
22
Associative Effects: Competition, Social
Interactions, Group and Kin Selection

These findings . . . support the writer’s view that competitive ability should be accepted
as it stands as a genetic character, simple or aggregate, a view of great

importance in the discussion to follow. Sakai (1955)

This chapterweaves together several seemingly unrelated, but nevertheless important, top-
ics: competition; altruismandother social behaviors; traits defined by group, rather than in-
dividual, attributes; maternal effects; and group and kin selection. The connection between
all of these topics is the notion that the genotype (and hence phenotype) of one individual
may influence the trait value of another. In this sense, the “environmental” component of
the phenotype of a focal individual may itself have some heritable component (based on
the contribution from some other individual), allowing for some part of the environmental
component to evolve along with the focal trait. In such settings, the phenotype of a focal
individual consists of two components: direct effects from the focal individual and asso-
ciative effects contributed from other individuals within the group. A critical implication
of this distinction is that the breeding value of an individual contains a component for di-
rect effects that appear in its own phenotype (and hence can be influenced by individual
selection) and a component for associative effects that only appears in the phenotypes of
other group members. The exploitation of associative effects by selection generally requires
either interactions among kin (kin selection) or selection based on some combination of
both individual and group values (multilevel selection). In the extreme, group selection
occurs when all of the weight is placed on among-group differences. Note that multilevel
selection is an extension of family-index selection (Chapter 21) to more general groups.

The framework for dealing with these issues was laid out in a series of classical, but
largely ignored, papers by Griffing (1967, 1968a, 1968b, 1969, 1976a, 1976b, 1977), who
introduced the notion of associative effects. There are also roots extending to classical work
onmaternal effects based on trait phenotype (Falconer 1965) or on an unmeasuredmaternal
value (Willham1963), aswell as to the foundationsof the studyof social evolution (Hamilton
1963, 1964a, 1964b). There are twomodeling approaches for dealingwith associative effects:
trait-based and variance component-based. Trait-based approaches (Moore et al. 1997)
have their roots in univariate (Falconer 1965) and multivariate (Kirkpatrick and Lande
1989; Lande and Kirkpatrick 1990) models of selection response under maternal effects. As
their name implies, trait-based approaches assume that we know the particular traits in
group members that influence the phenotype of the focal individual. This approach is best
handled in a multivariate framework, so we will delay its full discussion until Volume 3.

The variance-component approach also has roots in maternal-effects models (Willham
1963), wherein a general (but unmeasured, i.e., latent) maternal performance value in-
fluences the phenotype of the focal individual. Using BLUP, we can estimate the genetic
variance of the associative effects (aswell as its covariancewith thedirect effects). Somewhat
counterintuitively, variance component-based methods (where the actual traits that gener-
ate the associative effects are unspecified) are empirically more powerful than trait-based
methods. The reason is that we can estimate this unspecified total contribution directly,
while if characters that influence associative effects are left out of a trait-based model, this
can introduce errors. McGlothlin and Brodie (2009) and Bijma (2014) show the congruence
between these methods, which is also examined in detail in Volume 3.
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Traitswhose phenotypes are determined, in part, by interactionswith other individuals
have important roles in both breeding and evolution. In breeding, we are often more inter-
ested in the performance of a group rather than that of an individual. For example, standard
poultry husbandry is to keep several females together in a cage, with total egg production
per cage being the key quantity of interest. In the extreme, an aggressive female may kill all
her cage-mates, and, in less extreme cases, may largely dominate feeding, resulting in an
individual benefit at the expense of the group. Hence, individual selection may result in a
decrease in group performance, in which case the number of eggs per cage would decline.

The issue here is that individual selection cannot effectively utilize the genetic vari-
ation in associative effects to guarantee the response of the mean associative value in the
direction favored by the breeder. The same concerns have long been raised in evolutionary
biology, in particular to account for the evolution of altruistic traits (such as alarm calls
in birds) that are expected to decrease individual fitness, yet still have evolved. There is a
very rich, and stormy, evolutionary literature on the importance (or lack thereof) of selec-
tion based on group attributes. The general view in evolutionary biology has often been
to invoke group selection arguments only as a last, desperate resort when all individual
selection arguments fail (e.g., Williams 1966). As we will see, much of the debate regarding
group versus kin selection is misplaced, as they are essentially manifestations of the same
general process.

Our treatment starts with a formal definition of direct and associative effects, including
the powerful concept of the total breeding value, AT , of a trait (which requires measure-
ments of groupmembers). Next, we show how the presence of associative effects influences
selection. One key result is that when the breeding values for direct and associative effects
are negatively correlated, individual selection can result in a reversed response. Conversely,
group selection (even when group members are unrelated) always results in an expected
positive response, but it can be very ineffective when associative effects are small. We then
examine selection based on an index of both individual and group information, including
the optimal weighting for maximal response. A key innovation that we examine in detail
is the use of BLUP/REML methodology (Chapters 19 and 20) to estimate the direct and
associative effects of individuals, along with their variance components. We conclude by
applying these results to some of the debates on group and kin selection in evolutionary
biology. Our goal in this last section is not to extensively review this literature, which is
often contradictory and, at times, was drivenmore by verbalmodels than detailed analyses.
Rather, it is to show how the problem of selection based on group attributes can be easily
placed in a quantitative-genetics framework.

For many readers, this may be one of the most important chapters in the book, as
associative effects arepotentiallygame-changing in theanalysis ofmany traits. Evolutionary
biologists, breeders, behavioral ecologists, and human geneticists all need to be aware of
their importance and implications. They reshape many classic problems in evolutionary
biology, such as Fisher’s fundamental theorem (Chapter 6), inclusive fitness, and kin and
group selection. Their presence fundamentally changes breeding strategies, as individual
selection potentially leaves much of the usable genetic variation in a trait untapped and
can result in reversed responses (Chapter 15). Most behavioral traits arise from interactions
between individuals, which is exactly the framework for associative effects. Finally, their
presence radically changes the way in which we analyze traits. An important example is
disease resistance. As this is both a function of the susceptibility of an individual and the
infectiousness of those around it, a full consideration requires a model with associative
effects (Lipschutz-Powell et al. 2012a, 2012b; Costa e Silva et al. 2013). Partial reviews of
some of the implications of associative effects are given by Griffing (1977), Moore et al.
(1997), Wolf et al. (1998), Bijma andWade (2008), McGlothlin et al. (2010), Wade et al. (2010),
Wolf and Moore (2010), Bijma (2011, 2014), and Bailey (2012).

DIRECT VERSUS ASSOCIATIVE EFFECTS

All organisms interactwith their external environment, andavery significant fractionof that
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environment is biological. In particular, interactionswith conspecifics through competition,
cooperation, parental care, or other social interactions can constitute an important part of
the environment that an individual experiences, which, in turn, can influence trait values.
Further, this “environment”may contain heritable components and coevolve with the trait
of interest. The classic example of this is competition, which we briefly consider first.

Early Models of Competition
It has long been appreciated by breeders that competition among plants within a plot has a
significant impact on important agricultural traits such as yield.While a particular genotype
may have high yield when grown in isolation, when grown in a group, its competitive
effects on other members within its group could result in a lower plot yield. Yield (and
other traits) of a particular plant in a plot is therefore a function of two components. First,
an individual’s genotype has a direct influence on its ability to garner resources such as
light, water, and nutrients. Second, that genotype influences others around it by competing
for limiting resources. Other plants in the plot also compete, and these in turn influence
the yield of the focal individual. One might expect that plants that are very successful at
garnering resources have positive direct effects, but negative associative effects on nearby
individuals. Thus, a plot of high-competing genotypes can have a low yield, as the positive
direct effects for any particular plant aremore than countered by negative associative effects
from being surrounded by superior competitors.

A historically important paper on the evolution of competition is that by Sakai (1955),
who noted that competition, like yield or height, is a genetic trait and hence can potentially
evolve. Following Sakai, a number of workers developed single-locus population genetic
models to examine the evolution of competition (Schutz et al. 1968; Allard and Adams
1969; Schutz and Usanis 1969; Cockerham and Burrows 1971; Cockerham et al. 1972). These
studies all used simple ecologicalmodels of competition among a series of fixed types (here,
all possible single-locus genotypes). While interesting, this class of models does not easily
generalize beyondone locus.Griffing (1967)made the important extensionof Sakai’s idea by
replacing a single-locus genotype with direct and associative values that are quantitative
traits, consisting of breeding and residual values. Placed in this framework, such traits
can potentially evolve and can also have their variance components estimated, allowing
associative effects to be exploited by using appropriate selection designs.

Example 22.1. The point that high-competing genotypes can reduce yield was made in a
classic paper by Wiebe et al. (1963), who examined yield in mixed- versus single-genotype
plots of barley. They observed that genotypes that yielded well in mixed stands had poorer
yield when grown as pure stands, while those genotypes that did poorly in mixed stands had
the highest yield in pure stands. In our framework, we could imagine that lines that do well
in mixed stands have both high positive direct effects and high negative associative effects,
suppressing the phenotypes of their neighbors.When grown in a pure stand, the high negative
associative effects suppress plot yield. Conversely, lines that perform poorly in mixed stands
might have low direct effects but high positive associative effects, and so the phenotypes of
their neighbors are enhanced (or at least not hindered). When grown as a pure stand, these
high positive associative effects more than compensate for the low direct effects, increasing
plot yield.

Direct and Associative Effects
Asimple examplewill introduceGriffing’s idea.As shown in Figure 22.1A, consider a group
of four individuals. Our focal individual is 1, and its phenotype, z1 (for the trait of interest),
is determined by its own intrinsic value, Pd,1 (the subscript d indicating the direct effect),
plus the associative effects, Ps,2, Ps,3, and Ps,4, contributed by other group members.
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z1  =  Pd,1  +  Ps,2 +  Ps,3 +  Ps,4
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Figure 22.1 Left: The phenotypic value, z1, of the focal individual is the sum of its direct
phenotypic effect,Pd,1, plus the associative effects,Ps,2, Ps,3, Ps,4, of the three othermembers
in its group.Right: The total breeding value (AT,1) of individual 1 is its direct breeding value,
Ad,1, plus the total contribution of the associative-effect breeding value, As,1, to the three
members of its group. A key concept is that only part of AT (namely Ad) is embedded within its
own phenotypic value. The remaining part of AT , namely its associative component, 3As, is
only expressed in the phenotypes of other group members.

Associative effects are also referred to in the literature as indirect genetic effects (IGEs)
(Moore et al. 1997; Wolf et al. 1998; McGlothlin et al. 2010), or social effects (Bijma et al.
2007a, 2007b), and we use the subscript s (indicating social effects) to denote them. In our
discussion, we will use the terms associative and social effects interchangeably. Note that the
values of Ps,i do not necessarily correspond to the phenotypes for the trait of interest in
the other group members, but rather represent the contribution from these members to the
phenotype of the focal individual. This contribution from fellow group members is part of
the environment experienced by the focal individual.

More generally, for a group containing n equally interacting individuals, the resulting
phenotype (zi) for individual i becomes

zi = Pdi +
n∑

j !=i

Psj (22.1a)

where the sum has n − 1 terms. Each of these components can be decomposed into a
breeding value, A, plus a residual component, E (containing environmental effects plus
any nonadditive genetic effects), yielding

zi = µ + (Adi + Edi) +
n∑

j !=i

(
Asj + Esj

)
(22.1b)

We can write this more compactly as

zi = µ + Adi +
n∑

j !=i

Asj + ei, with ei = Edi +
n∑

j !=i

Esj (22.1c)

Because the environmental values have expected value of zero, the mean phenotypic value
in the group is simply

µz = µ + µAd + (n − 1)µAs (22.1d)

Further, the change in the mean trait value within a group following selection is

∆µz = ∆µAd + (n − 1)∆µAs = Rd + (n − 1)Rs (22.1e)

which decomposes the change in trait value into contributions from responses, Rd and Rs,
respectively, in the direct and social values.
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This equation foreshadows individual versus group selection. Individual selection tar-
gets the direct effect and results in a favorable change inµAd . If the direct and social breeding
values are correlatedwithin an individual, namely, σ(Ad, As) "= 0, then individual selection
can also change µAs , but not necessarily in a favorable direction. Indeed, as Example 22.4
will show, an increase in µAd under individual selection can be more than countered by
an unfavorable change in µAs , resulting in the mean phenotype changing in an unfavor-
able direction. Direct selection on µAs requires either undergoing group selection or having
relatives within the group. All of these points will be expanded upon below. Our focus is
entirely on additive genetic effects, as most of the theory has been developed under this
assumption. Attempts to include nonadditive variance were developed by Gallais (1976)
and Wright (1986). Finally, one way to make to concept of associative effects a bit more
concrete is to note that one can map associative-effect QTLs; see Mutic andWolf (2007) and
Wolf et al. (2011) for examples.

Animal Well-being and the Improvement of the Heritable Social Environment
In high-intensity agricultural systems, competition has a strong effect on yield and other
traits. Animals in such environments face significant stress, which impacts both their pro-
duction and their well-being. As reviewed by Muir and Craig (1998), animal well-being is
becoming an increasingly important aspect of animal production. Muir suggests that social
aspects such as aggression, fighting, and sharing of common resources are all potential
targets of selection, and responses in these traits (for less aggression and more sharing)
improves both animal welfare and production. Further, for a number of species (such as
certain fishes), domestication has proved somewhat problematic due to the tendency for
cannibalism (and lesser forms of aggression), when individuals are grown under produc-
tion conditions. Muir suggested improving welfare by selecting for an improved mean
social environment through selection of individuals with favorable As values for the traits
of interest. Again, these are aspects of the group environment and can respond favorably
to an appropriate selection design, provided there is a heritable component of Ps, namely,
σ2(As) > 0.

What Do We Mean by Group?
Given that we use the term group extensively in this chapter, a more formal definition is
required. Our focus here is on traitswhose values are influenced by interactionswith others.
The set of individuals that interacts with the focal individual constitutes the unit we will
call a group. This may be straightforward in some breeding settings, such as the specific
animals in apenor cage.However, inother settings, suchas cattle in avery large feedlot, only
some subset of all the individuals likely interact with the focal individual. Hence, group
size may be much smaller than the number of individuals physically confined to some
space. Likewise, individuals may be part of different groups for different traits, especially
if those traits are expressed at different times during development. The same is true on a
grander scale in natural populations. The key issue with traits influenced by interactions is
that phenotypes of the group members provide some information on part of the breeding
value of the focal individual—the part dealing with its associative effect—that is simply
not provided by the phenotype of the focal individual. To exploit this additional heritable
variation (when it exists), interactions with relatives or selection that puts at least some
weight on group value is essential.

The second feature about groups is their formation and reproduction, an issue that is
especially important under differential propagation of groups (i.e., group selection). Here,
we are assuming a situation akin to our analysis of family selection (Chapter 21), in that,
while group informationmaybeused to select individuals to form thenext generation, these
individuals are then mated at random. In the group-selection literature, this is referred to
as amigrant pool model (Levins 1970; Wade 1978). Such a structure only allows changes in
breeding values (as opposed to genotypic values) to propagate to the next generation. In
settings where entire groups are propagated as a unit (the propagule pool model; Wade
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Figure 22.2 Thedifference between trait-based andvariance-component basedmodels.Here,
the phenotypic value, zo,1, of a trait (which we label 1) in an offspring is a function of ma-
ternal phenotype. We suppose that there are three maternal traits (i, j, k) whose phenotypes
influence the offspring value. Top: Under a variance-component based approach, we ignore
all the maternal trait values and simply estimate a single maternal performance value, Pm,1,
that directly influences the trait value in the offspring. The resulting model becomes zo,1 =
µ+Ad,1 +Ed,1 +Pm,1, whereAd,1 is the trait breeding value in the offspring,Ed,1, its envi-
ronmental value, andPm,1 = As,1+Es,1 canbedecomposed into the social breedingvalueon
trait 1 plus a residual.Bottom: Under a trait-basedmodel, providedweknowall of thematernal
traits whose phenotypes influence trait 1 in the offspring, then we directly incorporate these,
along with their regression coefficients,Ψ1,i, showing how these maternal phenotypes trans-
late into offspring trait value.Here, zo,1 = µ+Ad,1+Ed,1+Ψ1,izm,i+Ψ1,jzm,j +Ψ1,kzm,k,
where the last three terms together comprise Pm,1. Trait-based models are required if one
wishes to consider the joint evolution of traits 1 and i, j, k. Their drawback is that one has to
specifiy to all of the relevantmaternal traits. Conversely, under a variance-componentmethod,
all of the maternal phenotypes are conveniently collapsed into a single value, whose breeding
value can be estimated from an appropriate design (detailed below).

1978), the potential exists for nonadditive variance to contribute to the among-group vari-
ance.

Trait- vs. Variance Component-based Models
A brief comment is in order, expanding upon our earlier remarks on trait vs. variance-
component based modeling (see Bijma 2014 for an extended discussion). The original trait-
based model of associative effects was Falconer’s (1965) model for litter size in mice (Equa-
tion 15.21), namely

zi = Gi + ei + (m · zmo,i)

whereGi is the direct breeding value for litter size, while the associative effect is a function
of the litter size of its mother (zmo,i). Building on this idea, Moore et al. (1997) and Wolf et
al. (1998) suggested a model wherein the value for trait i also depends upon the value, z′j ,
of trait j (which may be a different trait from i) in an interacting individual,

zi = Ai + ei + Ψijz
′
j = Ai + ei + ΨijA

′
j + ΨijE

′
j (22.2)
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whereΨij (followingKirkpatrick andLande1989) is themultivariate extensionof Falconer’s
m. This class of models can lead to some very interesting behavior, such as feedback loops
that significantly modify Equation 22.2. Figure 22.2 illustrates this difference in modeling,
while Volume 3 explores trait-based models in some detail.

Bijma (2014) noted that variance-component approaches are akin to using Robertson’s
secondary theorem, R = σ(w, A) (Equation 6.25a), to predict response, which ignores any
specific traits and simply considers the covariance between breeding value (which we gen-
eralize by calculating total breeding value, AT , below) and relative fitness. In contrast,
trait-based approaches are akin to using the multivariate Lande equation, R = Gβ (Equa-
tion 13.26a), to predict response. The Lande equation returns the response in all traits of
interest, but it requires that all relevant traits be included in the analysis and is potentially
erroneous if they are not (Volume 3).

The Total Breeding Value (TBV) and T 2

Given that an individual contains breeding values for both direct and social effects, what
is its contribution to the next generation? We can directly see this from Equation 22.1d,
where it is shown as the contribution to the population mean from individual 1 from its
direct breeding value (Ad1) plus its contribution to the (n−1) other individuals in its group
through its associative-effects breeding value,As1 (Figure 22.1b). Based on this observation,
Bijma et al. (2007a) defined the total breeding value (TBV),AT , of a trait from an individual
measured in a group of size n as the sum of its direct effect plus the total associative effects
over all group members, or

ATi = Adi + (n − 1)Asi (22.3)

Moore et al. (1997) introduced a similar measure for trait-based models. Noting that the
mean of the population is simply the mean breeding value allows Equation 22.3 to recover
Equation 22.1d. The critical observation is that when associative effects are present, the
total breeding value of an individual contains components that are not expressed in its own
phenotype, but rather, only in the phenotypes of other individuals with which it interacts.

Example 22.2. Consider a trait in a group of four (unrelated) individuals, where we assume
there are no environmental effects, which means that Pd = Ad and Ps = As. The popula-
tion mean is 20, and the four group members have the following breeding values for direct,
associative, and total effects:

Individual Ad As AT
∑

j !=i Asj z

1 9 -4 -3 4 33
2 5 -1 2 1 26
3 -6 2 0 -2 12
4 -8 3 1 -3 9

Because n = 4,AT = Ad +3 As. The contribution of the associative effects of the other three
group members to i’s phenotypic value is given by

∑
j !=i Asj . For example, for individual 1,

the contributions from individuals 2 through 4 is -1 + 2 + 3 = 4. Thus, from Equation 22.1c, the
phenotypic value we would observe is

zi = 20 + Adi +
4∑

j !=i

Asj

Individual 1 has the largest direct effect (9) and the largest observed trait value (33). This
individual also has themost unfavorable associative value (-4), and the smallest total breeding
value (-3). Conversely, it has the largest contribution (4) to its trait value from the associative
effects of the other group members. Its high trait value is due to this combination of a high
direct effect and a high contribution from the associative effects of the other group members.
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Its unfavorable associative effects donot appear in its ownphenotype, but rather are expressed
in the trait values of the other group members. As a result, its own phenotypic value is a poor
predictor of AT .

