Example 13.7. Compute the sire, Ls, and dam, Ld, generation intervals for the following age
structure:

Parental Age at Birth of Progeny
Sires Year 2 Year 3 Year 4 Year 5 Total
Number 760 380 0 0 1140

Dams Year 2 Year 3 Year 4 Year 5 Total
Number 400 600 100 40 1140

The resulting sire generation interval is the average age of sires when offspring are born. Here,
760/1140 = 2/3 of the sires are age two, while 1/3 are age three, yielding

Ls = 2 · 760
1140

+ 3 · 380
1140

=
2 · 760 + 3 · 380

1140
= 2.33

Similarly, the dam generation interval is

Ld =
2 · 400 + 3 · 600 + 4 · 100 + 5 · 40

1140
= 2.81

Because each offspring has a single mother and father, the population-level average generation
interval is just the average of the two parental intervals, or 2.57 years.



498 CHAPTER 13

Maximizing Response Under the Breeder’s Equation
We can combine both the selection accuracy (Equations 13.11c) and generation-interval
(Equation 13.20) versions of the breeder’s equation to give a more general expression, with
the expected rate of response being

ry =
(

ıs + ıd
Ls + Ld

)
ρ(A, x)σA (13.21a)

where x is the measure used to choose the parents to form the next generation. Even more
generally, if the accuracies vary over sex

ry =
(

ıs ρs(A, x) + ıd ρd(A, x)
Ls + Ld

)
σA (13.21b)

Beyond importing new genetic material, there is not much a breeder can do to increase σ2
A,

which leaves three selection features that the breeder has some control over (Dickerson and
Hazel 1944; Kinghorn et al. 2000):

(i) selection intensity, ı
(ii) generation interval, L
(iii) selection accuracy, ρ

The response rate increases with ρ and ı, and it decreases with increasing values of L. We
have already discussed tradeoffs between L and ı, and there are similar tradeoffs between
L and ρ. Clearly, the longer we wait to allow a parent to reproduce, the more accurately
we can predict its breeding value, as information from other relatives and from progeny
testing accumulates over time. However, these increases in ρ also result in increases in L.
An optimal selection program must balance all of these competing interests.

Equation 13.21 highlights the importance to animal breeding of advances in repro-
ductive technologies such as artificial insemination (AI) and multiple ovulation embryo
transfer (MOET) schemes (e.g., Woolliams 1989). The more offspring a parent can produce,
the stronger is the selection intensity that can be applied while still keeping a fixed number
of animals in a population. AI has resulted in the potential for far greater sire selection
intensities (but as a side effect, far more inbreeding) than would be possible under natural
insemination. Likewise, MOET schemes that increase the number of offspring from females
allow for increases in the selection intensity on dams as well as decreases in the generation
interval.

Equation 13.21a is also highly relevant to genomic selection (wherein high-density
marker information is used to predict the values of offspring; Volume 3). The gain from
genomic selection is generally not the result of an increased accuracy, ρ, when usingmarker
information, but rather frommuch quicker and earlier scoring of phenotypes, which lowers
L and increases ı.

Example 13.8. As an example of the tradeoff between accuracy and generation intervals,
consider a trait with h2 = 0.25 and selection only on sires (fathers). One scheme is to simply
select on the sire’s phenotype, which results in a sire generation interval of (say) 1.5 years.
Alternatively, one might perform progeny testing to improve the accuracy of the selected sires,
which results in an increase of the sire generation interval to (say) 2.5 years. Suppose that in
both cases, the dam (mother) interval is constant at 1.5 years. Because the additive-genetic
variation is the same in both schemes, the ratio of response under mass selection to response
under progeny testing becomes

ry(sire phenotype)
ry(progeny mean)

=
(

ısp

ıpt

)
ρ(A, sire phenotype)/(Ls + Ld)
ρ(A, progeny mean)/(Ls + Ld)
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where ısp and ıpt are the selection intensities under individual selection (sire phenotype) and
progeny testing, which can differ due to costs in scoring. From Equation 13.11e, ρ(A, sire
phenotype) = h =