If the next generation is formed by crossing the two individuals (1 and 2) with the largest
trait values, the expected offspring mean will be 20 + (-3+2)/2 = 19.5, which is the mean
plus the average of the two individuals’ total breeding values. Although the two largest
individuals were chosen, the populationmean decreases. Conversely, crossing the two smallest
individuals gives an expected offspring mean of 20 + (0+1)/2 = 20.5, increasing the mean.
While the two smallest individuals have the smallest direct effects, they also have the most
favorable associative effects, and hence result in a more favorable response. The greatest
expected response occurs by crossing the two individuals with the largest total breeding
values (2 and 4), for an expected mean of 20 + (2+1)/2 = 21.5.

The covariance between an individual’s phenotype and total breeding value is

σ(zi, ATi) = σ

[
µ + Adi +

n∑

j !=i

Asj + ei, Adi + (n − 1)Asi

]

= σ

[
Adi , Adi + (n − 1)Asi

]
+

n∑

j !=i

σ

[
Asj , Adi + (n − 1)Asi

]
(22.4a)

For now, we assume group members are unrelated, in which case the covariances in the
summation are all zero,

σ(z, AT ) = σ2(Ad) + (n − 1)σ(Ad, As) (22.4b)

If the direct and associative effects are uncorrelated, this reduces to the standard result
that the covariance between an individual’s phenotype and breeding value is simply the
additive genetic variance (in this case, of direct effects). By contrast, the variance of the total
breeding value becomes

σ2(AT ) = σ2 [Ad + (n − 1)As]
= σ2(Ad) + 2(n − 1)σ(Ad, As) + (n − 1)2σ2(As) (22.4c)
= σ(z, AT ) + (n − 1)

[
σ(Ad, As) + (n − 1)σ2(As)

]
(22.4d)

Equation 22.4d shows that the covariance between total breeding value and phenotype is
different from the variance in total breeding value. This reflects the fact that the associative
effects of an individual do not influence its own phenotype. Note from Equation 22.4c that
σ(Ad, As) and σ2(As) are scaled by (n−1) and (n−1)2, respectively, in σ2(AT ). Hence, with
even modest group sizes, small values of σ(Ad, As) and σ2(As) can still have a very signif-
icant impact. Some of the early papers reporting estimates of these two quantities ignored
this scaling with n, and hence tended to downplay the importance of social interactions
(Chen et al. 2006; Van Vleck et al. 2007).

Now consider the phenotypic variance,

σ2
z = σ2

(
Pdi +

n∑

j !=i

Psj

)
(22.5a)

If we assume (for now) that the group members are unrelated, then σ(Pdi , Psj ) = 0. For a
group of size n, Equation 22.5a reduces to

σ2
z = σ2(Pd) + (n − 1)σ2(Ps) (22.5b)

= σ2(Ad) + (n − 1)σ2(As) + σ2(Ed) + (n − 1)σ2(Es) (22.5c)
= σ2(Ad) + (n − 1)σ2(As) + σ2(e) (22.5d)
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where e is given by Equation 22.1c. With the phenotypic variance in hand, we can define
the heritability of the direct and associative effects, h2

d and h2
s, respectively, as

h2
d =

σ2(Ad)
σ2

z

and h2
s =

σ2(As)
σ2

z

(22.6a)

The careful reader will note that there is a different, but perhaps more natural, definition of
these two heritabilities. Equation 22.6a standardizes the genetic variances with respect to
the total trait variance, but one could also standardize them with respect to the variance of
direct and associative effects, for example,

h2
d′ =

σ2(Ad)
σ2(Pd)

and h2
s′ =

σ2(As)
σ2(Ps)

(22.6b)

We use a prime to distinguish these from the hertiabilities scaled to total trait variance
(σ2(Px) vs. σ2

z ). While heritabilities scaled by σ2
z (Equation 22.6a) are the most widespread

in the literature, there are some advantages to scaling hertiabilities by σ2(Px) (where x = d
or s). On this scale, the heritabilities measure the fraction of additive genetic variation in
the actual effect (direct or associative) itself, rather than in the trait value. Further, h2

x′ is
independent of the group size (provided thatAs does not changewith group size), as σ2(Px)
is independent of n, while σ2

z is a function of n (Equation 22.5b).
In keeping with Equation 22.6a, we can similarly define the “heritability”of the total

breeding value as

T 2 =
σ2(AT )

σ2
z

(22.7a)

as suggestedbyBijmaet al. (2007a). The reasonwehaveusedT 2 rather thanh2
T is that, unlike

heritabilities, T 2 can exceed one. This can happen becauseσ2(AT ) contains additional terms
not found in σ2

z , as the associative effect of an individual influences others in the group,
rather than the individual in which it resides.

To see this, first assume that the environmental effects are all zero (σ2(e) = 0), so that
we can focus on differences in the genetic variance components. From Equations 22.4c and
22.5c,

σ2(AT ) − σ2
z = 2(n − 1)σ(Ad, As) + (n − 1)2σ2(As) − (n − 1)σ2(As)

= (n − 1)
[
2σ(Ad, As) + (n − 2)σ2(As)

]
(22.7b)

If this difference exceeds the contribution (σ2
e ) from environmental effects, then T 2 > 1.

Bijma (2011, 2014) noted that σ2(AT ) provides the appropriate (and general) defini-
tion for the amount of heritable variation underlying the potential for response. Recalling
Equations 22.1e and 22.3, the Robertson-Price identity (Equation 6.10) yields the expected
response (change in mean breeding value) to selection as

R = σ(w, AT ) (22.8a)

Because the linear regression of w on AT has a slope of

βw|AT
=

σ(w, AT )
σ2(AT )

(22.8b)

(LW Equation 3.14b), the general expression for response can be written as

R = βw|AT
σ2(AT ) (22.8c)

The apparent simplicity of this expression is somewhat misleading, as βw|AT
can be a very

complex function of the relationship among group members (see Bijma 2011 for examples).
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Example 22.3. Consider a trait in a group of 10 unrelated individuals, with σ2(Pd) = 10,
σ2(Ps) = 1, and both direct and associative effects having modest heritabilities on the scale
of the effects themselves (h2

d′ = 0.4, h2
s′ = 0.3). To simplify matters, assume σ(Ad, As) = 0.

Applying Equation 22.5b, the resulting phenotypic variance is

σ2
z = σ2(Pd) + 9 · σ2(Ps) = 10 + 9 · 1 = 19

From Equation 22.4c, the variance in total breeding value becomes

σ2(AT ) = σ2(Ad)+92 ·σ2(As) = h2
d′ σ2(Pd)+

[
92 · h2

s′ σ2(Ps)
]

= 4+(81 · 0.3) = 28.3

yielding (from Equation 22.7a) T 2 = 28.3/19 = 1.49.
A real-world example of large potential differences in h2

d versus T 2 involves survival
days in chickens (Bijma et al. 2007b). Ignoring associative effects yields a direct heritability of
h2

d= 0.07, while a mixed model incorporating associative effects (detailed later in the chapter)
yielded an estimate of T 2= 0.20, a threefold increase. Hence, under the conditions of this
study, roughly two-thirds of the heritable variation in the trait arises from interactions be-
tween individuals and is thus hidden from standard analyses that ignore them. As discussed
below, this component is only fully accessible under individual selection if the group includes
relatives.

As as a Function of Group Size
As the careful reader will have noted, the direct effect, Ad, is independent of group size,
while the social effect, As, potentially changes with group size. Suppose a genotype has
a breeding value for social effects of 10 when measured in groups of size four. Does this
change with group size and, if so, how? This is an empirical issue, and one can frame it in
a G× E setting. The environments here are different group size, and if As shows G× E, the
value of As changes over n.

Two simple scenarios bracket the possible changes. First, suppose that an individual
eats 500 grams of food daily. In a groupwith a fixed food supply, the associative effect of this
individual is to remove 500 grams from the total food supply each day. Hence, in a group
of size n, Psi = −500/(n − 1), while its total associative effect is the sum over all group
members, (n − 1)Psi = −500. Here, the total associative effect remains unchanged over
group size, while the individual associative effect on any group member shows a dilution
with increasing group size. Alternatively, consider a large tree whose associative effect
results from shading individuals under its canopy. In such a case, its associative effect
shows no dilution with group size. Similarly, Bijma et al. (2007a) noted that alarm calls are
also expected to show no dilution with group size.

More generally, we have been assuming that all group members experience the same
social effect from a conspecific (i.e., they all experience Ps,i from individual i). However,
one can imagine settings where Ps,i is some base value, but its effect on specific individuals
depends on their physical distance from individual i (e.g., Muir 2005; Cappa and Cantet
2008), or the total amount of time that they interact with each other (Cantet andCappa 2008)
(e.g., Example 22.11). Bijma (2014) presented amore general treatment of this issue.A second
complication, wherein interactionsmaydiffer between kin andnonkin (e.g., Sherman 1977),
was examined by Alemu et al. (2014).

A developing research area involves the further characterization of social effects and
the degree to which they change over group size. Some initial insight was provided by
Hadfield and Wilson (2007) and Bijma (2010b). Hadfield and Wilson assumed a simple
regression model

Psi,n = Psbi +
1

n − 1
Psri (22.9)
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with the value for social effect in a group of size n being a function of two components: a
base (or intercept) value, Psbi , and a linear dilution rate, Psri . Note that the resulting total
sum of associative effects from i over the (n−1) groupmembers becomes (n−1)Psbi +Psri

meaning that Psr is the constant contribution, while that from Psb scales with group size.
Bijma (2010b) suggested a related model

Psi,n =
1

(n − 1)d
Psi,2 (22.10a)

which expresses all group social values as a function of the value for a group of size two
(Psi,2) weighted by a power function of the dilution fraction, d (assumed to be the same
over all genotypes).Aswewill see in themodels below, Bijma’smodel is a bitmore tractable,
while theHadfield-Wilsonmodel ismore general.When d = 1 andPspi = 0, the twomodels
are equivalent. Under the Bijma model, substituting Equation 22.10a into Equation 22.5a
gives the total phenotypic variance as

σ2
z,n = σ2(Pd) + (n − 1)1−2dσ2(Ps,2) (22.10b)

Phenotypic variance increases with n for d < 1/2, remains constant for d = 1/2, and
decreases with n for d > 1/2. Assuming that breeding values are diluted in the same
fashion as phenotypic effects, then under the Bijma model

As,n =
As,2

(n − 1)d
and σ2(As,n) =

σ2(As,2)
(n − 1)2d

(22.10c)

Hence, σ(Ad, As) = σ(Ad, As,2)/(n − 1)d, and substituting into Equation 22.4c gives the
total additive-genetic variance for a group of size n as

σ2(AT,n) = σ2(Ad) + (n − 1)1−d
[
2σ(Ad, As,2) + (n − 1)1−dσ2(As,2)

]
(22.10d)

Hence, provided that d < 1, the additive total variance increases with n. Both Hadfield
and Wilson (2007) and Bijma (2010b) have suggested methods to estimate the quantities in
Equations 22.9 and 22.10a, respectively.

SELECTION IN THE PRESENCE OF ASSOCIATIVE EFFECTS

One of the key results when associative effects are present is that individual selection can
result in a reversed response, while group selection always results in a positive response
(although it may be far from optimal). These points were clearly made by Griffing (1967)
for the simple case of two interacting, and unrelated, individuals within each group. For
selection on individual phenotypes, the response becomes

R =
ı

σ(z)
[
σ2(Ad) + σ(Ad, As)

]
(22.11a)

A negative covariance between direct and associative effects reduces the efficiency of se-
lection, and if it is sufficiently negative, it gives a reversed response. This loss of efficiency
occurs because the only information an individual’s phenotype contains about its breeding
value for associative effects is that provided by the covariance between the direct and asso-
ciative breeding values (which can be negative). Conversely, if we select based on the mean
of a group, we are selecting on both direct and associative effects to improve trait value. For
the case of n = 2, Griffing obtained the expected response under group selection as

R =
ı

2σ(z)
[
σ2(Ad) + 2σ(Ad, As) + σ2(As)

]
=

ı

2σ(z)
σ2(AT ) (22.11b)
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While group selection always yields a nonnegative response, if the associative effects are
weak, this approach will prove very inefficient relative to individual selection. For exam-
ple, in the absence of associative effects, σ2(z) = σ2(z)/2, and Equation 22.11b reduces to
ıσ(Ad)/[

√
2σ(z)], or 1/

√
2 = 0.701 of the response under individual selection.

Individual Selection: Theory
Consider individual selection in a group of size n, whose members are potentially related.
Recalling Equation 22.4a, the correlation between phenotype and total breeding value is

σ(zi, ATi) = σ2(Ad) + (n − 1)σ(Ad, As) +
∑

j !=i

σ
[
Asj , Adi + (n − 1)Asi

]

Let rij denotes the relationship between individuals i and j. When individuals within the
group are related, then

σ(Asj , Asi) = rijσ
2(As)

Likewise if Ad and As are correlated, then for relatives we also have

σ(Adj , Asi) = rijσ(Ad, As)

Hence,
∑

j !=i

σ
[
Asj , Adi + (n − 1)Asi

]
=

∑

j !=i

σ
(
Asj , Adi

)
+ (n − 1)

∑

j !=i

σ
(
Asj , Asi

)

= σ(Ad, As)
∑

j !=i

rij + (n − 1)σ2(As)
∑

j !=i

rij

=
[
σ(Ad, As) + (n − 1)σ2(As)

] [∑

j !=i

rij

]
(22.12a)

When all of the group members have the same relatedness (rij = r), the sum becomes
(n − 1)r, returning the result of Bijma et al. (2007a),

σ(z, AT ) = σ2(Ad) + (n − 1)
[
σ(Ad, As) + rσ (As, Ad) + r(n − 1)σ2 (As)

]
(22.12b)

= σ2(Ad) + (n − 1)(1 + r)σ(Ad, As) + r(n − 1)2σ2 (As) (22.12c)

Equation22.12c shows the impact of having relativeswithin thegroup,which is to shift some
of the variance in social effects, σ2 (As), into the covariance, σ(z, AT ), between individual
phenotype and total breeding value. The use of relatives in the group thus allows individ-
ual selection to access some of this otherwise untapped variance. This occurs because the
breeding values for social effects of groupmembers (which impacts the phenotypic value of
the focal individual) are now correlated with an individual’s own breeding value for social
effects (where the latter has no direct impact on its phenotype).

A useful alternative expression is to partition σ(z, AT ) into the contribution expected
in unrelated groups (Equation 22.4b) plus the additional contribution due to individuals in
the group being related, which yields

σ(z, AT ) = σ(z, AT | r = 0) + (n − 1)r
[
σ (As, Ad) + (n − 1)σ2 (As)

]
(22.12d)

Alternatively, this can be expressed as

σ(z, AT ) = rσ2(AT ) + (1 − r)
[
σ2(Ad) + (n − 1)σ(Ad, As)

]
(22.12e)

showing that the more closely related group members are, the more weight individual se-
lection puts on AT . In the extreme, when groups are composed of clones, then σ(z, AT ) =
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σ2(AT ). Plant breeding often selects among groups comprised of genetically identical indi-
viduals (i.e., inbred lines and clonally propagated lines), with such settings exploiting all of
the heritable variation in both direct and associative effects without requiring any special
design.

Similarly, when all members in the group have the same relatedness, r, the phenotypic
variance becomes

σ2(z) = σ2(Ad) + σ2(Ed) + (n − 1)
[
σ2(As) + σ2(Es)

]

+ (n − 1)r
[
2σ(As, Ad) + (n − 2)σ2(Ad)

]
(22.13a)

= σ2(z | r = 0) + (n − 1)r
[
2σ(As, Ad) + (n − 2)σ2(Ad)

]
(22.13b)

where the phenotypic variance when all group members are unrelated, σ2(z | r = 0), is
given by Equation 22.5c.

The response to selection is simply the change in the mean total breeding value, which
(from Chapter 13) is the within-generation change in the phenotypic mean after selection
(the selectiondifferential, S) times the slope of the regression ofAT onphenotype z, yielding

R =
σ(z, AT )

σ2
z

S =
σ(z, AT )

σz
ı (22.14)

The second expression follows from the standard identity that S = σz ı (Equation 13.6a).
Substituting Equation 22.12c, with n = 2 and r = 0, into Equation 22.13 recovers Griffing’s
result (Equation 22.11a).

Example 22.4. Muir (2005) estimated variance components for six-week body weight in
Japanese quail (Coturnix coturnix japonica) housed in groups of n = 16 per cage. REML esti-
mates of the genetic variances were σ2(Ad) = 33.7 and σ2(As) = 2.87, while σ(Ad, As) =
−5.5. Under these values, the predicted response to individual selection in a group of 16
unrelated individuals is

R =
ı

σz

[
σ2(Ad) + (n − 1)σ(Ad, As)

]
=

ı

σz
[33.7 + 15 · (−5.5)] = −48.8

ı

σz

The strong negative covariance between direct and social (competitive) effects results in an
expected reversed selection response if individual selection is used, as the positive gain from
the improvement of direct effects (33.7) is swamped by the negative effects from the correlated
response in social values (-82.5).

The presence of relatives within the group results in some fraction of σ2(As) being in-
corporated into the response under individual selection. Suppose the group of 16 consists of
two half-sib families. In this case, the average relationship is 0.125, and from Equation 22.12d,
the resulting covariance between phenotype and total breeding values becomes

σ(z, AT ) = σ(z, AT | r = 0) + (n − 1)r
[
σ (As, Ad) + (n − 1)σ2 (As)

]

= −48.4 + 15 · 0.125 (−5.5 + 15 · 2.87) = 21.6

and from Equation 22.14,

R =
ı

σz
σ(z, AT ) = 21.6

ı

σz

Hence, simplyusinggroups of relatives (as opposed to groups of unrelated individuals) allows
individual selection to give an expected positive response.

Example 22.5. Consider a trait with σ2(Ad) = 500, σ2(As) = 50, ρ(Ad, As) = −0.25, and
σ2(Ed) = 400. For ease of presentation, we assume that there are no social environmental
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effects (Es = 0) and that Ed is uncorrelated across family members (i.e., no common family
environment andnodominance). Consider a group size ofn = 6. Given a selection intensity of
ı, what response is expected under individual selection when group members are unrelated?
Here σ(Ad, As) = −0.25

√
500 · 50 = −39.5. Substituting into Equation 22.4b gives the

covariance as

σ(z, AT ) = σ2(Ad) + (n − 1)σ(Ad, As) = 500 − (5 · 39.5) = 302.5

Likewise, from Equation 22.5c, the phenotypic variance is

σ2(z) = σ2(Ad) + σ2(Ed) + (n − 1)
[
σ2(As) + σ2(Es)

]

= 500 + 400 + 5 · 50 = 1150

Applying Equation 22.14, the resulting response becomes

R =
σ(z, AT )

σz
ı =

302.5√
1150

ı = 8.92 ı

Now suppose that group members are half-sibs (r = 0.25). What is the expected re-
sponse? Applying Equation 22.12d yields

σ(z, AT ) = σ(z, AT | r = 0) + (n − 1)r
[
σ (As, Ad) + (n − 1)σ2 (As)

]

= 302.5 + 5 · 0.25(−39.5 + 5 · 50) = 565.5

while Equation 22.13b yields a phenotypic variance of

σ2(z) = σ2(z | r = 0) + (n − 1)r
[
σ(As, Ad) + (n − 2)σ2(Ad)

]

= 1150 + [5 · 0.25 (−39.5 + 4 · 50)] = 1350.6

resulting in a response of R = 15.39 ı. Likewise, if the group consists of full sibs (r = 0.5),
the resulting covariance, variance, and response are, respectively, 828.5, 1551.2, and 21.04 ı.
Thus, the response to selection increases with the relatedness of group members, with a 1.7-
and 2.4-fold increase when using groups of half- and full-sibs (respectively) relative to groups
of unrelated individuals.