√
0.25 = 0.5, while the generation interval becomes Ls + Ld = 1.5+ 1.5

= 3. With progeny testing, Example 13.4 yields

ρ(A, progeny mean) =
√

n

n + γ
=

√
n

n + 15

as γ = (4 − h2)/h2 = 15, with a total generation interval of Ls + Ld = 2.5 + 1.5 = 4.
Rearrangement of this expression yields

ry(sire phenotype)
ry(progeny mean)

(
ıpt

ısp

)
=

0.5/3

(1/4)
√

n
n+15

=
2
3
·
√

n + 15
n

For n = 2 progeny tested per sire, this ratio is 1.95, resulting in a much larger rate of response
under sire-only selection. For n = 12, the ratio is exactly one, while for a very large number of
offspring tested per sire, the ratio approaches 2/3, or a 1.5-fold increase in the rate of response
under progeny testing, despite the increase in the sire generation interval. Thus, taking into
account the ratio of selection intensities, mass selection always gives a higher per-year rate of
response (for the values of the other parameters assumed in this example) when ıpt/ısp < 3/2.
By contrast, from Example 13.4, when n > 4, progeny testing yielded a larger response (for
h2 = 0.25), but that example did not discount for the effect of the longer sire generation
intervals required for progeny testing.

Maximizing the Economic Rate of Response
Example 13.8 hints at another important feature of the selection response, economics.Notice
that by scoringmore than12offspring,we canobtain a larger expected rate of responseusing
progeny testing (assuming equal selection intensities). Why not simply score 30 progeny,
givinga 122%rate of response relative to simplemass selection? The economic reality relates
to the cost of a raising and scoring a large number of progeny. Much of applied breeding is
concerned with the economic rate of response—trying to maximize the rate of response per
unit of capital, although this point is often underappreciated, even by some breeders. Along
these same lines, much of current selection in animal breeding is for increased efficiency
(conversion of resources into desirable traits), and hence greater economic gain per unit
of input at the production level. Weller (1994) presented a nice development of how to
incorporate economics into breeding.

Mean- Versus Variance-Standardized Response
As was the case with the selection differential, S, in order to assess the relative strength
of response one needs some sort of standardization. One obvious approach is to express
the response in units of phenotypic standard deviations (variance-standardization). From
Equation 13.6b,

R

σz
= h2 ı (13.22a)

implying that a (scaled) strength of selection of ı = 1/h2 is required for a standard deviation
of response. For example, with h2 = 0.25, a total selection intensity of ı = 4 is required to
achieve a total response of one phenotypic standard deviation. Example 14.1 shows that
ı = 2.06 for truncation selection saving the upper 5%, so that only two generations of such
selection are required for a one standard deviation change in the trait mean.

While scaling traits in units of phenotypic standard deviations is extremely common,
it can potentially be rather misleading (Houle 1992; Houle et al. 2011). To see this, imagine
two traits, both with a standard deviation of 2.0. Trait one has a mean of 10 and trait two
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has a mean of 100. A response of one standard deviation increases trait one by 20%, but
trait two by only 2%. From a variance-standardized viewpoint, the response is equal, but
as a proportional response of the total mean, trait one has clearly experienced a stronger
response.

Houle and colleagues (Houle 1992; Hansen et al. 2003; Hansen et al. 2011; Houle et
al. 2011) argued that usingmean-standardization, R/µz , namely the proportional amount of
response, is often more appropriate. Again using Equation 13.6b,

R

µz
= ı h

σA

µz
= ı h CVA (13.22b)

where CVA = σA/µz , the coefficient of additive genetic variation, is Houle’s (1992) evolv-
ability index, which he argued was a better measure of evolutionary potential than h2

(Chapter 6). Houle (1992) and Hansen et al. (2011) found that h2 is essentially uncorrelated
with evolvability, so that a trait with a lower h2 could still have high evolvability (i.e.,
potential for a significant proportional change in the mean), and vice versa.

BLUP SELECTION

LW Chapter 26 introduced the basic mixed model for estimating a vector, a, of breeding
values for a set of individuals given some vector, y, of records (observations), a relationship
matrix,A, connecting individuals with recordswith individuals whose breeding values are
of interest, and a set, β, of fixed effects to estimate

y = Xβ + Za + e, a ∼ MV N(0,σ2
A · A), e ∼ MV N(0,σ2

e · I)

where (as detailed in Chapters 19 and 20) the matrices X and Z are given from the data
(relating which observations contribute information to which fixed and random effects),
andA is obtained from the pedigree or from sufficiently dense genetic markers. Solving the
model returns a vector, â, of BLUP (best linear unbiased prediction) breeding values.

Much of modern animal breeding (and a growing amount of plant breeding) is based
on using BLUP estimates to select individuals with the highest breeding values for the
trait to form the next generation. This is called BLUP selection. The expected response is
simply given by the difference between themean breeding value of selected parents and the
population fromwhich theywere chosen. This is an extremely flexiblemethodology, with all
of the examples in this chapter being special cases of this general approach. Indeed, provided
relatives are measured, BLUP can be used to predict the breeding value of individuals with
no phenotypic values (such as milk production in sires). Relatedness information for all
measured individuals enters through A, and multiple records (repeated measurements)
from the same individual are easily incorporated, as are additional fixed (and random)
factors such as plot, location, and herd effects. Further, the effects of age structure are fully
accounted for by the relationshipmatrixA. Chapters 19, 20, and 22 discuss features of BLUP
estimation of breeding values, while more technical details (such as maximal avoidance of
inbreeding) are deferred until Volume 3 (also see Henderson 1984; Simm 1998; Bernardo
2010; and Mrode 2014).

THEMULTIVARIATE BREEDER’S EQUATION

Expressing the heritability in terms of additive-genetic and phenotypic variances, the
breeder’s equation can be written as

R = σ2
A σ−2

z S (13.23a)

While this decomposition seems rather trivial, it suggests (as we formally show in Volume
3) that its multivariate version (under appropriate linearity assumptions) is given by

R = GP−1S (13.23b)
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where R and S are the vectors of responses and selection differentials for each character,
andG andP are the additive-genetic and phenotypic covariancematrices (LWChapter 21),
with

Pij = σ(zi, zj) and Gij = σ(Ai, Aj) (13.23c)

Here, we briefly consider a few features of Equation 13.23b; we examine its full range of
consequences and applications at length in Volume 3. As an aside, note that Equation 13.23b
breaks the standard convention that vectors (here R and S) are usually written as lower
case bold letters. This is to conform with the standard notation for these two vectors in the
literature.

Response With Two Traits
One expects that selection is always acting on more than a single trait, as even with strong
artificial selection on a single character, natural selection is likely operating on other traits as
well.What risks dowe runby ignoring this expectation and treating selection as a univariate
problem? While this is examined much more fully in Volume 3, we can gain significant
insight by considering the simple case of two traits, both of which are potentially under
selection. Equation 13.23b gives the expected vector of responses as

R =
(

R1

R2

)
= GP−1S =

(
G11 G12

G12 G22

) (
P11 P12

P12 P22

)−1 (
S1

S2

)
(13.24a)

Using LW Equation 8.11 to compute the inverse of P, and, recalling for a covariance that
P12 = ρz

√
P11P22, where ρz is the phenotypic correlation between the two traits, yields

P−1S =
1

P11P22 − P 2
12

(
P22 −P12

−P12 P11

) (
S1

S2

)

=
1

P11P22(1 − ρ2
z)

(
S1P22 − S2P12

−S1P12 + S2P11

)
(13.24b)

Substituting into Equation 13.24a and recalling that h2
i = Gii/Pii, the response in trait one

becomes

R1 =
1

P11P22(1 − ρ2
z)