Individual Selection: Direct vs. Social Response
Recalling Equation 22.1e, the response in the trait has two components: that from direct
effects, Rd = ∆µAd , and that from social effects, Rs = ∆µAs . The relative contribution of
each to the total response easily follows by considering the covariance of an individual’s
phenotype value, z, with either its direct, Ad, or social, As, breeding values. Specifically,

Rz = Rd + (n − 1)Rs, where Rd =
σ(Ad, z)

σz
ı and Rs =

σ(As, z)
σz

ı (22.15a)

Here

σ(Ad, z) = σ

(
Ad, Ad +

∑

i !=j

As,i + e

)
= σ2(Ad) + r(n − 1)σ(Ad, As) (22.15b)

while

σ(As, z) = σ

(
As, Ad +

∑

i !=j

As,i + e

)
= σ(Ad, As) + r(n − 1)σ2(As) (22.15c)
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Equation 22.15b shows that the group must contain relatives (r "= 0) in order for the covari-
ance between direct and social values to impact the response in the direct value. Likewise,
under individual selection, response in the social value only occurs if the direct and social
values are correlated within individuals (σ(Ad, As) "= 0) or if group members are related
(r "= 0), in which case the social value of the focal individual is correlated with the social
values of those within its group.

Example 22.6. Consider the response in a family of half-sibs from Example 22.5, where the
expected total response was 15.39 ı. What were the contributions from the direct and social
responses? For the values used in that example,

σ(Ad, z) = σ2(Ad) + r(n − 1)σ(Ad, As) = 500 + [0.25 · 5 · (−39.5)] = 450.63

σ(As, z) = σ(Ad, As) + r(n − 1)σ2(As) = −39.5 + [0.24 · 5 · 50] = 23.0

Recalling from Example 22.5 that σ2
z = 1350.6 for half-sibs, Equations 22.15a and 22.15b

return the two components of response as

Rd =
450.63√
1350.6

ı = 12.26 ı and Rs =
23√

1350.6
ı = 0.63 ı

Hence, 80% (12.26/15.39) of the total response was due to response in direct effects, while
20% was from the response in social effects (5·0.63/15.39). Under individual selection with
half-sib families, both the mean direct andmean social values improved. By contrast, if group
members are unrelated, then (Example 22.5) σ2

z = 1150, while

σ(Ad, z) = σ2(Ad) = 500 and σ(As, z) = σ(Ad, As) = −39.5

resulting in responses of

Rd =
500√
1150

ı = 14.74 ı and Rs =
−39.5√

1150
ı = −1.165 ı

In this case, while the total response was positive, the large direct response (14.74) was partly
offset by a decrease in the mean social environment ([n − 1]Rs = 5 · [−1.165] = −5.83),
yielding a total response of (14.74 − 5.83) ı = 8.91 ı. The lack of relatedness implies no direct
selection involving σ2(As), and hence the social breeding values only change through their
correlation with the direct values, which in this example was negative.

Individual Selection: Maternal Effects
An important special case, and indeed the forerunners ofmore generalmodels of associative
effects, are models of direct and maternal effects (Dickerson 1947; Willham 1963, 1972;
Cheverud 1984a). Here, the trait value of an individual is a function of its direct effect, Pd,
and a maternal performance trait, Pm, contributed by its mother, meaning that if j is the
mother of i, then

zi = Pdi + Pm,j (22.16a)

In the absence of inbreeding, r = 1/2 for this group (mother-offspring) with n = 2. From
Equation 22.12c, the covariance between phenotype and total breeding value (AT = Ad +
Am, with As = Am) is

σ(z, AT ) = σ2(Ad) + (3/2)σ(Ad, Am) + (1/2)σ2 (Am) (22.16b)

while Equation 22.13a yields a phenotypic variance of

σ2(z) = σ2(Ad) + σ(Ad, Am) + σ2(Am) + σ2(e) (22.16c)
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making the resulting response to selection

R =
σ(z, AT )

σz
ı =

σ2(Ad) + (3/2)σ(Ad, Am) + (1/2)σ2 (Am)√
σ2(Ad) + σ(Ad, Am) + σ2(Am) + σ2(e)

ı (22.16d)

The total response can also be expressed in terms of the direct andmaternal-effect response.
From Equation 22.15,

Rd =
σ(Ad, z)

σz
ı =

σ2(Ad) + (1/2)σ(Ad, Am)
σz

ı (22.17a)

and
Rm =

σ(Am, z)
σz

ı =
σ(Ad, Am) + (1/2)σ2(Am)

σz
ı (22.17b)

with the response, R, in the trait mean being

R = Rd + (2 − 1)Rm = Rd + Rm (22.17c)

Substitution of Equations 22.17a and 22.17b into Equation 22.17c recovers Equation 22.16d.
As reviewed by Cheverud (1984a), most estimates of the direct-maternal covariance are
negative. This raises the possibility of a reversed response due to a greater reduction in the
maternal environment than improvement in the direct effect. It also allows for the trait to
improve (via its direct value) at the expense of a declining maternal value.

The careful reader might recall from Chapter 15 that Falconer’s trait-based model of a
single maternal effect results in more complicated dynamics (such as time lags). Why do
these not appear in this analysis? As noted by Bijma (2011), variance-component models
essentially focus on the permanent component of response, ignoring transient contributions
that can appear in a trait-based analysis. He showed that Equation 22.16d and Falconer’s
model both give the same value for the permanent response.

Group Selection: Theory
Under individual selection with unrelated group members, there is no contribution from
σ2(As) to the response, and changes in As only enter as a correlated response to changes in
Ad, which can be in an unfavorable direction when σ(Ad, As) < 0. As we will see, σ2(As)
enters into the response under group selection evenwhen there are no relatives in the group.
The reason is that the group phenotype is a function of the distribution of As values.

Under strict group selection, selection is based on the group mean, z, or equivalently
the total value of the group, nz =

∑
z, and we will usually work with the latter. To obtain

the covariance between the total value of a group and the total breeding value of one of its
members, first note that

n∑

j=1

zj =
n∑

j=1

[
Adj + Edj +

n∑

k !=j

(Ask + Esk)
]

=
n∑

j=1

Adj +
n∑

j=1

n∑

k !=j

Ask +
n∑

j=1

ej

=
n∑

j=1

Adj + (n − 1)
n∑

j=1

Asj +
n∑

j=1

ej

=
n∑

j=1

ATj +
n∑

j=1

ej (22.18)

where the residual values, ei, sweep up a variety of environmental terms, and are given
by Equation 22.1c. The residuals are assumed to be uncorrelated with any breeding values,
but of course residuals can be (and usually are) correlated within a group (e.g., Equation
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22.23a). If rij is the relationship between individuals i and j, the covariance between the
group total and the total breeding value of a group member, i, is

σ

(
ATi ,

n∑

j=1

zj

)
= σ

(
ATi ,

n∑

j=1

[ATj + ej ]
)

=
n∑

j=1

σ
(
ATi , ATj

)
= σ2(AT )

∑

j=1

rij

= σ2(AT )
(

1 +
∑

j !=i

rij

)
(22.19a)

If the group members are unrelated, then

σ

(
ATi ,

n∑

j=1

zj

)
= σ2(AT ) (22.19b)

which implies that σ(ATi , z) = σ2(AT )/n. Hence, group selection acts on the total breeding
value of an individual, rather than on only part of AT , as was the case with individual
selection (e.g., Equation 22.12e). The contribution of associative effects to the total breed-
ing value does not influence the phenotype of the focal individual, but does influence the
phenotypes of other group members, and hence, z. Group selection directly targets these
effects. If all members have the same degree of relationship (r), then

σ

(
ATi ,

n∑

j=1

zj

)
= σ2(AT ) [ 1 + (n − 1)r ] (22.19c)

Selection can act on associative effects even when none of the individuals in the group are
related, but its efficiency is amplified when using relatives (compare Equations 22.19b and
22.19c). From Equation 22.19c, the covariance of the total breeding value, AT , of a group
member with its group mean, z, is

σ (ATi , z ) =
1
n
σ2(AT ) [ 1 + (n − 1)r ] = σ2(AT )

(
r +

1 − r

n

)
(22.19d)

Turning to the phenotypic variance of the group total, n z, a little bit of algebra is
required. FromEquation 22.18, we can decompose this group variance into additive-genetic
and environmental components

σ2

( n∑

j=1

ATj +
n∑

j=1

ej

)
= σ

( n∑

j=1

ATj ,
n∑

k=1

ATk

)
+ σ

( n∑

j=1

ej ,
n∑

k=1

ek

)
(22.20)

Tackling the genetic component first yields

σ

( n∑

j=1

ATj ,
n∑

k=1

ATk

)
= σ2(AT ) ·

n∑

j=1

n∑

k=1

rij (22.21a)

When all group members have the same degree of relationship, r, this reduces to

σ

( n∑

j=1

ATj ,
n∑

k=1

ATk

)
= σ2(AT ) n [1 + (n − 1) r ] (22.21b)

Turning our attention to the residual terms, recall (Equation 22.1c) that the residual is
a function of both direct and social environmental effects,

ei = Edi +
∑

k !=i

Esk
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Clearly, individuals within the same group are correlated because they share the Es values
from the other group members. Recalling that σ(Edi , Esk) = 0 for i "= k, the residual
variance becomes

σ2(e) = σ(ei, ei) = σ

(
Edi +

∑

k !=i

Esk , Edi +
∑

k !=i

Esk

)
= σ (Edi , Edi) +

∑

k !=i

σ (Esk , Esk)

= σ2(Ed) + (n − 1)σ2(Es) (22.22a)

For i "= j in the same group, the covariance among residuals is

σ(ei, ej) = σ

(
Edi + Esj +

∑

k !=i,j

Esk , Edj + Esi +
∑

k !=i,j

Esk

)

= σ
(
Edi , Edj

)
+ σ (Edi , Esi) + σ

(
Edj , Esj

)
+ σ

( ∑

k !=i,j

Esk ,
∑

k !=i,j

Esk

)

= 0 + 2σ(Ed, Es) +
∑

k !=i,j

σ

(
Esk , Esk

)

= 2σ(Ed, Es) + (n − 2)σ2(Es) (22.22b)

The first term accounts for the fact that the direct and social environmental values can
be correlated within the same individual, while the second term accounts for the shared
environmental values contributed by the other n−2 groupmembers. Putting these together
yields

σ(ei, ej) =






σ2(e) i = j

ρ σ2(e) i "= j, i and j in the same group
0 i "= j, i and j in different groups

(22.23a)

where

σ2(e) = σ2(Ed) + (n − 1)σ2(Es) and ρ =
2σ(Ed, Es) + (n − 2)σ2(Es)

σ2(e)
(22.23b)

Here ρ is the correlation among environmental values within a group, and can be either
positive or negative. For large values of n, we expect σ2(Es) to dominate the covariance
term, yielding ρ > 0. Equations 22.23a and 22.23bwere first obtained by Bijma et al. (2007b).
Correlations among environmental residuals are also generated by shared maternal effects
and (for full-sibs) dominance. If all group members are the same type of relative, this is
simply incorporated into ρ. However, when a group consists of two (or more) families, the
additional residual covariance among sibs needs to be accounted for (Example 22.14, below,
shows how this is accomplished in a BLUP framework).

Using these results, and following the same logic aswith additive-genetic values, yields

σ

( n∑

j=1

ej ,
n∑

k=1

ek

)
= nσ2(e) +

∑

j !=k

σ (ej , ek) = nσ2(e) [1 + (n − 1)ρ] (22.24)

Substituting Equations 22.21b and 22.24 into Equation 22.20 returns the variance of the
group total as

σ2

( n∑

j=1

zj

)
= nσ2(AT ) [1 + (n − 1)r] + nσ2(e) [1 + (n − 1)ρ] (22.25a)

The variance of the group mean is simply 1/n2 of this value, or

σ2( z ) = σ2(AT )
(

1 + (n − 1)r
n

)
+ σ2(e)

(
1 + (n − 1)ρ

n

)

= σ2(AT )
(

r +
1 − r

n

)
+ σ2(e)

(
ρ +

1 − ρ

n

)
(22.25b)
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Note the symmetric roles of the relatedness, r, of group members and the within-group
correlation, ρ, of residuals with respect to, respectively, the variance in total breeding values
and the residual variance.

Using the covariance between total breeding value and group mean (Equation 22.19d)
and the variance of the group mean (Equation 22.25b), the resulting response to selection
(i.e., the change in trait mean) follows from our general response expression (Equation
13.10b), and is

R =
σ(AT , z)
σ2(z)

S =
σ2(AT )rn

σ2(AT )rn + σ2(e)ρn
S (22.26a)

=
σ(AT , z)

σ(z)
ı =

σ2(AT )rn√
σ2(AT )rn + σ2(e)ρn

ı (22.26b)

where
rn = r +

1 − r

n
and ρn = ρ +

1 − ρ

n

For n = 2 and r = 0, applying Equations 22.19b and 22.25a recovers Griffing’s result
(Equation 22.11b). As expected, in caseswhere there are only direct effects, Equations 22.26a
and 22.26b reduce to our expressions for family selection (Chapter 21).

Example 22.7. Consider group selection using Muir’s quail data from Example 22.4. Here
σ2(Ad) = 33.7,σ2(As) = 2.87,σ(Ad, As) = −5.5, and n = 16. Muir estimated the
residual variance as σ2(e) = 69.0, while his model assumed ρ = 0, resulting ρn = 1/n, and
hence σ2(e)ρn = 69.0/16 = 4.32. Applying Equation 22.4e yields a total additive variance
of

σ2(AT ) = σ2(Ad) + 2(n − 1)σ(Ad, As) + (n − 1)2σ2(As)
= 33.7 + [30 · (−5.5)] +

[
302 · 2.87

]
= 2451.7

while Equation 22.26b yields a response of

R =
σ2(AT )rn√

σ2(AT )rn + σ2(e)ρn

ı =
2451.7 · rn√

2451.7 · rn + 4.32
ı

For groups of unrelated individuals, r = 0 and rn = 1/16 = 0.0625, respectively, and the
response becomes R= 12.2 ı. For half- and full-sibs (r = 0.25 and 0.5), rn = 0.297 and 0.531,
respectively, with responses of 26.9 ı and 36.0 ı, twofold and threefold increases relative to that
for a group of unrelated individuals.

While Equation 22.26a shows that group selection always results in an expected non-
negative response (as σ2(AT ) ≥ 0), it may be less than optimal. If direct effects account
for the majority of variance, group selection can be very inefficient relative to individual
selection. To see this, consider groups of unrelated individuals and suppose the trait of
interest has no associative effects, σ2(As) = 0, so that σ2(AT ) = σ2(Ad). Under individual
(or mass) selection, the response is Rm = hσ(Ad) ı (Equation 13.6b). Now consider the
response, RG, in the mean of trait z under group selection, where σ(z, AT ) = (1/n)σ2(Ad)
and σ2(z) = σ2

z/n, giving the response (from Equation 22.26b) as

RG =
σ(z, AT )

σ(z)
ı =

(1/n)σ2(Ad)
σz/

√
n

ı =
1√
n

σ(Ad)
σz

σ(Ad) ı =
1√
n

hσ(Ad) ı =
1√
n

Rm
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Under these conditions, individual selection is always superior to group selection, with the
superiority increasing with group size. For groups of 5, 10, and 25, group selection has only
44.7%, 31.6%, and 20% (respectively) of the expected response of individual selection.

Group Selection: Direct vs. Social Response
As was the case for individual selection, we can decompose the response under group
selection into the responses from direct and social effects, Rz = Rd + (n − 1)Rs. Under
group selection, these response components are given by

Rd =
σ(Ad,

∑
z)

σ(
∑

z)
ı and Rs =

σ(As,
∑

z)
σ(

∑
z)

ı (22.27a)

The covariance between the direct breeding value of a group member and the group total
becomes

σ

(
Adi ,

n∑

j=1

zj

)
= σ

(
Adi ,

n∑

j=1

Adj + (n − 1)
n∑

j=1

Asj +
n∑

j=1

ej

)

= σ2(Ad)
n∑

j=1

rij + (n − 1)σ(Ad, As)
n∑

j=1

rij

=
[
σ2(Ad) + (n − 1)σ(Ad, As)

]
[1 + (n − 1)r ] (22.27b)

Where r =
∑n

j !=i rij/(n − 1) is the average degree of relationship (for i) among group
members (assuming that rii = 1, i.e., i is not inbred), resulting in

∑n
j rij = 1 + (n − 1)r.

Similarly, for the social breeding value

σ

(
Asi ,

n∑

j=1

zj

)
=

[
σ(Ad, As) + (n − 1)σ2(As)

]
[1 + (n − 1)r ] (22.27c)

Increasing the relatedness, r, of group members increases the contributions from σ(Ad, As)
andσ2(As) by the sameproportional amount, [1+(n−1) r ]. Hence, the relative contribution
of these two components is independent of the degree of relatedness within the group.
By contrast, recall that under individual selection, the relative contributions of these two
components changes (and potentially can change rather dramatically) with r (Equations
22.15b and 22.15c).

Group Selection: Experimental Evidence
How effective is group selection? As reviewed in Chapter 21, the special case of the group
being a single family has a fairly robust experimental literature.What is seen inmore general
settings? Experiments in laboratory settings generally have proved effective in generating
a positive response (Goodnight and Stevens 1997; Goodnight 2005). Especially telling are
several reports of group selection yielding a positive response when individual selection
either failed to do so or generated a negative response.

One of the first group-selection experiments was by Wade (1976, 1977), who found
a rapid response to group selection for the (group-level) trait of population size in the
flour beetle Tribolium castaneum. A series of 48 populations was founded, each with 16
unrelated individuals, and population size was measured at 37 days postfounding. Under
the control (allowing for individual selection during the growout to 37 days), a group of
16 individuals was chosen at random from the 48 populations and used to found a new
population, repeatedly (with the possibility of resampling from the same population), until
48 new populations were formed. Under group selection for increased population size,
sets of 16 individuals were drawn from the largest population and used to found a new
population, which was continued until the largest population was exhausted. When this
happened, individuals were similarly used from the second largest population, and so
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forth, to fill out the new array of 48 populations. The group-selected populations showed
significantly larger population sizes relative to the control, and they also showed reduced
levels of cannibalism. Laboratory populations of Tribolium were also used by Craig (1982),
who found that group selectionwas very efficient in increasing (and decreasing) emigration
rates. In both studies, some degree of relationship might be expected within groups, which
would be small at first, with r increasing under inbreeding as selection proceeds (albeit
likely still remaining somewhat small at the end of the experiment).

Response under group selection is not limited to animals. Goodnight (1985) contrasted
individual and group selection for leaf area in the mustard Arabodopsis thaliana. Plants
were grown in groups of 16 unrelated individuals. Individual selection for increased leaf
area actually resulted in a reversed response, with offspring showing smaller leaf area. In
contrast, average leaf area per plant (i.e., a larger total leaf area for the group) increased
under group selection.

Finally, dramatic responses with significant economic impact have occurred when us-
ing group selection in animal production settings. In chickens, high egg-production systems
typically house several hens per cage. Aggressive behavior and mortality are common in
such settings. Selection for improved individual production could result in increased ag-
gression within the cage, and hence lower cage production (reviewed in Muir 1985). To
assess whether group selection could improve performance, Muir (1996) made selections
based on the mean value of nine-bird cages (n = 9). Eggs per hen per day, eggs per hen,
and egg mass all increased dramatically. What was even more striking, was that annual
percentage mortality declined from 68% to just under 9% at the end of generation 6, which
is similar to the mortality in single-bird cages. Muir called the resulting selected strain KGB
chickens (for Kinder, Gentler Birds). Selection based on the group (here, cage) mean im-
proved total performance of the cage, in part by reducing the amount of aggression within
the cage, as Craig and Muir (1996) found that KGB birds showed a significant reduction
(relative to controls) in beak-inflicted injuries.

The benefits of group selection have often been framed in terms of exploiting non-
additive variation that is not accessible by traditional individual selection (e.g., Goodnight
and Stevens 1997). While we have focused here on genetic variation that is not directly
accessible under individual selection when groups are unrelated (σ2[As]), this variation is
entirely additive. Specifically, when heritable associative effects are present, they can only be
directly accessible through either group selection (with either related or unrelatedmembers)
or individual selection when interactions occur in groups of related individuals (as the
appropriate covariances for response in either setting places nonzeroweight on σ[As]). This
is not to ignore the possibility of exploiting additional nonadditive variation under group
selection, but rather to highlight the importance of associative effects.