( G11 G12 )
(

S1P22 − S2P12

−S1P12 + S2P11

)

=
G11 (S1P22 − S2P12) + G12 (−S1P12 + S2P11)

P11P22(1 − ρ2
z)

=
h2

1

(1 − ρ2
z)

(
S1 − S2

P12

P22

)
+

G12 (−S1P12 + S2P11)
P11P22(1 − ρ2

z)
(13.24c)

with an analogous expression for R2. The breeder’s equation is recovered only when trait
one is phenotypically (P12 = ρz = 0) and genetically (G12 = 0) uncorrelated with trait
two. As we now demonstrate, this complicated expression masks the rather different roles
played by phenotypic and genetic correlations, impacting (respectively) the within- and
between-generation changes. Volume 3 examines these points in some detail.

Accounting for Phenotypic Correlations: The Selection Gradient
Recall from Equation 13.8b that the univariate directional selection gradient, β = S/σ2

z , is
the slope of the linear regression of relative fitness, w, as a function of the phenotypic value,
z, of the trait (Equation 13.8a). The multivariate extension is given by

β = P−1S (13.25a)

where thevectorβ = (β1, · · · ,βn)T contains the coefficients for themultiple linear regression

w = a +
∑

i

βizi + e = a + βT z + e (13.25b)
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of relative fitness, w, on the vector, z, of trait values (LW Equation 8.10c). The interpretation
of βi is that it represents the change in relative fitness given a one unit change in trait i
while holding all other trait values constant. In other words, βi measures the amount of
direct selection on trait i, removing any indirect effects from selection on phenotypically
correlated traits included in the analysis, i.e., all traits in the vector z (Chapter 30). Because
β = P−1S, then S = Pβ, resulting in an observed selection differential of

Si = Piiβi +
∑

j #=i

Pijβj (13.25c)

The within-generation change, Si, in the mean of trait i following selection thus consists of
an effect from direct selection on that trait (Piiβi) plus the effects of selection on all other
phenotypically correlated traits (Pijβj %= 0). Hence, the sign of Si tells us nothing about
the sign of βi (the amount of direct selection on that trait), as correlated selection (Pijβj

terms) can easily overpower the direct effect. The selection gradient, β, presents the correct
picture ofwhich traits are under selection, provided there are no additional traits under direct
selection that are phenotypically correlated with our focal vector, z, of traits (Chapter 30).

Accounting for Genetic Correlations: The Lande Equation
To see the effects of genetic correlations, substituting P−1S = β into Equation 13.23b gives
the Lande equation (Lande 1979a),

R = Gβ (13.26a)

which is the multivariate version of Equation 13.8c,R = σ2
Aβ. Considering two traits, using

the Lande equation

R =
(

R1

R2

)
= Gβ =

(
G11 G12

G12 G22

) (
β1

β2

)
(13.26b)

yields greatly simplified expressions (relative to Equation 13.24c) for the responses

R1 = G11β1 + G12β2

(13.26c)
R2 = G12β1 + G22β2

The role of genetic correlations (G12) is now obvious, in that direct selection on trait two
(β2 %= 0) influences the response (between-generation change) in trait one only when the
two traits have a nonzero genetic correlation (G12 %= 0). The contribution,Giiβi, from direct
selection is called the direct response, and the contribution to response on trait i from direct
selection on other genetically correlated traits (Gijβj %= 0) is called the correlated response. If
two traits are genetically uncorrelated, selection on one has no impact on the response of the
other, even if they are phenotypically correlated. More generally, with n potentially correlated
traits

Ri = Giiβi +
∑

j #=i

Gijβj (13.26d)

Comparison with Equation 13.25c shows that Pij for the within-generation changes (Si) are
replaced by Gij for the between-generation changes (Ri).