INCORPORATING BOTH INDIVIDUAL AND GROUP INFORMATION

Given that group selection always results in an expected positive response, while individual
selection can range from (at best) being far more efficient than group selection to (at worst)
generating an expected reversed response, clearly the optimal approach is some combina-
tion of selection on both individual and group components. This is simply an extension of
the concept of a family index introduced in Chapter 21, that combines both individual and
family (now group) information.

Response on a Weighted Index
To combine both individual and group selection, consider the index, I , where the value of
the index for the ith individual is given by

Ii = zi + g
∑

j !=i

zj (22.28a)

This is a modification of the initial proposal by Griffing (1977). Letting zi denote the mean
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of the group containing individual i, this index can also be written as

Ii = (1 − g)zi + g
n∑

j=1

zj = (1 − g)zi + g n zi (22.28b)

showing that individual selection corresponds to g = 0 and group selection to g = 1. Thus,
the index given by Equation 22.28b includes both individual and group selection as special
cases. Selection of individuals based on within-group deviations is also a special case of
Equation 22.28a, as setting g = −1/n yields

Ii = zi −
1
n

n∑

j=1

zj = zi − z (22.28c)

The response in the trait mean (µz) from selection on this index is

R =
σ(I, AT )

σ(I)
ıI (22.28d)

This can also be written in terms of the accuracy of selection, a concept first introduced in
Chapter 13 (Equation 13.11a), which is the correlation between the target of selection (here
I) and the breeding objective (here the total breeding value, AT ). We can express the ratio
in Equation 22.28d as

σ(I, AT )
σ(I)

=
σ(I, AT )

σ(I)
σ(AT )
σ(AT )

= σ(AT )
σ(I, AT )

σ(AT )σ(I)
= σ(AT ) ρ(AT , I) (22.28e)

where the accuracy

ρ(AT , I) =
σ(I, AT )

σ(AT )σ(I)
(22.28f)

is the correlation between the index value of an individual and its breeding value. Using
this result, Equation 22.28d becomes

R = ρ(AT , I)σ(AT ) ıI (22.28g)

which is simply Equation 13.11c for the selection criteria x = I . This is a very useful ex-
pression for comparing different selection schemes, as σ(AT ) remains unchanged (provided
group size remains fixed), so themaximal response occurs bymaximizing ρ(AT , I) ıI . Given
that the fraction saved largely sets the selection intensity ıI (subject to minor variation due
to finite populations; see Equation 14.4b), the optimal scheme (i.e., the optimal weight, g)
is that which maximizes the accuracy, ρ(AT , I).

To obtain a general expression for response for any combination of group selection
fraction (g) and average relatedness within groups (r), we first need the covariance of I
and AT within an individual. This is obtained as follows. First, note that

σ (AT , I) = (1 − g)σ (AT , z) + gσ

(
AT ,

n∑

j=1

zj

)
(22.29a)

When group members are unrelated, Equations 22.4b and 22.19b give

σ (AT , I) = (1 − g)
[
σ2(Ad) + (n − 1)σ(Ad, As)

]
+ g σ2(AT ) (22.29b)

When group members all have the same relationship, Equations 22.12e and 22.19c yield

σ (AT , I) = (1 − g)
(

rσ2(AT ) + (1 − r)
[
σ2(Ad) + (n − 1)σ(Ad, As)

])

+ g [1 + (n − 1)r] σ2(AT ) (22.29c)
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Collecting terms, Equation 22.29c reduces to

σ(AT , I) = [g + r + (n − 2)gr]σ2(AT )+(1−g)(1−r)
[
σ2(Ad) + (n − 1)σ(As, Ad)

]
(22.29d)

While parts of this result (in a bit more cryptic form) appear in Griffing (1977), this, more
general, version is due to Bijma et al. (2007a). Note that g and r have symmetric roles in the
covariance between the index and the total breeding value. Thus, from the standpoint of
this covariance, relatedness and group selection (r and g) are interchangeable. However, as
we will soon demonstrate, g and r do not play symmetric roles in the variance, σ2

I , of the
index, so interchanging r and g values results in a different variance, and hence a different
selection response (see Equation 22.28d and Example 22.8).

Now consider the variance of the index, I . From Equation 22.28a,

σ2
I = σ

(
zi + g

∑

j !=i

zj , zi + g
∑

j !=i

zj

)

= σ2
z + 2gσ

(
zi,

∑

j !=i

zj

)
+ g2σ2

( ∑

j !=i

zj

)
(22.30a)

If all group members have the same relationship, then

σ

(
zi,

∑

j !=i

zj

)
= (n − 1)σ(zi, zj) (22.30b)

and
σ2

( ∑

j !=i

zj

)
= (n − 1)

[
σ2

z + (n − 2)σ(zi, zj)
]

(22.30c)

Substituting these last two expressions into Equation 22.30a and collecting terms gives

σ2
I = σ2

z

[
1 + g2(n − 1)

]
+ σ(zi, zj)

[
g(n − 1) (2 + g{n − 2})

]
(22.30d)

As a check of Equation 22.30d, note that (as expected) this reduces to σ2
z when g = 0 and

to nσ2
z + n(n − 1)σ(zi, zj) when g = 1. Equation 22.13a gives the expression for σ2

z when
all relatives within the group are related by r. It remains to obtain σ(zi, zj), the phenotypic
covariance of groupmembers, in order to apply Equation 22.30d. From Equation 22.1c, and
ignoring the constant, µ,

σ(zi, zj) = σ

(
Adi +

∑

k !=i

Ask + ei, Adj +
∑

k !=j

Ask + ej

)
(22.31a)

= σ
(
Adi , Adj

)
+ 2σ

(
Adi ,

∑

k !=i

Ask

)
+ σ

( ∑

k !=i

Ask ,
∑

k !=j

Ask

)
+ σ(ei, ej) (22.31b)

If we expand and evaluate these covariance terms and collect the common terms, Equation
22.31b ultimately reduces to

σ(zi, zj) = 2σ(Ad, As) + (n − 2)σ2(As) + ρ σ2(e)
+ r

[
σ2(Ad) + 2(n − 2)σ(Ad, As) +

{
(n − 1) + (n − 2)2

}
σ2(As)

]
(22.31c)

Notice, by comparison to Equation 22.4c, that the term appearing when group members
are related (r "= 0) is the variance of AT when the group size is (n − 1) plus the correction
(n−1)σ2(As). Equations 22.29d and22.30d are substituted intoEquation 22.28d to obtain the
response. The interplay of σ(AT , I) and σ2

I (as functions of g and r) determine the accuracy
of any particular index (Figure 22.3).
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Figure 22.3 Accuracy of the index, I , as a function of the group weight, g, for groups of
different types of relatives (the curves corresponding to different values of r). Accuracy was
computed using Equation 22.28f, whose components are given by Equations 22.29d, 22.7b,
and 22.30d. The variance components used were from Ellen et al. (2008) for survival days for
chickens, and are given in Example 22.8, which also works through the calculations. Accuracy
increases with r and is maximized at some intermediate strength of group selection, g.

Example 22.8. Ellen et al. (2008) estimated the following values for survival days in chickens
raised ingroupsofn = 4: σ2(Ad) = 915,σ(Ad, Ad) = 62,σ2(As) = 134,σ2(e) = 11, 500,
and ρ = 0.08. Applying Equation 22.4c yields

σ2(AT ) = σ2(Ad) + 2(n − 1)σ(Ad, As) + (n − 1)2σ2(As)

= 915 + (2 · 3 · 62) +
(
32 · 134

)
= 2493

while
σ2(Ad) + (n − 1)σ(As, Ad) = 915 + (3 · 62) = 1101

Substituting these results into Equation 22.29d returns a covariance between I and total breed-
ing value of

σ(AT , I) = [(g + r + 2gr) · 2493] + [(1 − g)(1 − r) · 1101] (22.32a)

To obtain the variance in I using Equation 22.30d, we first need expressions for σ2(z) and
σ(zi, zj). From Equation 22.5d, the phenotypic variance when the group contains unrelated
individuals is

σ2(z | r = 0) = σ2(Ad) + (n − 1)σ2(As) + σ2(e) = 915 + (3 · 134) + 11, 500 = 12, 817

Noting that

(n − 1)
[
2σ(As, Ad) + (n − 2)σ2(Ad)

]
= 3 · [(2 · 62) + (2 · 915)] = 5862

Equation 22.13b shows the phenotypic variance for a group with relationship r as

σ2(z) = σ2(z | r = 0) + (n − 1)r
[
2σ(As, Ad) + (n − 2)σ2(Ad)

]

= 12, 817 + (r · 5862) (22.32b)

To obtain σ(zi, zj), we first find that

2σ(Ad, As) + (n − 2)σ2(As) + ρ σ2(e) = (2 · 62) + (2 · 134) + (0.08 · 11, 550) = 1312
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and
σ2(Ad) + 2(n − 2)σ(Ad, As) +

[
(n − 1) + (n − 2)2

]
σ2(As)

= 915 + (2 · 2 · 62) +
[
(3 + 22) · 134

]
= 2101

Substituting into Equation 22.31c gives the general covariance between groupmembers when
all members are related by an amount, r, as

σ(zi, zj) = 1312 + r · 2101 (22.32c)

Finally, substituting Equations 22.32b and 22.32c into Equation 22.30d gives the variance in I
as

σ2
I = σ2

z

[
1 + g2(n − 1)

]
+ σ(zi, zj)g(n − 1) [2 + g(n − 2)]

= [12, 817 + (r · 5862)]
(
1 + 3g2

)
+ [1312 + (r · 2101)] 6g (1 + g) (22.32d)

Note from Equation 22.32a that the roles of relatedness (r) and amount of group selection
(g) are fully interchangeable in the covariance between I andAT . However, Equation 22.32d
shows that this is not the case for σ2

I , and hence the expected responses when the values of r
and g are swapped are not expected to be equal. For example, for r = 0.5, g = 0,

σ(I, AT ) = 1797, σ2
I = 15, 748, ρ(AT , I) = 0.287, R = 14.32 ı

where ρ(AT , I) is given by Equation 22.28f. For r = 0, g = 0.5,

σ(I, AT ) = 1797, σ2
I = 28, 334, ρ(AT , I) = 0.214, R = 10.68 ı

As points of reference, the accuracy and response under individual selection with no relatives
in the group (g = r = 0) areρ(AT , I) = 0.195 andR = 9.73 ı, while for group selectionwith
unrelated individuals within the group (g = 1, r = 0), the accuracy and response become
ρ(AT , I) = 0.193 andR = 9.63 ı.

Optimal Response
In the index shown by Equation 22.28a, g is the fraction of weight placed on a random
individual from the group that interacts with the focal individual. If this weight is zero, the
index reduces to individual selection, while if this weight is 1, all individuals in the group
are weighted equally in the selection decision and there is group selection An obvious
question is to determine the optimal value for g that maximizes the selection response.
From Equation 22.28g, we see that the optimal response occurs by using those weights in I
that maximizes the correlation, ρ(AT , I), between I and AT . To find these optimal weights,
we start with the index

I = b1z + b2

∑

j !=i

zj (22.33a)

with no restrictions placed on the ranges of b1 and b2. Selection on this index is equivalent
to selection using the index

I = z +
b2

b1

∑

j !=i

zj (22.33b)

Hence, the connection between Equations 22.28a and 22.33a is that g = b2/b1. The difference
is that we no longer restrict consideration of g to between zero and one. All of the previous
results for selection response on Equation 22.28a hold for any value of g, but we focused
on the range of zero to one given the transition from individual to group selection. More
generally, we could have negative weights, or a g value exceeding one. In the former case,
negative g values correspond to a weighted within-group deviation (e.g., Equation 22.28c).
In the latter case (g > 1), we placemoreweight on a random individual from the interacting
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group than on the focal individual. This might occur when associative effects are much
larger than direct effects, and hence group members provide more information than the
focal individual about the value of AT for that focal individual.

In Chapter 21, we were able to obtain straightforward expressions for optimal weights
in a family index (Equation 21.54). Index selection theory (Volume 3) gives the optimal index
weights in the form of a matrix expression (Equation 22.35a), which is greatly simplified
under simple family selection (i.e., with no associative effects). Unfortunately, such is not
the case here, and so we (very briefly) introduce the machinery for obtaining an optimal
index, deferring the full development of the theory to Volume 3. The idea is that there are
two potentially different indices: the index I , used for selection (i.e., to choose individuals
to form the next generation), and the index H , whose response we wish to maximize.
Specifically, we select on some index I = bT x where xi is the value of trait i used to make
selection decisions and bi is the weight placed on that trait in the index. In keeping with
Equation 22.33a, the vector of phenotypes for individual i is

x =





zi

∑

j !=i

zj



 (22.34a)

Using this index to make selection decisions, we wish to find the weights, b, that maximize
the selection response for some weighted combination of variables, H = cT a. Here the
elements of c are the weights and a is the vector of breeding values for the traits of interest.
In our case, we wish to maximize response in the total breeding value, which means that

H = AT = Ad + (n − 1)As = cT a (22.34b)

where

a =
(

Ad

As

)
and c =

(
1

n − 1

)
(22.34c)

The optimal weights bs in I for maximizing response in H (i.e., to obtain the highest
correlation between AT and I) are given by the Smith-Hazel index (Smith 1936; Hazel
1943), which is derived in Example A6.8, where

bs = P−1GT c (22.35a)

P is the phenotypic covariance matrix for the elements in x, which in our case becomes

P =




σ2(z) σ

(
zi,

∑
j !=i zj

)

σ
(
zi,

∑
j !=i zj

)
σ

(∑
j !=i zj ,

∑
j !=i zj

)



 (22.36a)

=




σ2(z) (n − 1)σ(zi, zj)

(n − 1)σ(zi, zj) (n − 1)
[
σ2

z + (n − 2)σ(zi, zj)
]



 (22.36b)

where we have used Equations 22.30b and 22.30c. G is the matrix of covariances between
the breeding values in the indexH and the trait values in the index I , with Gij = σ(ai, xj).
Because different traits can be involved in the two indices, G need not be symmetric. For
our case,

GT =

(
σ (Adi , zi) σ (Asi , zi)

σ
(
Adi ,

∑
j !=i zj

)
σ

(
Asi ,

∑
j !=i zj

)
)

(22.37a)
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where

σ (Adi , zi) = σ2(Ad) + r(n − 1)σ(Ad, As) (22.37b)
σ (Asi , zi) = σ(Ad, As) + r(n − 1)σ2(As) (22.37c)

σ

(
Adi ,

∑

j !=i

zj

)
= (n − 1)σ(Ad, As) + r(n − 1)

[
σ2(Ad) + (n − 2)σ(Ad, As)

]
(22.37d)

σ

(
Asi ,

∑

j !=i

zj

)
= (n − 1)σ2(As) + r(n − 1)

[
σ(Ad, As) + (n − 2)σ2(As)

]
(22.37e)

Equations 22.37b through 22.37e follow from the approach used throughout this chapter of
a term-by-term evaluation of the covariance. The use of index selection machinery to find
the optimal value of g was initially outlined by Ellen et al. (2007).

Example22.9. Asanapplicationof theprevious theory, consider a traitwhereσ(Ad, As) = 0,
and there are no correlations between environmental values within the group (ρ = 0) and no
relatives in the group (r = 0). Equation 22.5d givesσ2(z) = σ2(Ad)+(n−1)σ2(As)+σ2(e),
while (with σ(Ad, As) = r = ρ = 0), Equation 22.31c reduces to σ(zi, zj) = (n−2)σ2(As).
Hence, from Equation 22.36b,

P =
(

σ2(z) (n − 1)(n − 2)σ2(As)
(n − 1)(n − 2)σ2(As) (n − 1)

[
σ2(z) + (n − 2)2σ2(As)

]
)

Likewise, Equations 22.37b through 22.37e imply

G =
(

σ2(Ad) 0
0 (n − 1)σ2(As)

)

What are the optimal weight (g) for a trait with σ2(Ad) = 100,σ2(As) = 9,σ2(e) = 100,
and n = 10? For these values, Equation 22.35a yields

bs = P−1GT c =
(

281 648
648 9090

)−1 (
100 0
0 81

) (
1
9

)
=

(
0.2046
0.0656

)

The resulting index weight on group information is 0.0656/0.2046 = 0.32, giving the index as

Ii = zi + 0.32 ·
∑

j !=i

zj

If we increase σ2(As) to 15, redoing the above calculations for the elements ofP andG gives
the optimal weights as

bs = P−1GT c =
(

335 1080
1080 13, 950

)−1 (
100 0
0 136

) (
1
9

)
=

(
0.0236
0.0852

)

yielding a weight on the group sum of 0.0852/0.0236 = 3.6, and an optimal index of

Ii = zi + 3.6 ·
∑

j !=i

zj

Hence, on average, the phenotypes of individuals with which a focal individual interacts are
given almost four time the weight as the focal individual’s own phenotype. Finally, suppose
σ2(As) = 20. In this case

bs = P−1GT c =
(

380 1440
1440 18, 000

)−1 (
100 0
0 180

) (
1
9

)
=

(
−0.1120

0.0989

)
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making the optimal index

Ii = 0.0989 ·
( ∑

j !=i

zj

)
− 0.112 · zi

Expressing the summation as n z − zi, this is equivalent to selection on the index

Ii = 0.989 z − (0.0989 + 0.112) zi = 0.989 z − 0.2109 zi

We can also rewrite this index as

Ii = (0.989 − 0.2109) z − 0.2109 (zi − z) = 0.7781 z − 0.2109 (zi − z)

which is equivalent to selecting using the index

Ii = z − 0.2109
0.7781

(zi − z) = z − 0.2710 (zi − z)

Hence, the optimal index in this case is the group mean minus a weighted within-group
deviation.

BLUP ESTIMATION OF DIRECT AND ASSOCIATIVE EFFECTS

While Griffing developed many of the basic equations for selection response with associa-
tive effects, one reason for the initially low impact of his important work was that, at the
time, there was no reliable way to estimate the key variance components, σ2(Ad), σ2(As),
and σ(Ad, As). These are required to compare h2

d with T 2, and hence to judge the potential
amount of additional genetic variation that cannot be exploited under individual selection.
Further, reasonable estimates of these variance components are required to obtain the opti-
mal index weights. Finally, without some tangible values, Griffing’s work was, for some, a
bit too abstract: the observed phenotype was decomposed as the sum of two unmeasured
components, whose estimation was entirely unclear. The solution to these problems was
suggested by Muir and Schinckel (2002) and detailed in the seminal paper of Muir (2005),
who put these estimation problems into a standard BLUP/REMLmixed-model framework
(Chapters 19 and 20; LW Chapters 26 and 27).

Mixed-Model Estimation of Direct and Associative Effects
The general approach follows if we consider a standard animal model with additional
random effects (Equations 19.20 and 19.21). Equation 22.1b shows how the phenotype of
individual i is the sum of its direct breeding value, the social breeding values of its group
members, and the environmental effects,

zi = µ + (Adi + Edi) +
∑

j !=1

(
Asj + Esj

)
(22.38a)

To start, we assume a very simple residual structure

zi = µ + Adi +
∑

j !=1

Asj + ei (22.38b)

where the ei are uncorrelated and homoscedastic, so that e ∼ (0,σ2(e) I). Letting ad denote
the vector of direct breeding values (DBVs), and as be the vector of social breeding values
(SBVs), the resulting mixed model becomes

z = Xβ + Zd ad + Zs as + e, with e ∼ (0,σ2(e) I) (22.38c)
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Here β is the vector of fixed effects (which will be just the mean for our simple example)
andX is the design matrix associated with these fixed effects. Likewise, Zd and Zs are the
corresponding incidence matrices for the direct and social effects, which follow logically
upon considering the group members (Examples 22.10 and 22.11).

To complete themodel, we need to specify the covariance structures of the three vectors
of random effects. Our initial assumption on the residual errors implies that the covariance
matrix for the residuals is σ2(e) I. The covariance structure for the two vectors of random
effects is a function of the relationshipmatrixA (Chapter 19) of the individuals in the study,
which has block-matrix form

Var
(

ad

as

)
=

(
σ2(Ad)A σ(Ad, As)A

σ(Ad, As)A σ2(As)A

)
(22.39a)

This is often written more compactly using the Kronecker or direct product notation as
G ⊗ A, where

G =
(

σ2(Ad) σ(Ad, As)
σ(Ad, As) σ2(As)

)
(22.39b)

Because the residuals are assumed to be uncorrelatedwith the other random effects, the full
covariance structure for this model is

Var




ad

as

e



 =




σ2(Ad)A σ(Ad, As)A 0

σ(Ad, As)A σ2(As)A 0
0 0 σ2(e) I



 (22.39c)

Example 22.10. To introduce howamixed-modelwith direct and social effects is constructed,
consider the following toy example where eight individuals are measured. Individuals 1
through 4 are (noninbred) half-sibs, as are 5 through 8, but they are unrelated to the first
family. The relationship matrixA becomes

A =





1 0.25 0.25 0.25 0 0 0 0
0.25 1 0.25 0.25 0 0 0 0
0.25 0.25 1 0.25 0 0 0 0
0.25 0.25 0.25 1 0 0 0 0
0 0 0 0 1 0.25 0.25 0.25
0 0 0 0 0.25 1 0.25 0.25
0 0 0 0 0.25 0.25 1 0.25
0 0 0 0 0.25 0.25 0.25 1





These eight individuals are placed into two groups of size four. Group 1 contains individuals
1, 2, 5, and 6; while group 2 contains 3, 4, 7, and 8. For simplicity, the only assumed fixed effect
is the mean, µ. The resulting matrices for the mixed-model equations become

z =





z1

z2

z3

z4

z5

z6

z7

z8





X =





1
1
1
1
1
1
1
1





ad =





Ad,1

Ad,2

Ad,3

Ad,4

Ad,5

Ad,6

Ad,7

Ad,8





Zd =





1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1





= I8

where β = ( µ ).
Turning now to the incidence matrix for social effects,Zs, note that its ith row has a 1 for

each member in i’s group, and a 0 otherwise. For example, individual 1 is influenced by the
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social breeding values of individuals 2, 5, and 6, which are assigned values of one in the first
row of Zs, while all other elements in row one are zero. Likewise, individual 3 is influenced
by the social breeding values of its group (individuals 4, 7 and 8), and so forth. Filling in the
rest of the matrix yields

Zs =





0 1 0 0 1 1 0 0
1 0 0 0 1 1 0 0
0 0 0 1 0 0 1 1
0 0 1 0 0 0 1 1
1 1 0 0 0 1 0 0
1 1 0 0 1 0 0 0
0 0 1 1 0 0 0 1
0 0 1 1 0 0 1 0





as =





As,1

As,2

As,3

As,4

As,5

As,6

As,7

As,8





The group effects are made more apparent (but A is made more confusing) by reordering
the individuals as zT = (z1, z2, z5, z6, z3, z4, z7, z8), so that group members are clustered
together. This gives

Zs =





0 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0
1 1 0 1 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 1
0 0 0 0 1 1 0 1
0 0 0 0 1 1 1 0





, A = 0.25 ·





4 1 0 0 1 1 0 0
1 4 0 0 1 1 0 0
0 0 4 1 0 0 1 1
0 0 1 4 0 0 1 1
1 1 0 0 4 1 0 0
1 1 0 0 1 4 0 0
0 0 1 1 0 0 4 1
0 0 1 1 0 0 1 4





Groups of different sizes are easily incorporated through the use of Zs.

Example 22.11. Assigning an element inZs a value of one for each individual within a group
weights all interactions equally. This need not be the case, however. For example, Muir (2005)
noted that with plants (or other sessile organisms), the distance between two individuals
likely influences their effects. In particular, he suggested that if trees are a distance d apart,
a reasonable model for their associative interactions would be As/d2, where a tree has some
intrinsic social breeding value (As) whose effect is diminished by distance. In a case of three
trees, where dij is the distance between trees i and j, the resulting incidence matrix for social
breeding values would be

Zs =





0 1/d2
12 1/d2

13

1/d2
21 0 1/d2

23

1/d2
31 1/d2

32 0





Cantet andCappa (2008) suggested similar “intensity of competition” weights for individuals
within groups of animals, such as the total contact time between two individuals. Other
measures of interactions could be used and easily incorporated intoZs (e.g., Wey et al. 2007).

Because we allow for the possibility that the direct and social breeding values are
correlated, the standardmixed-model equations for twovectors of randomeffects (Equation
19.21; LW Equations 26.19b and 26.30) must be slightly modified. They become





XT X XT Zd XT Zs

ZdXT ZT
d Zd + λ1A−1 ZT

d Zs + λ2A−1

ZsXT ZT
s Zd + λ2A−1 ZT

s Zs + λ3A−1









β

ad

as




=





XT X

XT Zd

XT Zs




(22.40a)
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where the weights (λi) are related to elements in the inverse ofG, namely,

(
λ1 λ2

λ2 λ3

)
= σ2(e)G−1 = σ2(e)

(
σ2(Ad) σ(Ad, As)

σ(Ad, As) σ2(As)

)−1

(22.40b)

as obtained by Muir (2005) and Van Vleck and Cassady (2005).
In order to solve these equations, estimates of the variance components—σ2(e), σ2(Ad),

σ2(As), and σ(Ad, As)—are required, and within the mixed-model framework, these are
obtained by REML (LW Chapter 27). Van Vleck and Cassady (2005) used simulated data to
show that, under the appropriate design, REML does indeed provide separable estimates
of the genetic variance components. However, two early applications to real data sets,
weight gain in pigs within pens by Arango et al. (2005) and weight gain in Hereford cattle
in feedlots by Van Vleck et al. (2007), found that the likelihood surface for σ2(As) was
very flat, making model fitting challenging. We will examine such issues of identifiability
shortly. While mixed-model methodology is very robust (for example, it easily handles
missing data and variable group numbers), it can easily fail if the model is not correctly
specified or the experimental design is such that random effects are not separable, points
that we will address shortly.

Example 22.12. Using mixed-model methods, Bergsma et al. (2008) examined four traits
(growth rate, feed intake, back-fat thickness, and muscle depth) in a sample of over 14,000
pigs with a known pedigree (from roughly 400 sires and 600 dams). The pigs were placed in
pens of 6–12 animals and several different mixed models were fitted.

First, a mixed model allowing for only direct effects plus a separate vector for common
litter effects, c (which is fairly standard; Chapters 19 and 20), was fit. Here, the model was

z = Xβ + Zaa + Zcc + e

where
a ∼ N(0,σ2(A) · A), c ∼ N(0,σ2(c) · I), e ∼ N(0,σ2(e) · I)

The resulting estimates of additive variation and heritability for these traits were found to be

Growth Back fat Muscle Intake
σ2(A) 2,583 2.83 7.94 41,275
h2 0.37 0.36 0.25 0.41

Next, a model was fit that also included a random pen (group) effect, gp, common to all
members within the same group (but differing across groups). The model now becomes

z = Xβ + Zaa + Zggp + Zcc + e, where gp ∼ N(0,σ2(gp) · I)

Use of this model did not change the heritabilty estimates for back fat and muscle depth, but
decreased the estimates for growth and feed intake

Growth Back fat Muscle Intake
σ2(A) 1,780 2.79 7.69 17,678
h2 0.25 0.36 0.24 0.18

Comparison with the previous table shows that failure to include a group effect (here,
assumed to be entirely nonheritable, i.e., all environmental), resulted in some traits (growth
and intake) having their heritabilities overestimated. Finally, a model was fit allowing for
heritable social effects

z = Xβ + Zdad + Zsas + Zggp + Zcc + e

which returned estimates of
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Growth Back fat Muscle Intake
σ2(Ad) 1,522 2.75 6.68 16,950
h2

d 0.21 0.35 0.21 0.17
σ2(As) 51 0.01 0.03 596
σ2(AT ) 5,208 3.19 10.35 68,687
T 2 0.71 0.41 0.32 0.70

While both body-composition traits (back fat and muscle thickness) were largely unaf-
fected by social effects, growth-related traits (growth and intake) were. Failure to incorporate
group effects (either shared environmental, gp, or genetic,As) resulted in an overestimation of
the (direct) heritability for growth traits. The exploitable genetic variance (the total breeding
value) for the two growth traits was about three times higher than suggested by the individual
(direct) breeding values, and T 2 was about triple the value of h2

d. Hence, significant potential
for improvementwould remain untappedwhen using individual selectionwith groups of un-
related individuals for growth traits. Conversely, the incorporation of some group-selection
would have little additional effect on the response of the two body-composition traits, as their
h2

d and T 2 values are very close.

The results in the above example are fairly typical of the published results from the
animal-breeding literature. Often the estimates of σ(Ad, As) and σ2(As) are quite small
relative to σ2(Ad), but because terms involving social effects are scaled by roughly n or n2

(for the covariance and variance, respectively), their contributions can be considerable. For
example, a series of eight (mostly growth) traits in cattle, pigs, and chicken, (n−1)σ(Ad, As)
was between 5 and 40% of σ2(Ad), with an average value of 24% (Van Vleck et al. 2007;
Chen et al. 2008, 2009; Hsu et al. 2010).

As discussed inChapter 19, one could use a Bayesian analysis of amixedmodel instead
of BLUP estimates of the random effects and REML estimates of the variance. Recall that
a BLUP/REML analysis returns point estimates and associated confidence intervals for
variables of interest, while a Bayesian analysis returns the whole posterior distribution of
potential values given the data (Chapter 19; Appendices 2 and 3). Arora and Lahiri (1997)
showed formixedmodels that“empiricalBLUP,” namelyusingREMLestimatesofvariance
components to solve the mixed-model equations, generally gives the same average value
as a Bayesian analysis, but that the latter returns a smaller mean-squared error and hence
offersmore precision. Cappa andCantet (2006, 2008) developed aGibbs sampler (Appendix
3) for the mixed model with associative effects.

One of the strengths of mixed models is their flexibility. The basic model shown by
Equation 22.38c, which allows for direct and associative effects, can easily be extended. For
example, Bouwmann et al. (2010) included a separate maternal genetic effect, distinct from
social effects, while Alemu et al. (2014) modified associative effects to allow kin and nonkin
interactions to differ.

Muir’s Experiment: BLUP Selection for Quail Weight
In his classic paper, Muir (2005) not only laid out the approach for incorporating social
effects into a mixed-model framework, but also directly tested this method by examining
the response to selection based entirely on the estimated breeding values (EBVs) obtained
from the model. Muir selected on six-week weight in Japanese quail (Coturnix coturnix
japonica), which are aggressive and cannibalistic. Groups were formed with 16 birds per
cage, with each group consisting of several half-sib families. Banding of the birds allowed
the pedigree of individuals to be followed through the 23 hatches of the experiment. As
Example 22.4 showed, due to a negative covariance between associative and direct effects,
individual selection is expected to produce a reversed response when using a group of
unrelated individuals.
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Figure 22.4 Selection response for two differentially selected lines of Japanese quail (Muir
2005). Both lineswere selected for six-weekweight usingBLUP. LineD-BLUP selected individ-
uals with the largest estimated direct breeding values, while line C-BLUP selected individuals
with the largest estimated total breeding values. A: (Top) Mean response in six-week weight
over 23 cycles of selection. The C-BLUP line showed a significant improvement, while the D-
BLUP line showed a slight (but not significant) negative trend. (B: (Bottom) The trend inmean
social values showed an increase in the C-BLUP lines, and a decrease in D-BLUP lines. Hence,
competition increased in lines strictly selected for direct breeding value, while it decreased in
lines selected on an index of direct and associative effects.

Rather than select using individual phenotype or groupmeans, Muir used BLUP selec-
tion (Chapters 13 and 19), wherein a mixed model is used to estimate the breeding values,
and those individuals with the largest EBVs are chosen. Starting with the same base pop-
ulation, two lines were selected using different BLUP criteria. For both lines, the mixed
model allowing for both direct and social effects was fitted, using REML estimates of the
variances to obtain BLUPs for the desired breeding values. In the D-BLUP line, individuals
with the largest EBVs ofAd (direct effects) were selected. In the C-BLUP line, those individ-
uals with the largest EBVs ofAT , namely EBV(Ad)+(16−1)EBV(As), were selected. Figure
22.4A shows the results through 23 hatches (cycles of selection). Under BLUP-D selection,
the mean six-week weight decreased (slightly, but not significantly), while it significantly
increased under C-BLUP. Both D-BLUP and C-BLUP increased the mean of direct effects,
although the response under D-BLUP was about twice as great.

As further shown in Figure 22.4B, the reason for the decrease in mean weight in the
D-BLUP line was that the mean associative effect increased under C-BLUP (i.e., became
more favorable toward others in the group), but as expected given the negative correla-
tion between Ad and As) it decreased under D-BLUP (became less favorable). Two other
improvements were observed in the C-BLUP line. Mortality increased significantly in the
D-BLUP line, while it decreased slightly (but not significantly) in the C-BLUP line. Feed
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conversion was also better in the C-BLUP line, requiring 6.65 grams of feed per gram of
gain, versus 7.26 in the D-BLUP line. Clearly, selection based on themixed-model estimates
of total breeding value resulted in significantly better results than lines selected by a more
conventional (i.e., D-BLUP) approach.

Details: Environmental Group Effects and the Covariance Structure of e
Our simplifying assumption (Equation 22.28c), that the residuals, ei, are homoscedastic
and uncorrelated (meaning that σ(e) = σ2(e) I), is generally incorrect. As Equation 22.23a
shows, individuals within the same group are correlated because they share the Es values
from the other groupmembers, andnot correctly accounting for these shared environmental
values results in an overestimation of the variance of the social breeding values (Van Vleck
and Cassady 2005; Bijma et al. 2007b; Bergsma et al. 2008; Chen et al. 2009). Equation 22.23a
returns the correct covariance matrix for the residuals as

σ(e) = σ2(e)R, where Rij =






0 i and j in different groups
ρ i and j in the same group
1 i = k

(22.41)

where σ2(e) and ρ are given by Equation 22.23b.

Example 22.13. For the design used in Example 22.10 with groupmembers clustered, so that
z = (z1, z2, z5, z6, z3, z4, z7, z8)T , the corresponding covariance matrix for the residuals
becomes

σ(e) = σ2(e)R = σ2(e) ·





1 ρ ρ ρ 0 0 0 0
ρ 1 ρ ρ 0 0 0 0
ρ ρ 1 ρ 0 0 0 0
ρ ρ ρ 1 0 0 0 0
0 0 0 0 1 ρ ρ ρ
0 0 0 0 ρ 1 ρ ρ
0 0 0 0 ρ ρ 1 ρ
0 0 0 0 ρ ρ ρ 1





With the same number of individuals in all groups, the only two estimable parameters
in the environmental covariance matrix are ρ and σ2(e). With groups of variable size (either
by design or simply through the loss of data), the residual variances and covariances change
with n (Equation 22.23b). In this case, the residual covariance matrix would be specified in
terms of the three environmental variance/covariance terms, σ2(Ed), σ2(Es), andσ(Ed, Es).

Provided ρ > 0, an equivalent approach is simply to fit a randomgroup effect (Bergsma
et al. 2008; Ellen et al. 2008). Example 22.14 works through an example. This approach
is computationally less demanding than jointly estimating σ2(e) and ρ in an R matrix.
However, if the covariance, σ(Ed, Es), between environmental direct and social effects is
sufficiently negative, ρ can be negative (Equation 22.23b) and the simple random group-
effects model fails, as the group variance σ2(gp) must be positive. As Equation 22.23b
suggests, as group size increases, the contribution from σ2(Es) eventually dominates ρ,
making it positive. Thus, for a design with large group size, fitting a random group effect
will often suffice.

Example 22.14. Suppose that instead of fully specifying the matrix R (Equation 22.41), we
instead simply fit a random group effect. Here, all individuals in group i share the common
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random effect gi, where we assume gi ∼ N [0,σ2(gp)]. The resulting mixed model becomes

z = Xβ + Zdad + Zsas + Zggp + e

where, fork groups,gT
p = (g1, g2, · · · , gk) is thevectorof randomgroupeffects. The incidence

matrixZg has k columns, the ith ofwhich (corresponding tomembership in group i) has a one
for each individual in group i and a zero elsewhere. For example, for the design in Example
22.13,

g =
(

g1

g2

)
and Zg =





1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1





If we assume a simple covariance for the residuals, so that σ(e) = σ2(ε) I, the result-
ing contribution to the covariance matrix of z from the group and residual terms becomes
σ2(gp)ZgZT

g + σ2(ε) I, or

σ2(gp)





1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1





+σ2(ε) I = σ2(e)





1 α2 α2 α2 0 0 0 0
α2 1 α2 α2 0 0 0 0
α2 α2 1 α2 0 0 0 0
α2 α2 α2 1 0 0 0 0
0 0 0 0 1 α2 α2 α2

0 0 0 0 α2 1 α2 α2

0 0 0 0 α2 α2 1 α2

0 0 0 0 α2 α2 α2 1





where

σ2(e) = σ2(ε) + σ2(gp) and α2 =
σ2(gp)

σ2(ε) + σ2(gp)

We use α2 to remind the reader that (under this model), this is the ratio of two variances, and
hence is always nonnegative. Comparison with Example 22.13 shows that adding a random
effect for group corresponds to the more fully specified covariance residual model (Equation
22.41), with ρ = α2. When ρ > 0, both models are identical. However, if the within-group
environmental correlations are negative (ρ < 0), then the simple group random-effects model
fails.

Further, note that we canwrite the covariance matrix of group plus residual effects under
this model as

σ2(e) ·
(
I + α2

[
ZgZT

g − I
] )

showing that the matrixR in Equation 22.41 (provided ρ > 0) is given by

R = I + α2
[
ZgZT

g − I
]

Finally, a standard approach when families are in the analysis is to include a common-
family effect, c, that is due to shared maternal effects and dominance (if full sibs are present).
This is simply done by adding an additional vector of random effects, c, for the family effects.
Using this approach, the model starting this example now becomes

z = Xβ + Zdad + Zsas + Zggp + Zcc + e
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For example, suppose individuals 1, 2, 5, and 6 (in the ordering used in this example) are from
one family, while the others are from a second then

c =
(

c1

c2

)
and Zc =





1 0
1 0
0 1
0 1
1 0
1 0
0 1
0 1





Note that ifZg = Zc, the group and family effects are fully confounded and cannot be separated
(this point will be discussed in more detail shortly). This addition of a common family effect
is easily incorporated into any of the above models.

Details: Ignoring Additive Social Values Introduces Bias
Before models directly accounting for social effects were developed, it was not unusual to
add a fixed or random group effect to the standard animal model to account for common
environments due to individuals being raised in the same pen, cage, or group. For example,
if group effects are random, the corresponding animal model becomes

z = Xβ + Za + Zg gp + e (22.42)

where we (initially) assume σ(gp) = σ2(gp) I. In this model, a would be the estimated
vector of (direct) breeding values. As detailed above, gp can often account for any shared
environmental social values (i.e., Es). However, if heritable associative effects are present,
simply adding a group effect is insufficient, as it results in overestimation of σ2(gp) and often
an overestimation of the (direct) additive variance (Example 22.12). Hence, an analysis that
simply includes a group effect (but no as vector) results in biased estimates of the direct
breeding values when heritable associative effects are present.

Van Vleck and Cassady (2005) showed how the presence of additive associative effects
inflates the estimate of group variance. Consider two members in the same group (with a
common group effect, gp),

z1 = Ad1 + As2 +
n∑

k=3

Ask + gp + e1

z2 = Ad2 + As1 +
n∑

k=3

Ask + gp + e2

Using the standard ANOVA identity that the covariance within a group equals the variance
among groups (LW Chapter 18), for unrelated individuals, σ2(gp), is estimated from the
within-group covariance, which reduces to

σ(z1, z2) = σ(Ad1 , As1) + σ(Ad2 , As2) + (n − 2)σ2(As) + σ2(gp) + σ(e1, e2)
= 2σ(Ad, As) + (n − 2)σ2(As) + σ2(gp) + σ(e1, e2) (22.43)

If the residuals are uncorrelated, the bias in the within-group covariance-based estimate
of σ2(gp) is 2σ(Ad, As) + (n − 2)σ2(As), which can be considerable. Hence, when additive
(i.e., heritable) associative effects are present, the simple model given by Equation 22.42 is
inappropriate. This model, however, can be useful in a preliminary analysis. Van Vleck and
Cassady suggested that obtaining a large estimated group variance when using Equation
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22.42 indicates that a more detailed model including additive associative effects should
be fit to the data. Hence, one approach is to do a quick fit to Equation 22.42. If the group
variance is sufficiently small, it is unlikely that additive associative effects are present.
However, this approach is not always foolproof. Inspection of Equation 22.43 shows that a
sufficiently negative covariance between direct and social breeding values may result in a
small estimated group variance.