The Lande equation shows that when the multivariate breeder’s equation holds, we
can distinguish between phenotypic selection, which is the change in a phenotypic dis-
tribution within a generation (measured by S, with the nature of selection, i.e., the direct
effects, summarized by β), and the evolutionary response to selection, which is the trans-
mission of these within-generation changes to the next generation (given byR). Lande and
Arnold (1983) and Arnold andWade (1984a, 1984b), following Fisher (1930, 1958) and Hal-
dane (1954), have stressed the utility of this approach. Attempts to measure selection by
comparing phenotypic distributions across generations are confounded by inheritance, as
R depends on β throughG. Chapters 29 and 30 examine in detail methods for estimating
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the nature of phenotypic selection in natural populations. When the breeder’s equation
fails, this separation of selection from inheritance may no longer be possible, leading to
the recent use of Robertson’s secondary theorem,R = σ(w,Az), for examining response in
natural populations (Chapter 20).

Selection Gradients and Mean Population Fitness
Under appropriate conditions, the selection gradient, β, demonstrates how a within-gener-
ation change in the vector of trait means maps into a change in the mean fitness of a
population. If W (z) denotes the expected fitness of an individual with a character value
of z, then when phenotypes are normally distributed and fitness is frequency-independent
(individual fitnesses are not a function of the means of the characters), the directional selec-
tion gradient satisfies β = ∂ lnW/∂µ (Lande 1976; Example A6.3 gives the full multivariate
derivation). Hence we can express the breeder’s equation as

R = σ2
A

(
∂ lnW

∂ µ

)
(13.27a)

The multivariate version of this partial derivative is the gradient of mean fitness with
respect to the vector of character means, which is the vector of partials of the log of mean
fitness with respect to each trait mean under consideration

β =
∂ lnW

∂µ
(13.27b)

with βi = ∂ lnW/∂µi (the change in log mean fitness from a change in the mean of trait i).
The resulting gradient version of the Lande equation becomes

R = G
∂ lnW

∂µ
(13.27c)

The vector β represents the direction for the joint change in the means that maximizes
the local increase in mean fitness. In contrast, the actual response involves the product (or
projection) of thisvectorwith thegenetic covariancematrixG. The resulting responsevector
is generally not parallel to β, as the genetic covariance structure causes the character means
to change in a direction that does not necessarily result in the optimal change in population
fitness. We examine the implications of genetic constraints imposed by the structure of G
in detail in Volume 3.

We can connect the somewhat abstract notion of variance in fitness with a measurable
quantity, the amount of selection, β, on a vector, z, of traits, as follows. Walsh and Blows
(2009) showed that the additive variance in relative fitness w accounted for by selection on
z is

σA(zT , w)G−1σA(z, w) (13.28a)

where the notation σA(x, y) denotes the covariance between the breeding values of x and y.
Recalling Robertson’s secondary theorem (1968 version; Equation 6.24a), σA(z, w) = R =
Gβ (assuming the conditions for the multivariate breeder’s equation hold), yielding

(Gβ)T G−1(Gβ) = βT Gβ (13.28b)

The additive variance in fitness that remains unaccounted for after the effects of z are
removed becomes

σ2
A(w) − βT Gβ (13.28c)

In theory, if one had an estimate of σ2
A(w) in hand (Chapter 20), the significance of a set,

z, of traits can be determined. If these account for most of the variation, there is little need
to consider additional traits. If these account for only a small fraction, important traits are
missing.
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Table 13.1 Alternate versions and extensions of the basic breeder’s equation. Refer to the specific
equation number for discussion and explanation of the symbols.