Details: Identifiability of Variance Components
Due to potential confounding of effects, any particular design might not allow for all vari-
ables of interest to be uniquely estimated. For the vector β of fixed effects, the uniqueness
of an estimated variable is indicated the concept of estimability (LW Chapter 26). For
z ∼ (Xβ,V), the vector of fixed effects is estimable (β has a unique value) if (XT V−1X)−1

exists. Otherwise, some of the fixed effects are confounded and cannot be separated by
the design (X) being used. A similar concept, identifiability, exists for random effects and
is based on whether variance components (often called the dispersal parameters) can be
uniquely estimated. If variance components are not identifiable in the design, then BLUPs
for their associated vectors of random effects do not exist, and the model will fail.

The lack of identifiability has been a problem in some attempts to estimate associative
effects, with lack of convergence of REML estimates, convergence to multiple peaks in the
likelihood surface (depending on starting conditions), and very flat likelihood surfaces all
being seen (Arango et al. 2005; Van Vleck et al. 2007; Chen et al. 2008). Cantet and Cappa
(2008) formally showed that using a fixed group effect results in a lack of identifiability
when the design matrix, Zg , contains equal weights for all group members. Thus, treat-
ing group effects as fixed is not recommended, while treating them as random can often
account for environmental correlations (as discussed above). Another common reason for
lack of identifiability is the composition of the group. If all group members are from a single
half-sib or full-sib family, the covariance of group members equals the covariance among
familymembers within a group, confounding variance components and leading to a lack of
identifiability (Cheng et al. 2009). Bijma et al. (2007b) noted that this problem plagued one
of the early attempts to estimate social variance components (Wolf 2003). The important
caveat is that lack of identifiability can easily arise in attempts to estimate social effects
even when using seemingly innocent designs (such as a fixed group effect or having each
group be a single family). One key is that family members must be spread over at least
two groups, and each group should contain at least two different families. This avoids
confounding within groups and allows As to be estimated by borrowing information (via
relatives) across groups.

Conditions for identifiability of REML estimates of (co)variance components were
given by Rothenberg (1971), Jiang (1996), and Cantet and Cappa (2008). Before present-
ing these conditions, we first review a few details about REML. Recall (LWChapter 27) that
REML estimates are those that maximize that part of the likelihood function independent
of the fixed effects (this is often stated as being the translation invariant part of the likeli-
hood). LetV be the covariance matrix of z, which is a function of its variance components.
As detailed in LW Chapter 27, Harville (1977) showed that (if it exists) the transformation
provided by the matrix

P = V−1 − V−1X(XT V−1X)−1XT V−1 (22.44a)

plays a critical role in REML estimates. (To be consistentwith the literature, we useP for this
transformation matrix, despite our previous use of P to indicate the phenotype variance-
covariance matrix. The distinction between these two usages should be obvious given the
context of the issue being discussed.)

That the matrix given by Equation 22.44a can remove fixed effects can be seen by
recalling that (under GLS), β̂ = (XT V−1X)−1XT V−1z, and hence Equation 22.44a implies
that

Pz = V−1
(
z − Xβ̂

)
(22.44b)
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where the vector Pz is a function of the data z adjusted by the estimated fixed effects, Xβ̂
(i.e., centered to have a mean of zero). Now consider covariance structures of the form

V =
n∑

i=1

Viθi (22.45a)

whereVi is a matrix of known constants and the θi are unknown variances and covariances
to be estimated. This is the structure for all of theVmatrices presented in this chapter. The
equations to maximize the likelihood over the restricted space (the REML estimates) are
given by LW Equations 27.18 and 27.19, and are solved iteratively. These equations involve
the trace (the sum of the diagonal elements) of matrix products involving P and the Vi.
Recall (LW Appendix 4) that for a vectorΘ of n unknowns, the Fisher information matrix,
F (the matrix of second partial derivatives of the likelihoodwith respect to the parameters),
can be used to provide large-sample standard errors. The resulting n×n informationmatrix
for REML estimates of the unknown θi in Equation 22.45a has as its ijth element

Fij = trace (PViPVj) (22.45b)

Much in the same fashion that the existence of (XT V−1X)−1 informs us that all fixed
effects are estimable in a given design, all variance components, θi, are identifiable if all of
the eigenvalues of thematrixF are positive, that is ifF is positive-definite (Rothenberg 1971;
Jiang 1996). For the simplest associative-effects mixed model (Equation 22.38c), Equation
22.45a becomes

V = V1 σ
2(Ad) + V2 σ(Ad, As) + V3 σ

2(As) + V4 σ
2(e) (22.46a)

where

V1 = ZdAZT
d , V2 =

(
ZdAZT

s + ZsAZT
d

)
, V3 = ZsAZT

s , V4 = I (22.46b)

Substituting Equations 22.44a and 22.46b into Equation 22.45b fills out the Fmatrix (which
is only 4× 4 in this case, given the four unknown variance components). For any particular
design (the values of A,Zd, and Zs), the eigenvalues of this matrix can be computed to
determine if the variance components are all identifiable. Cheng et al. (2009) used this ap-
proach to show that twoof the eigenvalues of their informationmatrixwere zero for adesign
where groups consist entirely of single full-sib families, showing the lack of identifiability
in such settings.

Appropriate Designs for Estimating Direct and Associative Effects
Whilemost of the statistical power for detecting associative effects arises from thenumber of
groups, not numbers of individuals (Bijma 2010c), the relationship structure within groups
is also critical. In contrast to selection response,where there is a benefit fromhavingall group
members from the same family (and hence an increased r value), in a design to estimate
direct and associative values and variance components, groups should be composed of at
least two different families. If there is no within-group variation in relationships, direct and
associative effects cannot be separated. Groups can also consists of unrelated individuals,
but Bijma (2010c) showed that, in general, using groupswith two (ormore) different families
offers more power than using unrelated individuals (also see Ødegård and Olesen 2011).

Using the appropriate mixed model is also critical. Initially, one might think that as-
sociative effects could be accommodated by simply adding a random effect for group to
an otherwise standard animal model. As previously shown (Equation 22.43), however, this
approach typically overestimates the direct effects, as well as inflating the group variance
(which is a measure of the environmental social effects), when heritable associative effects
are present, namely, σ2(As) > 0. Conversely, ignoring any environmental associative ef-
fects also introduces bias. For example, a model fitting just ad and as using the simple
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error structure e ∼ (0,σ2(e) · I) also introduces bias by ignoring the correlation among
environmental associative effects within a group. As mentioned above, the correct residual
covariance structure can be accounted for by incorporating a random group effect into the
model (which assumes a positive correlation between social environmental effects within
a group), or by using a model with e ∼ (0,σ2(e) ·R)where the elements ofR are given by
22.41, which allows for the within-group environmental correlations, ρ, to be negative.

Using Kin Groups: A Quick-and-dirty Way Around Associative Effects?
As the proceeding sections demonstrate, performing a Muir (2005)-style BLUP selection
on total breeding value AT (Figure 22.4) requires an appropriate design and care to ensure
that groups contain a mixture of relatives and nonrelatives in order to provide separate
estimates of Ad and As. Given this background, it may be counterintuitive that Muir et al.
(2013) suggested that a quick-and-dirty way around dealing with associative effects is to
ensure that groupsaremadeup entirelyof relatives. Their logic follows fromEquation22.12e,
which shows that when the average relatedness within a group is r, selection based entirely
on individual values still captures a fraction, r, ofAT . They suggested that in settingswhere
individuals naturally interact in groups (such as caged birds), simply assigning relatives to
groups provides a path for direct selection on AT . As our above analysis suggests, such a
setting may not allow for separate estimates of As and Ad (and hence a direct estimate of
AT ), but it can provide a much simpler way to ensure at least some selection on AT .

Their idea is that if relatives are assigned to the same groups, then standard BLUP
selection based on individual phenotype and relatedness (Chapters 13 and 19) will capture
part of AT . While the accuracy will admittedly be lower than for a direct estimate from
an appropriate design, it will still be far greater than when interacting groups are entirely
comprised of nonrelatives (Equation 22.12e). To test this idea, Muir et al. (2013) essentially
replicated Muir’s classic (2005) experiment on weight gain in Japanese quail (Figure 22.4),
but now using standard BLUP selection that completely ignores associative effects. They
compared the response under two otherwise identical settings: one in which groups non-
randomly consisted of half-sibs, and the secondwhere groupswere formed at random (and
hence members were unrelated). The response using kin-groups was an order of magni-
tude greater than for the random groups. The beauty of this approach is that one simple
action, ensuring interacting groups contain mostly relatives, allows individual selection to
partially capture some of the variation inAT without using all of the above extramachinery.
However, one downside is that it may lead to increased inbreeding.

ASSOCIATIVE-EFFECTS, INCLUSIVE FITNESS, AND FISHER’S THEOREM

We conclude by examining some of the important implications for evolutionwhen heritable
associative effects (σ2(As) > 0) are present. First and foremost, their presence has significant
implications on the evolution of mean population fitness (Bijma 2010a), which forms the
subject of this section.

Change in Mean Fitness When Associative Effects are Present
Themost important trait in evolution is fitness,W (Chapters 6 and 29). Clearly, the fitness of
any particular genotype is partly a function of the environment inwhich it finds itself.While
we normally treat this environment as static, when conspecifics influence fitness (as is gen-
erally expected to be the case), part of this environment may also be evolving in response to
selection (namely, conspecifics are constantly improving). In these settings, the use of mod-
els with associative effects is appropriate. Here, the individual fitness of a focal individual
results from a direct fitness effect from its own genotype plus the associative effects on its
fitness from the other genotypes with which it interacts. Competition, a detrimental fitness
effect from other individuals, is one such associative effect, where the contribution from
conspecifics is to lower fitness (e.g., Wilson et al. 2009, 2011). Conversely, with cooperation
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or mutalism, associative effects increase the fitness of the focal individual.
Examining the expected change in mean fitness is straightforward. Using previous

results, we simply take the trait being followedas individual fitness (z = W ). FromEquation
22.1c, the fitness of individual i becomes

Wi = µ + Adi +
∑

j !=i

Asj + ei (22.47a)

Ad is the direct breeding value of fitness, while As is the social breeding value (how a focal
individual influences the fitness of others in its group). As above, Asi does not contribute
to Wi, while Asj for j "= i does. Likewise, the total breeding value for the fitness of an
individual is simply

ATi = Adi + (n − 1)Asi (22.47b)

with a variance of

σ2(AT ) = σ2(Ad) + 2(n − 1)σ(Ad, As) + (n − 1)2σ2(As) (22.47c)

The first term, σ2(Ad), is the classical additive genetic variance in fitness in the absence
of associative effects. When interactions are present, there is the potential for substantially
more heritable variation in fitness. Indeed, the total genetic variance in fitness has the
potential to exceed the actual variance in individual fitness, σ2(AT ) > σ2

W , as much of the
variation is hidden in interactions with others, which do not appear in one’s individual
fitness.

When the trait is fitness itself, the response equation for individual selection (Equation
22.14) simplifies somewhat. Recall theRobertson-Price identity (Equation 6.10),S = σ(z, w),
where w = W/W is relative fitness. When z = W , the selection differential becomes

SW = σ(W, w) =
σ(W, W )

W
=

σ2(W )
W

(22.48a)

Equation 22.14 expresses the response in terms of ı/σ. When the trait is fitness itself, Equa-
tion 22.48a shows that this simplifies to

ıW
σ(W )

=
SW /σ(W )

σ(W )
=

σ2(W )/W

σ2(W )
=

1
W

(22.48b)

Substituting Equation 22.48b into Equation 22.14 gives the response (the change in mean
population fitness) as

RW =
σ(W, AT )
σ(W )

ıW =
1
W

σ(W, AT ) = σ(w, AT ) (22.48c)

This is simply Price’s equation (Equation 6.6), where we have restricted our discussion to
cases where the transmission is such that mean breeding values of offspring equals the
mean breeding values of their parents (and hence the correction term in Equation 6.6 for
changes induced solely by transmission disappears). Such is expected to be the case for the
infinitesimal model under random mating.

Applying Equation 22.12c gives the response in terms of the variance components as

RW =
1
W

[
σ2(Ad) + (n − 1)(1 + r)σ(Ad, As) + r(n − 1)2σ2 (As)

]
(22.48d)

As we saw for other traits, when r = 0, the possibility of a reversed response occurs if the
breeding values for direct and social effects on fitness are sufficiently negatively correlated.
Hence, under rather realistic conditions, individual selection can result in a decrease (and a
potentially rather significant one) in mean fitness.
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Ironically, even though a negative response can occur in the presence of associative
effects, there is actually more total additive-genetic variance in fitness available when such
effects are present, as σ2(AT ) > σ2(Ad). However, only a fraction of this variance may be
accessible to individual selection, and this fraction (being a covariance rather than a variance)
can be negative (Equation 22.4b).

The key for exploiting the available variance is either selection among groups or the
presence of relatives in one’s group of interacting individuals. To see this last point, note
from Equation 22.12e that we can express Equation 22.48d as

RW =
1
W

(
rσ2(AT ) + (1 − r)

[
σ2(Ad) + (n − 1)σ(Ad, As)

])
(22.48e)

The term in square brackets represents the response in a group of nonrelatives. When
interactions occur among kin (r > 0), then for sufficiently close relatives, the response
becomespositive (meanfitness increases), even if the response is negativewhen r = 0.At the
extreme, when r = 1 (all interactions are among clonemates), the response in mean fitness
is simply σ2(AT )/W and all of the heritable variance in fitness is utilized. Conversely, when
interactions occur among unrelated individuals, only a fraction of this additive-genetic
potential for fitness, σ2(AT ), is exploited. This observation led Bijma (2010a) to suggest that
when heritable fitness interactions are present, the key to evolutionary success is interacting
with relatives. The reason for this is clear from our previous discussion. With interactions
amongunrelated individuals, one’sphenotype (herefitness)providesvery little information
about one’s own social breeding value for fitness. With interacting kin, the breeding values
of the kin’s social effects influence one’s fitness, and these effects are positively correlated
(via kinship) with one’s own breeding value for social effects, as σ(Asi , Asj ) = rijσ2(As).
Hence, even under individual selection, there is correlated selection on an individual’s
social value when some of its group members are relatives (rij > 0).

Finally, we can decompose the total response in fitness into response from changes in
the mean of the direct effects and response from changes in the mean of the social effects.
Equation 22.15a gives

RW = RW,d + (n − 1)RW,s (22.49a)

RecallingEquation 22.48b, Equations 22.15a through22.15c give these response components
as

RW,d =
σ2(Ad) + r(n − 1)σ(Ad, As)

W
(22.49b)

and
RW,s =

σ(Ad, As) + r(n − 1)σ2(As)
W

(22.49c)

Example 22.15. As Equation 22.48d shows, a reversed response in mean population fitness
can occur, in the extreme driving a population to extinction. A potential example of this was
provided by Dawson (1969), who studied competition between two species of flour beetles
(Tribolium castaneum and T. confusum). He found that castaneumwon (driving the other species
to extinction) in nine of ten replicates. In the remaining replicate, castaneum again appeared to
be winning (with a frequency of over 90% by generation 4 from a starting frequency of 50%)
when an eye color mutation allelic to chestnut spontaneously appeared. From that generation
onward, the frequency of this allele increasedwhile the castaneum population itself was driven
to extinction. One explanation for such a Trojan gene—a gene driving the population to
extinction (Muir and Howard 1999)—is a strong positive direct fitness effect (increasing the
frequencyof theallele), butwitha strongnegativeassociativevalueonconspecifics (decreasing
mean population fitness).
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Example 22.16. Haldane (1932a) coined the term altruistic trait to denote a behavior (or trait)
that harms an individual, but benefits others. The classic example is an alarm call: others in a
group are warned (increasing their fitness), but at some expense to the individual making the
call (a direct effect decreasing fitness). Note that the increase in an altruistic trait is an example
of a reversed response, as the trait lowers the fitness of the individual that bears it. What
are the conditions for such traits to spread? In terms of our fitness model with associative
effects (Equation 22.47a), we can rephrase this as the conditions for the mean value of As to
increase, which are given by Equation 22.49c. From the definition of altruism, σ(Ad, As) < 0,
as performing an altruistic act decreases direct fitness while increasing the fitness of those in
the group. Equation 22.49c shows that a necessary (but not sufficient) condition for altruism to
evolve (RW,s > 0) under individual selection is that r > 0, namely, that individuals interact
in groups of relatives.

As pointed out by Bijma and Wade (2008), we can view σ(Ad, As) as the cost (−c < 0)
for performing an altruistic act for others in a group. Conversely, the altruistic contribution
from others in one’s group is (n − 1)σ2(As) ≥ 0, which we denote as the benefit, b. With
these definitions, from Equation 22.49c, the condition for altruism to evolve under individual
selection is

−c + rb > 0, or r > b/c (22.50a)

This is the classic Hamilton’s rule (Hamilton 1963, 1964a, 1964b), which is discussed shortly.
For an altruistic trait to evolve under individual selection, individuals must interact in groups
of relatives. If groups consist of unrelated individuals (r = 0), individual selection is not
sufficient for altruism, and somecomponent of group selection is required.Note fromEquation
22.49c that a more general version of Hamilton’s rule is

σ(Ad, As) + r(n − 1)σ2(As) > 0 (22.50b)

which shows that the benefit scales with group size, provided σ2(As) is independent of n.
In contrast, under Bijma’s dilution model for social effects (Equation 22.10a), the variance in
social effects is a function of n, and (applying Equation 22.10c) Hamilton’s rule becomes

σ(Ad, As) + r(n − 1)1−2dσ2(As,2) > 0 (22.50c)

with benefit increasing with group size only when the dilution fraction d < 1/2.
The same logic extends to the evolution of altruismunder group selection. FromEquation

22.27a, the response in the mean social value to group selection depends on the covariance of
As and the group total (here, the sum of the fitnesses of all group members). From Equation
22.27c,

σ

(
Asi ,

n∑

j=1

Wj

)
=

[
σ(Ad, As) + (n − 1)σ2(As)

]
[1 + (n − 1)r]

= (−c + b) [1 + (n − 1)r] (22.50d)

As long as b > c (the benefit exceeds the cost), altruism can evolve under group selection, even
in groups of unrelated individuals.When individuals within the group are related (r > 0), this
covariance is significantly larger, and hence the response to selection for altruism is greater.

Lynch (1987) showed that this simple expression for Hamilton’s rule breaks down under
more complex settings, such as multiple relatives with different levels of interactions between
them and allowing for ontological changes in behavior, for example, an individual may act as
an offspring early in life and as a parent later in life

Inclusive Fitness
As Equation 22.47a illustrates, when heritable interactions are present, the fitness of an
individual depends on both its own genes as well as the genes in others. Hamilton (1964a,
1964b) suggested that evolutionary focus should shift from individual fitness to what he
called inclusive fitness: that component of fitness influenced only by the alleles carried
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by the focal individual. Hamilton argued that evolution strives to increase inclusive, as
opposed to individual, fitness (also see Michod and Abugov 1980; Grafen 2006; Akçay and
Van Cleve 2016).

Formally, the inclusive fitness of an individual is context specific, and is defined as
individual fitness plus the effect of that individual on the fitness of others (weighted by the
relatedness to these others) minus any contribution to that fitness from the group environ-
ment. While sounding rather abstract, when placed in an associative-effect framework, this
definition is quite clear. From Equation 22.47a, for individual i, Adi is the heritable compo-
nent of individual fitness (Wi) remaining when the social contributions from others have
been removed. The focal individual’s social breeding value (Asi) does not influence its own
fitness, but the social effects of other group members do, with the (heritable) contribution
to individual i’s fitness from individual j being Asj . The correlation between the breeding
value Asi carried by i and the contribution to i’s fitness from j is the relatedness rij , so that
rijAsi is the predicted value of Asj given Asi . Putting these together gives the heritable
component (i.e., breeding value) of i’s inclusive fitness as

Aincf,i = Adi + Asi

n∑

j !=i

rij = Adi + r(n − 1)Asi (22.51a)

where the last equality makes our standard assumption that all groupmembers are equally
related (which is easily relaxed). Note that the presence of r makes a genotype’s inclusive
fitness context specific: if the same genotype interactswith twodifferent groups (evenwhen
both have identical allele frequencies), it may have different inclusive fitnesses.

The resulting variance in the breeding value for inclusive fitness becomes

σ2(Aincf ) = σ2(Ad) + 2r(n − 1)σ(Ad, As) + r2(n − 1)2σ2(As) (22.51b)

In the absence of heritable associative effects, σ2(As) = 0, this reduces to the additive
variance in direct fitness, as is also the case when r = 0. It is important to note that the
heritable component of inclusive fitness is not the same as the total breeding value, AT , for
fitness, as a comparison of Equation 22.51a to Equation 22.3 shows that

ATi = Aincf,i + (1 − r)(n − 1)Asi (22.51c)

Just as Equation 22.49a decomposed the total response into components from direct
and associative effects, we can similarly decompose the change in mean individual fitness,
RW , into change inmean inclusive fitness,RW,incf , plus a residual response. FromEquation
22.51c

RW = RW,incf + (1 − r)(n − 1)RW,s (22.52a)

showing that the total response in fitness is the change in inclusive fitness plus any response
in the residual of themean social value (after the effects of group relatives are absorbed into
inclusive fitness). Using the same logic leading to Equation 22.48c, the response in themean
inclusive fitness is given by

RW,incf =
1
W

σ(W, Aincf ) (22.52b)

where, from Equations 22.47a and 22.51a, we have

σ(W, Aincf ) = σ

(
µ + Adi +

∑

j !=i

Asj + ei, Adi + r(n − 1)Asi

)

= σ2(Ad) + 2r(n − 1)σ(Ad, As) + r2(n − 1)2σ2(As) (22.52c)

The last line followsbyevaluating the covariance ina similar fashionasdone throughout this
chapter. Note by comparisonwith Equation 22.51b that Equation 22.52c is simply σ2(Aincf ),
yielding

RW,incf =
σ2(Aincf )

W
(22.52d)
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Hence (under our simple model), the response in mean inclusive fitness is proportional to
the additive variance in inclusive fitness, so that mean inclusive fitness is nondecreasing.

Why, then, can the mean of individual fitness decline despite the continual increase in
mean inclusive fitness? The reason is a decline in themean (residual) social value. Recalling
Equation 22.49c, Equation 22.52a becomes

RW − RW,incf =
(1 − r)(n − 1)

W

(
σ(Ad, As) + r(n − 1)σ2(As)

)
(22.52e)

Hence, if the covariance between direct and associative effects is sufficiently negative, any
increase in inclusive fitness is more than countered by the decline in the mean social envi-
ronment. When r = 0,

RW − RW,incf =
(n − 1)σ(Ad, As)

W
(22.52f)

which can be positive or negative, depending on the sign of the covariance. Note, from
Equation 22.52e, that increasing the relatedness, r, of groupmembers decreases the residual
response betweenmean individual and inclusivefitness,which in turn increases the chances
that individual mean fitness increases.

Bijma’s Theorem: Inclusive Fitness and Fisher’s Fundamental Theorem
As we have seen, when heritable associative effects are present, individual selection can
cause mean individual fitness to decrease. Further, while mean individual fitness can de-
crease, mean inclusive fitness is nondecreasing, as the response in inclusive fitness is propor-
tional to its additive variance (Equation 22.52d). Comparing these results with those from
Chapter 6, we have an apparent conflict. For the simplemodel of additive fitness effects and
random mating, the classical interpretation of Fisher’s fundamental theorem (FFT) holds,
with the change inmean individual fitness being proportional to the additive variance in in-
dividual fitness, so that (under these conditions) mean individual fitness is nondecreasing.
Further, the Price-Ewens exact version of the FFT (Chapter 6) states that the partial increase
in mean individual fitness (the change that occurs when set in a constant environment) is
nondecreasing. Bijma (2010a) reconciled these results, showing that the Price-Ewens FFT
corresponds to statements about inclusive fitness (which reduces to individual fitness in
the absence of associative effects).

Recall from Chapter 6 that Price (1972b) and Ewens (1989, 1992) showed that Fisher
appeared not to be concerned about the total change in individual fitness, but rather about
only one component of that change, namely that caused by changes in the allele frequencies of
genes under selection, when all other factors (such as change in the environment) are held
constant. Bijma (2010a) made the important distinction between what we have been calling
the total breeding value, AT , and the traditional breeding value, which we here denote by
BV , computed by considering only the effects of the alleles in the focal individual on its
own phenotype. The later (BV ) is the more traditional definition of breeding value and
(LW Chapter 4) is simply the regression of fitness on the direct and social breeding values
of individual i,

Wi = BVi + e = βi,dAdi + βi,sAsi + e (22.53a)

To compute these regression slopes, first note that the individual fitness of i is a function of
its direct value plus the associative effects for every group member except i,

Wi = µ + Adi +
∑

j !=i

Asj + ei

Recalling that σ(Asi , Asj ) = rijσ2(As), the traditional breeding value for individual fitness
for i reduces to

BVi = Adi + Asi

∑

j !=i

rij (22.53b)
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as obtained by Bijma (2010a). For the case of all relatives being equally related, this reduces
to

BVi = Adi + r(n − 1)Asi (22.53c)

Comparing this to Equation 22.51a shows that the traditional breeding value (BV ) equals
the breeding value for inclusive fitness. Thus, we have Bijma’s theorem:
The traditional breeding value for individual fitness is equivalent to the breeding value for
inclusive fitness.

From Equation 22.52d, it immediately follows that the response in inclusive fitness is pro-
portional to the traditional additive variance in fitness (which, in this case, is the variance in
inclusivefitness).Hence, inclusivefitnessprovides thebridgebetween theFFTand response
when associative effects are present.

HAMILTON’S RULE

Example 22.16 briefly introduced Hamilton’s classic result: the condition for an altruistic
trait to spread is br−c > 0, where c is the fitness cost to the individual (or actor) performing
the altruistic act, b is the benefit to individuals with which it interacts (the recipients), and
r is the relationship between the actor and the recipient (Hamilton 1963, 1964a, 1964b).
Hamilton’s original result followed upon consideration of an altruistic trait determined by
a single locus with additive fitness effects in an outbred population. In this setting, −c + rb
is the inclusive fitness of the altruistic allele, whose frequency increases when its inclusive
fitness is positive. He further showed (again under this simple model) that inclusive, rather
than individual, fitness is maximized by selection. The roots of Hamilton’s result, that for
altruism to spread under individual selection requires interactions occur among sufficiently
related individuals, dates back to a widely attributed quote by Haldane: “Would I lay down
my life to save my brother? No, but I would to save two brothers or eight cousins.” (As an aside,
this is often cited asHaldane 1955, but this quote does not appear in that paper). Hamilton’s
contribution was to generalize Haldane’s intuition and to introduce the important concept
of inclusive fitness.

How General Is Hamilton’s Rule?
Hamilton’s rule is a bit like the breeder’s equation: it provides a simple expression that
conveys the nature of interactions between the key quantities of interest, but it can fail (at
least as an exact expression) under a variety of conditions. Given that Hamilton assumed
a single additive locus under weak selection in an outbred population, just how general
is his result? Assuming weak selection, a number of studies have shown that altruistic
traits with a polygenic basis also generally satisfy Hamilton’s rule (e.g., Yokoyama and
Felsenstein 1978; Boyd and Richerson 1980; Aoki 1982; Engels 1983). Conversely, Cavalli-
Sforza and Feldman (1978) found that it can fail for even a single locus. When fitnesses are
no longer additive (i.e., the fitness of the heterozygote is no longer the average of the two
homozygotes), then comparing r to c/b may not be sufficient to predict spread or loss, as
the actual value of b (in addition to the ratio c/b) can also matter.

Starting with Hamilton (1970), attempts for a more general version of Hamilton’s rule
were built around the Price Equation. Recall from Equation 6.6 that Price’s (1970, 1972a)
theorem states that the response in any quantity, G, can be expressed as

∆G = σ(G, w) + E[w δG] (22.54)

where w is relative fitness and δG is any transmission bias, namely, the average deviation
between the value of G in an ancestor and its mean value in their descendants. Typically,
we can treat G as either the frequency of an allele (for a single-locus analysis) or as the
breeding value of a trait (for a quantitative-genetic analysis). In the absence of drift and
under normal Mendelian segregation (i.e., no meiotic drive), the allele frequencies in the
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offspring match the allele frequencies in their parents. Likewise, under the infinitesimal
model (in an outbred population) the expected breeding value of an offspring equals the
mean breeding value of its parents, and hence the second term in Price’s equation is usually
ignored (see Chapter 6 for a more detailed discussion).

One way to obtain Hamilton’s result is to assume what is typically called neighbor-
modulated fitness (Hamilton 1964a, 1964b), wherein the phenotypes of neighbors influ-
ences one’s fitness (this has also been referred to as a direct fitnesses model, e.g., Taylor
and Frank 1996; Taylor et al. 2007). Following Queller (1992a), we let the relative fitness of
some focal individual, i, interacting with its neighbor, j, be

wi = w0 + wd,i + ws,j (22.55a)

w0 is a component independent of social interactions, wd,i is the direct effect of i on its
own fitness, and ws,j is the (social) effect of the neighbor j on i’s fitness. Now, use a linear
regression to quantify the effects of phenotypes zi on fitness, with

wi = a + βwd|zzi + βws|zzj + ei (22.55b)

Ignoring the transmission bias term in Equation 22.54, Price’s theorem yields an expected
response in the mean breeding value, µA, of the trait as

∆µA = σ(wi, Ai) = σ(βwd|zzi + βws|zzj + ei, Ai)
= βwd|z σ(zi, Ai) + βws|z σ(zj , Ai) + σ(ei, Ai) (22.55c)

Here, we have used the fact that σ(a, Ai) = 0 for the constant a. Note that, to this point,
Equation 22.55c is exact. If the residual, ei, from the regression of fitness on phenotype
(Equation 22.55b) is uncorrelated with the breeding value, Ai, the result is exactly

∆µA = βwd|zσ(zi, Ai) + βws|zσ(zj , Ai) (22.56a)

The residual condition, σ(ei, Ai) = 0, is satisfied when w is entirely determined by the
phenotypes zi and zj plus any additional components, provided the latter are uncorrelated
withAi (see Chapter 6). Themean value of the trait increases when∆µA > 0. Dividing both
sides of Equation 22.56a by σ(zi, Ai), this occurs when

βwd|z + βws|z
σ(zj , Ai)
σ(zi, Ai)

> 0 (22.56b)

where βwd|z is the cost (c) of the trait, βws|z is the benefit (b), and the ratio is a generalized
measure of relatedness. Given that the phenotypic fitness regression residuals are uncorre-
lated with breeding values (and that we can safely ignore the transmission bias term), then
Equation 22.56b is a general version of Hamilton’s rule.

Under the infinitesimalmodel assumptions in an noninbred population, the regression
term (a covariance divided by a variance) quantifying relatedness reduces to

σ(zj , Ai)
σ(zi, Ai)

=
σ(Aj , Ai)
σ(Ai, Ai)

=
rij σ(Ai, Ai)
σ(Ai, Ai)

= rij

and we recover the standard version of Hamilton’s rule. However, when inbreeding is
presentor the infinitesimalmodel assumptionsarenotvalid (i.e., significant allele-frequency
change can occurwithin a generation), Price’s equation shows that amore general definition
of relatedness may be required. There is a detailed literature on the appropriate measure
of relatedness to use; see Hamilton (1970), Orlove andWood (1978), Michod and Hamilton
(1980), Aoki (1981), Seger (1981), Uyenoyama and Feldman (1981), Pepper (2000), Good-
night (2005), Smith et al. (2015), and references therein. For single-locusmodels, relatedness
measures attempt to account for the difference in the frequency of an altruistic allele in
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recipients versus the general population, and hence can depend on genotypic frequencies
and other details of the assumedmodel. See Toro et al. (1982) andMichod (1982) for a more
detailed discussion of these population-genetic models. There are a very large number of
models for altruism and cooperation built aroundHamilton’s rule; see Lehmann and Keller
(2006a, 2006b and references therein) for an overview, and McGlothlin et al. (2014) for a
recent review of quantitative-genetic versions of Hamilton’s rule.

Queller’s Generalization of Hamilton’s Rule
Equation 22.56b follows by considering fitness regressed on phenotype. This makes sense,
as quantitative genetics tries to work with measurable quantities, such as the effect of phe-
notype on fitness and the correlation between breeding and phenotypic values. However,
Queller (1992b) noted that by considering the regression of fitness directly on the breeding
values of the selected traits, an exact expression for Hamilton’s rule can be obtained. The
key is that, by construction (e.g., LW Chapter 3), the residuals are uncorrrelated with the
predictor variables in the regression. Hence, writing fitness as a multiple regression on the
breeding values of the actor (i) and recipient (j),

wi = a + βwd|A Ai + βws|A Aj + ei (22.57a)

we always have σ(ei, Ai) = 0, and (assuming no transmission bias so that we can ignore
the second term in 22.54), Price’s equation yields

∆µA = σ(wi, Ai) = σ(a + βwd|A Ai + βws|A Aj + ei, Ai)
= βwd|A σ(Ai, Ai) + βws|A σ(Aj , Ai) (22.57b)

Dividing both sides by σ(Ai, Ai) gives Queller’s generalization of Hamilton’s rule as

βwd|A + βws|A
σ(Aj , Ai)
σ(Ai, Ai)

> 0 (22.58a)

Recalling the definition of a regression slope (the covariance divided by the variance of the
predictor, e.g., LW Chapter 3), Queller’s exact result reduces to the very satisfying form of

βwd|A + βws|A · βAj |Ai
> 0 (22.58b)

where βwd|A is the cost, βws|A the benefit, and βAj |Ai
is a generalizedmeasure of relatedness

between i and j. Gardner et al. (2007) cautioned that while Equation is 22.56b is rather
general and Equation 22.58b completely general (both under the assumption of no biased
transmission term), that “the cost of this generality is that it hides a lot of detail, and so
naive application of Hamilton’s rule may lead to mistakes.” See Frank (1998) for a detailed
discussion of potential pitfalls.

GROUP SELECTION, KIN SELECTION, AND ASSOCIATIVE EFFECTS

Kin, Group, and Multilevel Selection
There is a vast (and often heated) literature in evolutionary genetics and social evolution
dealing with kin selection, group selection, and inclusive fitness (selected works include
Wynne-Edwards 1962, 1986; Maynard Smith 1964, 1976; Williams 1966; Wade 1978; Wilson
1983; Frank 1998; Lehmann and Keller 2006a; Lehmann et al. 2007; West et al. 2006, 2008;
Wilson and Wilson 2007; Bijma and Wade 2008; Nowak et al. 2010; Abbot et al. 2011; Van
Veelen et al. 2012; Goodnight 2013, 2015; West and Gardner 2013; Birch 2014; Birch and
Okasha 2015; Gardner 2015; Lehtonen 2016). Much of the debate has revolved around
the evolutionary mechanism(s) needed to account for traits that reduce the fitness of an
individual but increase the fitness of a group. As we have seen, Hamilton’s rule gives the
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condition (a sufficiently high degree of relatedness among the interacting individuals) for
such an allele to spread under individual selection. This is a kin selectionmodel (Maynard-
Smith 1964), whereby interactions among kin (i.e., r > 0) generate an inclusive fitness that
can allow an allele, potentially harmful to the individual, but helpful to a group, to spread.

An alternative school of thought, group selection, which was proposed by Wynne-
Edwards (1962, 1963), states that traits favoring a group spread via selection at the level
of groups—those carrying alleles for beneficial group behavior tend to leave more groups
that those that lack them (the roots of this idea trace back to Darwin 1871). In animal
and plant breeding this is not at all controversial, as family selection (choosing only those
individuals from the best families) iswidely practiced (Chapter 21). In itsmost extreme form
(e.g., Wynne-Edwards 1962, 1963), group selection is envisioned to occur through isolated
demes that undergo differential extinction and propagation. Quantitative-genetic models
of response to group selection due to population structure have been examined by Slaktin
and Wade (1978), Slaktin (1981a), Crow and Aoki (1982), and Tanaka (1996a).

A less restricted form of group selection is the levels-of-selection (or multilevel se-
lection) argument, where the fitness of an individual is influenced by those individuals
with which it interacts, so that fitness is a function of the collection of interacting individ-
uals, rather than a single individual. Family index selection (Chapter 21), wherein both
within- and among-family information is used, is an example of a levels-of-selection ap-
proach. Levels-of-selection does not require isolated units, and groups (here, simply sets of
interacting individuals) can form anew each generation even in a panmixtic population.

In evolutionary biology, the debate over the relative importance of kin vs. group se-
lection has, at times, had the feeling of a holy war. One argument against group selection
involves concerns about the formation and subsequent propagation of groups, as well as
the generation of among-group variation upon which selection can act. The heavy hand
of parsimony (running the risk of getting oneself cut with Occam’s razor) is also raised
against group selection—why invoke it if individual selection will do (Williams 1966)? Of
course, one could argue this is entirely the wrong prior. Most biologists would not disagree
with the idea that an individual’s fitness is influenced by those with whom it interacts, in
which case levels-of-selection would be the more reasonable default, especially because it
includes individual selection as a special case. The issue then becomes an empirical one,
namely, the relative fitness weights on group versus individual components. Estimation of
levels-of-selection components is examined in Chapter 30.

Much Ado About Nothing?
The readerwho is unfamiliarwith the evolutionary literaturemight be a bit perplexed about
this controversy, as when placed in a framework of associative effects, both group- and kin-
selection components arise and have symmetric roles (e.g., Equation 22.29d). Indeed, a
number of workers have suggested group and kin selection are simply two extremes on
the continuum of potential interactions and hence closely related (Wade 1980; Queller 1991;
Lehmann et al. 2007). Bijma and Wade (2008) succinctly make the point that
the ongoing debate on equivalence of kin and levels-of-selection models is partly caused by the
fact that levels-of-selection models tend to hide the relatedness component of response to selec-
tion, whereas kin selection models tend to hide the multilevel selection component of response
to selection . . . the response to selection is naturally described by the combination of relatedness
and the degree of multilevel selection, rather than by focusing on one or the other of the two
factors.

Aswewill see, in the absence of associative effects influencing a trait value (σ2(As) = 0), both
kin (r "= 0) andmultilevel (groupweight g "= 0, seeEquation22.28a) selectionare required for
social selection to have a response that differs from the breeder’s equation.When associative
effects influence trait values, kin and multilevel selection appear as symmetric roles, and
even in the absence of these latter two factors (namely, r = g = 0), the selection response
can still differ from the breeder’s equation. These results were first clearly stated by Bijma
and Wade (2008), and we closely follow their development below.
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Group and Kin Selection: Models Without Trait Associative Effects
Most models of kin and group selection assume that the trait of interest is not influenced
by associative effects, so that we can decompose the phenotypic value of individual i as

zi = Ai + Ei

where Ai denotes i’s breeding value (we use A rather than Ad to stress that this model
assumes no associative effects, so that no As terms appear). While no associative effects
influence the phenotypic value of the trait of interest, we do assume that the fitness of an
individual is influenced by the phenotypes of its neighbors. This results in fitness showing
both direct and associative effects. This distinction betweenmodels where the trait does not
show associative effects while fitnesses do, versus models where both the trait and fitness
show associative effects is subtle, but rather important, as the resulting model behavior is
quite different (Bijma and Wade 2008).

In particular, Bijma and Wade show that when traits lack associative effects, the re-
sponse under either kin or group selection deviates from the breeder’s equation only when
both relatedness and multilevel selection occur. A slightly more general development of
their result proceeds as follows.