Version Expression Equation Number

Basic breeder’s equation R = h2S 13.1
Sex-specific response (sex s) Rs = bs,fa Sfa + bs,mo Smo 13.4
Selection intensity R = h2 ıσz = ı hσA = σ2

A ı/σz 13.6b

Response (in trait y, selection using x) Ry =
σ(x, y)

σ2
x

Sx =
σ(x, y)

σx
ıx 13.10b

Accuracy (in trait y, selection using x) Ry = ıx σy ρ(x, y) 13.11a
Accuracy (breeding values) R = ıx ρ(x, A)σA 13.11c

Rate of response (per year) ryear =
(

ıs + ıd
Ls + Ld

)
hσA 13.20

Rate of response using accuracy ryear =
(

ıs + ıd
Ls + Ld

)
ρ(A, x)σA 13.21

Variance-standardized response R/σz = h2 ı 13.22a
Mean-standardized response R/µz = ı h CVA 13.22b
Robertson’s secondary theorem

1966 version R = σ(w, Az) 13.7b
1968 version R = σ(Aw, Az) 6.24a

Univariate Lande equation R = σ2
A β 13.8c

R = σ2
A

∂ lnW

∂µ
13.27a

Multivariate breeder’s equation R = GP−1S 13.23b
Multivariate Lande equation R = Gβ 13.26a

R = G
∂ lnW

∂µ
13.27c

Finally, we can use the multivariate breeder’s equation to make a connection with the
classical interpretation of Fisher’s fundamental theorem (Chapter 6). If the fitness deter-
mined by the vector of traits, z, can be expressed as a linear regression (Equation 13.25b),
then the expected change in fitness from selection response on these traits is

∆w = βT ∆z = βT R = βT Gβ (13.29)

From Equation 13.28b, this is just the additive variance in fitness associated with these
traits. Thus, we recover Fisher’s theorem that the change inmean fitness equals the additive
variance in relative fitness (Equation 6.17c).

LIMITATIONS OF THE BREEDER’S EQUATION

As we have seen, the basic breeder’s equation has many alternative expressions and exten-
sions (summarized in Table 13.1). All are based on Equation 13.1, which assumes a linear
midparent-offspring regression with slope h2. This single-generation prediction is a good
approximation over multiple generations provided that selection does not result in a sig-
nificant change in the base-population heritability, a region we call short-term response.
Chapter 16 shows that even a single generation of selection will change h2 through the gen-
eration of linkage disequilibrium, but because this is straightforward to correct for when
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Table 13.2 Summaryofvarious factors complicating thepredictionof short-termselection response in
the phenotypicmean, even assuming all regressions are linear and considering just a single generation
of selection from an unselected base population. Short-term response specifically refers to conditions
where the effects of any allele-frequency change on the additive variance are negligible. Models of
long-term response (Chapters 25–28) relax this restriction.

Major gene with dominance Can generate a nonlinear parent-offspring regression.
(Chapter 6; LW Chapter 17)

Epistasis The component of response due to epistasis is transient.
(Chapter 15) Parent-offspring covariance overestimates permanent response.

Correlated environmental The component of response due to correlated environmental
effects (Chapter 15) effects is transient.

Maternal effects The potential for complicated lags in response—the mean
(Chapters 15, 22) changes unpredictably after selection is relaxed.

Possibility of reversed response.

Gametic-phase Changes the additive genetic variance.
disequilibrium Directional selection generates negative gametic-phase
(Chapter 16) disequilibrium, reducing h2 and slowing response.

Assortative mating Generates gametic-phase disequilibrium, which either
(Chapter 16) enhances (positive correlation between mates) or

retards (negative correlation between mates) response.

Environmental change A significant change in the environment can obscure
(Chapters 18 - 20) the true amount of genetic change.

Drift (Chapters 18, 19) Generates variance in the short-term response.

Environmental correlations Environmental factors can influence both the trait and fitness,
(Chapter 20) confounding both the nature of selection and the true

amount of genetic change.

Associative effects Trait influenced by both direct and social components
(Chapter 22) from group members. A decline in the mean social value

can swamp an increase in mean direct value.
Possibility of reversed response.

Inbreeding Response depends on additional variance components
(Chapter 23) that are difficult to estimate (σ2

DI , σADI , etc).
Response has permanent and transient components.

Age-structure Several generations are required to propagate
(Volume 3) genetic change uniformly through the population.