First, consider a classical kin selection model, where the fitness of individual i is a
function of its phenotypic value plus contributions that depend on the phenotypic values
(for the same trait) of the n − 1 individuals with which it interacts. Generalizing Equation
22.55b, we can express i’s fitness as the multiple regression

wi = a + βwd|zzi + βws|z




n∑

j !=i

zj



 + εi (22.59a)

where βwd|z is the direct effect on fitness and βws|z the indirect (or social) effect on i’s fitness
given the phenotypes of its conspecifics. Assuming the residual (εi) is uncorrelated with
i’s breeding value (Ai) for the trait under selection, Equation 22.56a generalizes to give the
selection response in the trait mean as

R = ∆µA = βwd|zσ(zi, Ai) + βws|z




n∑

j !=i

σ(zj , Ai)



 (22.59b)

As mentioned previously, we can think of βwd|z = c as the cost and βws|z = b as the benefit,
so that for altruistic traitsβwd|z < 0 andβws|z > 0. For the infinitesimalmodel under random
mating,

σ(zi, Ai) = σ(Ai, Ai) = σ2
A and σ(zj , Ai) = σ(Aj , Ai) = rijσ

2
A

If we assume that all interacting pairs have the same relationship (so that rij = r), Equation
22.59b reduces to

R = ∆µA = σ2
A

(
βwd|z + r(n − 1)βws|z

)
(22.59c)

Hence, the trait increases when βwd|z + r(n − 1)βws|z > 0 (Hamilton’s rule).
The multilevel selection connection that appears in kin selection models is seen by

defining

g =
βws|z

βwd|z
(22.60a)

Using this definition, we can rewrite Equation 22.59a as

wi = a + βwd|z

(
zi + g

∑

j !=i

zj

)
+ εi = a + βwd|z Ii + εi (22.60b)
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where
Ii = zi + g

∑

j !=i

zj

is the index given by Equation 22.28a. Individual selection corresponds to g = 0, as Ii = zi.
Likewise, g = 1 corresponds to group selection, as

Ii =
n∑

j=1

zj = nz

so that fitness is entirely a function of group mean. As above, g need not be restricted to
between zero and one. For example, negative values of g correspond to selection based on
deviation within a group (see Example 22.9).

Expressed in terms of g, the expected response under kin selection (Equation 22.59c)
becomes

∆µA = βwd|z σ2
A

(
1 + (n − 1)gr

)
(22.61a)

This equationmakes Bijma andWade’smain point: The response is a function of the product
of relatedness (r) and levels-of-selection (g). If either is zero, Equation 22.61a reduces to

∆µA = βwd|z σ2
A =

σ(wd, zi)
σ2

z

σ2
A = S

σ2
A

σ2
z

= h2S (22.61b)

where we have used the Robertson-Price identity (Equation 6.10), σ(wd, zi) = S. Hence, for
the selection response to differ from the standard breeder’s equation requires both related-
ness (r > 0) andmultilevel selection (g "= 0).While the relatedness is obvious in kin-selection
formulations, the levels-of-selection component historically has been a bit less transparent,
being “hidden” in the costs and benefits, βws|z and βwd|z (Bijma and Wade 2008).

Now consider the response under multilevel selection. Here, fitness is a function of
both individual and group value, usually expressed as the components of fitness due to
within-group deviation (∆zi = zi − z ) and to the group mean ( z =

∑
zi/n). As above, the

fitness of i can be expressed as the regression

wi = a + βw| z z + βw|∆z ∆zi + ei (22.62a)

Individual selection occurs when βw| z = βw|∆z = β, as Equation 22.62a reduces to wi =
a + βzi + ei. Again assuming that ei is uncorrelated with Ai, Price’s theorem gives the
response as ∆µA = σ(wi, Ai), which from Equation 22.62a becomes

R = ∆µA = βw| z σ( z, Ai) + βw|∆z σ(∆zi, Ai) (22.62b)

The first covariance term is given by

σ( z, Ai) =
1
n
σ




n∑

j=1

zj , Ai



 =
σ(zi, Ai) +

∑
j !=i σ(zj , Ai)

n
= rnσ

2
A (22.62c)

where rn = r + (1 − r)/n (Equation 21.6b). This is just the among-group genetic variance
(Chapter 21). Likewise,

σ(∆zi, Ai) = σ (zi − z, Ai) = σ2
A (1 − rn) (22.62d)

which is the within-group genetic variance (Chapter 21). Substitution of Equations 22.62c
and 22.62d into Equation 22.62b gives the expected response to multilevel selection as

∆µA = σ2
A

(
rnβw| z + (1 − rn)βw|∆z

)
(22.62e)
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As noted by Wade (1980) and Cheverud (1985), total response is the sum of the among-
group response, rn σ2

A βw| z , plus the within-group response, (1− rn)σ2
A βw|∆z . Relatedness

enters into multilevel selection models because r influences the relative amounts of within-
versus among-group variance. Increasing r increases the among-group variation, rnσ2

A,
while decreasing the within-group variation, (1− rn)σ2

A. With increasing relatedness, more
of the response comes from among-group (as opposed to within-group) selection. In the
absence of relatives within the group (r = 0, so that rn = 1/n), Equation 22.62e becomes

∆µA = σ2
A

(
1
n
βw| z +

[
1 − 1

n

]
βw|∆z

)
(22.62f)

Example 22.17 shows that the term in the parentheses reduces to βwd|z , and hence in the
absence of relatives the response reduces to Equation 22.61b, namely the breeder’s equation.
Relatedness of groupmembers is thus required for the response under themultilevel fitness
model (Equation 22.62a) to depart from the breeder’s equation.

As mentioned, although these models have no associative effects when trait values
are considered, their fitness functions (Equation 22.59a and 22.62a) generate direct and
associative effects in fitness. It will prove useful (especially when contrasting the above
results with models that do allow traits to have associative effects) to consider the direct
and associative components of fitness as they relate to the breeding value, Ai, of the focal
individual. Write the index Ii as

Ii = zi + g
n∑

j !=i

zj = Ai + g
n∑

j !=i

Aj + e∗i

where we have swept all of the terms not involving breeding values into the residual, e∗i .
Substitution into Equation 22.60b gives the fitness of i in terms of the breeding values Ai

and Aj as

wi = βwd|zAd,i + g βwd|z

n∑

j !=i

Ad,j + ε∗i = wd,i +
n∑

j !=i

ws,j + ε∗i (22.63a)

where we have used ε∗i as the residual in the fitness regression to distinguish it from the
residual (e∗i ) in our expression for the index Ii. We have now reverted to the Ad notation
for the breeding values (of direct effects), as we will shortly expand this result to allow for
breeding values of associative effects (As). The right side of Equation 22.63a decomposes
the fitness into direct and associative components, with

wd,i = βwd|zAd,i and ws,j = gβwd|zAd,j (22.63b)

The direct component (wd,i) is the contribution from genes in the focal individual i toward
its fitness, while the associative component (ws,j) is the contribution from genes in j toward
i’s fitness. From Price’s equation, we have the response as the sum of direct and associative
contributions, where

Ri,d = σ(wd,i, Ai) = βwd|zσ(Ad,i, Ai) = βwd|zσ
2(Ad) (22.63c)

which is the breeder’s equation, while any additional contribution from i due to genes in j
is given by

Ri,j = σ(ws,j , Ai) = gβwd|zσ(Ad,j , Ai) = rgβwd|zσ
2(Ad) (22.63d)

Thus, two factors are required for genes in j to influence the response based on selecting
i. First, multilevel selection (g "= 0) is required in order for there to be an effect of genes in
j on the fitness of i (g βwd|zAd,j). Second, the genes in i and j must be correlated (r > 0).
Only when both g "= 0 and r "= 0 is there an additional increment in the selection response
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from the genes in j, and only in this case do we see departures from the breeder’s equation.
Summing over all n − 1 of i’s interacting neighbors recovers Equation 22.61a.

Example 22.17. Following Bijma andWade, we can formally show the connections between
the fitness models given by Equation 22.59a (kin selection) and Equation 22.62a (multilevel
selection). Expanding z and∆zi to express them in terms of zi and

∑
j !=i zj , we have that

βw| z z + βw|∆z(zi − z) = βw|∆zzi + (βw| z − βw|∆z) z

= βw|∆zzi +
1
n

(
βw| z − βw|∆z

)(
zi +

∑

j !=i

zj

)

=
1
n

(
βw| z + [n − 1]βw|∆z

)
zi +

1
n

(
βw| z − βw|∆z

) ∑

j !=i

zj (22.64a)

Matching terms with Equation 22.59a, the regression slopes for fitness in these two model are
related as follows:

βwd|z =
βw| z + (n − 1)βw|∆z

n
and βws|z =

βw| z − βw|∆z

n
(22.64b)

Similarly, we can show that

βwd|zzi + βws|z

n∑

j !=i

zj =
(
βwd|z − βws|z

)
∆zi +

(
βwd|z + (n − 1)βws|z

)
z (22.65a)

implying

βw|∆z = βwd|z − βws|z and βw| z = βwd|z + (n − 1)βws|z (22.65b)

Thus, in the absence of trait associative effects (σ2(As) = 0, and hence βws|z = 0), βw|∆z and
βw| z are equivalent and simply differ by shifting focus over individual versus group values.

Finally, we can rearrange the left identity in Equation 22.64b to

1
n
βw| z +

(
n − 1

n

)
βw|∆z = βwd|z

Using Equation 22.65b to substitute for βw| z and βw|∆z yields

βwd|z + (n − 1)βws|z

n
+

(
n − 1

n

) (
βwd|z − βws|z

)
= βwd|z

showing that the response to multilevel selection when groupmembers are unrelated (r = 0)
reduces to the breeder’s equation,

∆µA = σ2
A

(
1
n
βw| z +

(
n − 1

n

)
βw|∆z

)
= σ2

A βwd|z = h2S

Hence, relatedness is required for the response under multilevel selection to deviate from the
breeder’s equation (Bijma and Wade 2008).
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Group and Kin Selection in the Associative-effects Framework
The class of models just considered assumes that trait values are not influenced by associa-
tive effects (i.e., noAs,j terms appear in expression for zi), but does allow for fitnesses to be
influenced by the trait values of group members (Equations 22.59a and 22.62a). Under this
assumption, the response to social selection only deviates from the breeder’s equationwhen
the product gr is nonzero.When associative effects are present in the trait (σ2(As) > 0), both
the trait value and fitness of the focal individual may be functions of the genotypes in the
group. In this case, kin and group selection (r and g) play symmetric roles, and when either
is nonzero, response can deviate from the breeder’s equation. Indeed, evenwhen r = g = 0,
response can still deviate from the breeder’s equation (e.g., Equation 22.11a). Hence, the
addition of trait associative effects introduces a profound change in the behavior of the
selection-response model. We first formally present the expected response to selection and
then explore the source of this rather different behavior in the presence of trait associative
effects by considering the contributions to response from direct and associative fitnesses.

When associative effects are present (As terms appear), from Equation 22.1b the index
I becomes

Ii = zi + g
n∑

j !=i

zj =
(

Adi +
∑

j !=i

Asj

)
+ g

n∑

j !=i

(
Adj +

∑

k !=j

Ask

)
+ ei

=
(

Adi + g(n − 1)Asi

)
+

∑

j !=i

(
Asj + g

[
Adj + (n − 2)Asj

])
+ ei (22.66)

When associative effects are present, Equation 22.1e shows that the expected response is the
change in the mean of total breeding value, AT = Ad + (n− 1)As, where Ad and As are the
direct and social breeding values. Recalling Equation 22.60b (wi = βwd|zIi + εi), applying
the Price Equation, assuming that σ(εi, ATi) = 0 and no transmission bias, we obtain

R = ∆µAT = σ(wi, ATi) = βwd|zσ(Ii, ATi) + σ(εi, ATi) = βwd|zσ(Ii, ATi) (22.67a)

Substituting the expression for σ(ATi , Ii) given by Equation 22.29d into Equation 22.67a
yields

R = βwd|z

(
[g + r + (n − 2)gr]σ2(AT ) + (1 − g)(1 − r)

[
σ2(Ad) + (n − 1)σ(Ad, As)

])

(22.67b)
Equivalently, we could have used a breeder’s equation framework (Equation 22.28d) by
recalling that for wi = βwd|zIi + εi (Equation 22.60b), the regression slope can be expressed
as

βwd|z =
σ(w, I)
σ2(I)

=
SI

σ(I)
1

σ(I)
=

ıI
σ(I)

recovering Equation 22.28d.
Note the completely symmetric roles of relatedness (r) and levels-of-selection (g) in

Equation 22.67b. The term in the second set of square brackets can be negative, resulting in
R and β potentially having opposite signs (and hence a maladaptive response). Increasing
either relatedness, r, or the amount of weight, g, on the other individuals within the group
results in increased weight on the σ2(AT ) term, which is always nonnegative, increasing
the chance of congruence between the signs of R and β. Finally, there is a synergistic effect
between r and g in groups of size greater than two, in that the product (n − 2)gr weights
σ2(AT ). Bijma andWade note that this occurs becausen−2 is the number of groupmembers
that two individuals have in common.

Let’s now examine Equation 22.67b for a couple of special cases. First (as expected) in
the absenceofheritable social effects (σ2(As) = 0), thenσ2(AT ) = σ2(Ad)andσ(Ad, As) = 0,
with Equation 22.67b reducing to

R = βwd|zσ
2(Ad) [1 + (n − 1)gr]
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which recovers Equation 22.61a, showing that (in this case) both relatedness andmultilevel
selection are required for the response to deviate from the breeder’s equation.

Now suppose that heritable social effects are present, but interacting group members
are unrelated. Here r = 0 and Equation 22.67b reduces to

R = βwd|z

(
gσ2(AT ) + (1 − g)

[
σ2(Ad) + (n − 1)σ(Ad, As)

])
(22.67c)

Hence, when associative effects on the phenotype occur (σ2(As) > 0), relatedness is not
required for traits with social effects to show a deviation in response from that predicted
from the breeder’s equation. Likewise, if g = 0 and r > 0, we see from Equation 22.67b that
Equation 22.67c applies, provided that g is now replaced by r. Hence, when relatedness
among group members is present (r "= 0), multilevel selection is not needed (g = 0) for
deviation from the breeder’s equation.

Finally, in the absence of both kin and group selection (g = r = 0), Equation 22.67b
reduces to

R = βwd|z

(
σ2(Ad) + (n − 1)σ(Ad, As)

)
= βwd|zσ

2(Ad) + (n − 1)βwd|zσ(Ad, As) (22.67d)

where thefirst term in the last equality is the standardbreeder’s equation (inLande equation
form; Equation13.8c).Hence, thepresenceof associativeeffects, by themselves, are sufficient
to produce deviations from the breeder’s equation even in the absence of kin or group
selection, provided the direct and social breeding values are correlated. This point was
highlighted earlier in the chapter.

Another point stressed earlier is that if σ(Ad, As) is sufficiently negative, the direction
of response, R, in the trait may be different from the direction of direct selection, βwd|z , on
that trait, producing a reversed response. Bijma andWade (2008) took this point further, and
noted that (by definition), selection for an altruistic trait results in a decrease in individual
fitnesswhen themean trait value increases. Hence, spread of an altruistic trait is an example
of a reversed response, andwe see that if thedirect and social breedingvalues are sufficiently
negative correlated within an individual that this can happen even in the absence of kin or
group selection. The careful reader might be concerned that this result appears to be at
odds with Example 22.16, wherein we showed that relatedness was required for individual
selection (g = 0) to spread an altruistic trait. The difference is in the models. Example 22.16
assumed associative effects only in fitness, but Equation 22.67d assumes associative effects
on the trait itself. This means that the social breeding value in individual i influences not
just the fitness of a group member j, but also j’s trait value. Under this setting, altruism can
evolve in the absence of either group selection or relatedness.

What is the basis of these rather dramatic differences in the behavior between models
with and without associative trait effects? The key is to consider the direct and associative
components of individual fitness, wi, as we did in Equation 22.63b. From Equations 22.60b
and 22.66, these are given by

wd,i = βwd|z
(
Adi + g(n − 1)Asi

)
and ws,j = βwd|z

(
Asj + g

[
Adj + (n − 2)Asj

])
(22.68)

as obtained by Bijma and Wade (2008). These equations generalize Equation 22.63b, re-
ducing to it when associative trait effects are absent (As = 0). Careful inspection of these
components show the sources and targets of selection, and the implications for response.
For example, i’s social breeding value (Asi) only enters the direct component of individ-
ual fitness (wd,i) when g "= 0 (i.e., multilevel selection of occurring). The same is true for
the direct breeding value (Adi) to influence the associative component of individual fitness
(ws,i)

Likewise, to see the role of relatedness, the generalization of the predicted response
givenbyEquation22.67a to include thedirect andassociative componentsoffitnessbecomes

∆µAT = σ(wi, ATi) = σ(wd,i, ATi) +
∑

j !=i

σ(ws,j , ATi) (22.69a)
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No relatedness is required to have σ(wd,i, ATi) "= 0, and hence contribute to the selection
response. Conversely, i and j must be related (rij > 0) for σ(ws,j , ATi) to be nonzero. This
last point follows because ws,j is a function of j’s direct and associative breeding values
(Adj and Asj ; Equation 22.68), and

σ(Adj , ATi) = rijσ(Adi , ATi) and σ(Asj , ATi) = rijσ(Asi , ATi) (22.69b)

both of which are zero if i and j are unrelated.
Equations 22.68 and 22.69b show the roles played multilevel selection (g) and related-

ness (r) when associative effects are present for the trait. Multilevel selection determines
how the associative and direct breeding values of i and j are distributed over the direct
and associative components of fitness (Equation 22.68), while relatedness allows the asso-
ciative component of fitness to contribute to response (Equation 22.69b). For example, in
the absence of multilevel selection (g = 0), Equation 22.68 reduces to

wd,i = βwd|zAdi and ws,j = βwd|zAsj (22.70a)

In this setting, selection response can only utilize σ2(As) when σ(ws,j , ATi) "= 0, which
requires that i and j are related (Equation 22.69b).

Conversely, in the absence of any relatives within a group, ws,j does not contribute to
the selection response, which from Equation 22.68 is entirely determined by

wd,i = βwd|z
[
Adi + g(n − 1)Asi

]
(22.70b)

Multilevel selection (g "= 0) allows for Asi to be included in wd,i, and hence σ2(As) is
incorporated into the response.

Finally, if both r and g are zero, then only wd,i = βwd|zAdi enters into the response,
giving (from Equation 22.69d)

R = ∆µAT = βwd|zσ(Adi , ATi) = βwd|z
[
σ2(Ad) + (n − 1)σ(Ad, As)

]
(22.70c)

which shows a departure from the breeder’s equation when direct and social breeding
values are correlated. Because As only enters through is covariance with Ad, we are not
directly accessing σ2(As), so that no direct selection on social values occurs.

Closing Comments
In the absence of associative effects influencing the trait value of interest, both relatedness
and multilevel selection are required for the expected selection response to deviate from
that predicted from the breeder’s equation. Hence, when σ2(As) = 0 and r or g is zero, the
standard breeder’s equation holds. When σ2(As) > 0 (the trait value of a group member
depends in part on the genotypes of other groupmembers), the selection response typically
deviates from the breeder’s equation. The only general settingwhere this is not true is when
the direct and social breeding values are uncorrelated and there is no group or kin selection,
σ(As, Ad) = g = r = 0.

It must be emphasized that any departure of the response from that predicted from the
breeder’s equation does not (by itself) imply that social (i.e., group-level) trait mean will
evolve in a favorable direction. When the departure is entirely due to a correlation between
social and direct breeding values, σ(As, Ad) "= 0, the result can be a social response in an
unfavorable direction when this correlation is negative. In order for selection to directly
access social breeding values, σ2(As) must appear in the response equation, and when
trait associative effects are present this only occurs when either r or g is nonzero. Hence,
in the evolution of social traits, three different components are important to consider: the
presence or absence of (i) associative effects influencing trait value (σ2(As) > 0); (ii) kin
selection (r "= 0); and (iii) multilevel selection (g "= 0). In the presence of associative effects
on the trait value, beneficial changes in the mean social value typically requires either
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kin or multilevel selection. In the absence of associative effects (σ2(As) = 0), both kin and
multilevel selection are required for beneficial changes in the mean social value.

The associative effects framework is very powerful, as it brings the full machinery of
quantitative genetics to bear to the evolution of group-level traits. One immediate advan-
tage is conceptual, in that quantitative-trait models provide a more realistic description of
complex traits (be they behavioral or morphological) than do the single-locus models upon
whichmuch of the earlier work on social selection is built. The other advantage is empirical:
BLUP can be used to estimate the breeding values, and REML used to estimated the asso-
ciated variances and covariances, of the direct and associative effects and hence model the
transmission of a particular trait. The complementary empirical issue of estimating selection
on different levels (e.g., individuals vs. groups) is developed in Chapter 30.