Selection on correlated Response completely unpredictable unless
characters selection on correlated characters accounted for.
(Volume 3) Possibility of reversed response.

G× E interactions Possibility of nonlinear parent-offspring regressions.
(Volume 3) Often treated as a correlated characters problem, with traits

measured in different environments treated as correlated traits.
Possibility of reversed response.

allele-frequency change is infinitesimal, we treat this as a special case of short-term response
(details in Chapter 16). Themore serious problem is that eventually allele-frequency change
significantly alters the genetic variance (long-term response), and these variances changes
cannot be predicted without extensive (and essentially unavailable) knowledge about the
distribution of allelic effects and their frequencies (Chapters 25 and 26).

However, even over the short-term response time frame, there are a number of compli-
cations that compromise the basic breeder’s equation (Table 13.2). One particularly impor-
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tant (and usually unstated) assumption is that we start from an unselected base population.
If the base population itself has been under selection, decay of transient response com-
ponents from previous selection compromises the predicted single-generation response
(Chapter 15). In the Price equation setting (Equation 6.12), this occurs because the mean of
thepopulation changes in the absenceof selection, as thepopulation regainsHardy-Weinberg
proportions and linkage equilibrium following a perturbation from past selection.

Another troublesome feature of the breeder’s equation is the assumption that all of
the selection on the character of interest is accounted for. This is especially problematic as
selection on any character correlated with the one of interest can introduce significant bias
to the expected selection response. This problem is examined in Chapter 20, but generally
there is no easy solution, or even any indication of a problem before an experiment or
field study begins. Thus, even in the best of situations (linearity and no selection-induced
changes in allele and gamete frequencies), there are still pitfalls in predicting even a single
generation of response from the slope of the parent-offspring regression. The situation gets
worse if the parent-offspring regression is nonlinear, as the single-generation change in
the mean can then depend on higher-order moments of the genotypic distribution, and
hence is not predictable from simple variance components. See Equations 5.23c and 5.27b
for population-genetic expressions, Equations 6.12, 6.39, 6.40 for expressions based on the
Price equation, and Chapter 24 for a detailed discussion.

Table 13.2 summarizes some of these factors compromising the breeder’s equation,
giving the chapters in which these complications are examined in detail. Provided one can
assume linearity of the regressions of relatives, we can account for many of these concerns,
as when the regression of an individual on all of its direct relatives selected in previous
generations (back to the original unselected base population) remains linear, the selection
response is entirely determined by the covariances between a current individual and these
previous relatives (Chapter 15).

Asmentioned at the start of the chapter, even ifwe have corrected for all of the potential
complications listed in Table 13.2, the breeder’s equation (using the base population h2) is
expected to become an increasingly poor predictor as selection proceeds. If there are segre-
gating alleles of large effect, even a single generation of selection can significantly change the
underlying variance components, which in turn changes the regression coefficients. Further,
selection can introduce nonlinearities into an initially linear regression by perturbing the
starting distribution of breeding values away from normality, although these departures
are usually small (Chapter 24). In the absence of major genes, allele-frequency changes
over the first few generations of selection are expected to be rather small, but genotype fre-
quencies can changedramatically due to selection generating gametic-phase disequilibrium
(Chapters 16 and 24). Directional selection generates negative disequilibrium, decreasing
heritabilities and hence reducing the selection response, and this reduction can be signifi-
cant if heritability is high. Likewise, selection on the variance itself (through disruptive or
stabilizing selection) also creates disequilibrium effects on the expressed genetic variance.
Chapter 16 examines the effect of such short-term changes in disequilibrium on the addi-
tive genetic variation. An additional complication occurs when there is genetic variance for
the amount of environmental variability that a genotype displays, and this is discussed in
Chapter 17. As selection continues over several generations, even if all loci have very small
effects, allele frequencies themselves start to appreciably change (Chapters 25 and 26). Drift
and mutation also become increasingly important, and these complications are examined
in Chapters 26–28.


