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ABSTRACT1

The two alleles an individual carries at a locus are identical by descent (ibd) if they have descended2

from a single ancestral allele in a reference population, and the probability of such identity is the3

inbreeding coefficient of the individual. Inbreeding coefficients can be predicted from pedigrees4

with founders in the reference population, but estimation from genetic data is not possible unless5

data are available from the reference population. Published estimators, at best, estimate inbreeding6

coefficients relative to average ibd probabilities for some specified set of alleles. Estimators that7

make explicit use of sample allele frequencies as estimates of allele probabilities in the reference8

population have additional confounding when study individuals have different average kinships with9

the remaining individuals. This means that the ranking of those individual inbreeding coefficient10

estimates depends on the study sample and we show the variation in rankings for common estimators11

applied to 1000 Genomes data. Allele-sharing estimators of within-population inbreeding coefficients12

for a set of individuals, however, do have invariant rankings across all studies including those13

individuals. They are unbiased with a large number of SNPs. We discuss how allele sharing14

estimates of within-population inbreeding coefficients are the relevant quantities for a range of15

empirical applications.16

Keywords: Estimation, F-statistics, Identity by descent, Inbreeding, Kinship, SNP data17

2



INTRODUCTION18

Allelic dependence at a locus is usually quantified by inbreeding coefficients for individuals or19

populations, with these measures referring either to correlations of allelic state indicators (Wright20

1922) or to probabilities of identity by descent, ibd, (Malécot 1948). In this paper we use ibd and21

we have advocated the use of allele-sharing estimators (Weir and Goudet 2017: WG17 henceforth,22

Goudet et al. 2018) that are unbiased for individual and population inbreeding coefficients relative to23

average kinships among specified pairs of individuals. Estimators, such as those in PLINK (Purcell24

et al. 2007) and GCTA (Yang et al. 2011), that use allele frequencies from a sample confound25

inbreeding estimates by the averages of individual kinships. Our work is also influenced by the need26

to estimate inbreeding coefficients from many millions of SNP genotypes where likelihood methods27

may not be feasible and instead we employ moment-based methods.28

There have been many published accounts of inbreeding estimation, including the recent evalu-29

ation of several methods by Alemu et al. (2021) in this journal. Among those that refer to allele30

sharing, Li and Horvitz (1953) discussed an inbreeding estimator based on observed homozygosity,31

i.e. within-individual sharing of maternal and paternal alleles. They compared observed sharing to32

the value expected under zero inbreeding. They also constructed an estimator from the proportions33

of each allele type in a sample that were homozygous and gave an expression that was investigated34

further by Ritland (1996). Ritland used allele sharing within and between individuals in his work,35

and his inbreeding estimates assumed “independence or near-independence” between individuals. If36

individuals are not independent, then we show below that the rankings of his inbreeding coefficient37

estimates change with the sample. In WG17 we estimated inbreeding coefficients by comparing38

within-individual allele-sharing to average sharing between pairs of individuals in a sample. By39

not making explicit use of sample allele frequencies, we preserved the ranking of estimates across40

different samples and this will be a central theme of the present paper.41

Ritland’s individual-level inbreeding coefficients were also derived Yang et al. (2011) as the42

correlation between uniting gametes and were expressed in terms of allele dosages for an individual43

and sample allele frequencies. This estimator was written as F̂UNI in Yengo et al. (2017), and is44

less biased than another estimator in Yang et al. (2011) obtained from the diagonal elements of a45

genomic relationship matrix (GRM) of VanRaden (2008). We compare these two estimates below46

with allele-sharing and other methods: pedigree-based path-counting (Wright 1922), maximum-47

likelihood (e.g. Hall et al. 2012) and runs of homozygosity (e.g. Ceballos et al. 2018).48
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METHODS49

Statistical sampling50

We can describe the dependence between pairs of uniting alleles with data from a single popula-51

tion without invoking an evolutionary model for the history of the population. In this “statisti-52

cal sampling” framework (Weir 1996) we do not consider the variation associated with stochastic53

evolutionary processes but we do consider the variation among samples from the same population.54

Although extensive sets of genetic data allow individual-level inbreeding coefficients to be estimated55

with high precision, we start with population-level estimation.56

Allelic dependencies can be quantified with the usual within-population inbreeding coefficient,57

written here as fW to emphasize it is a within-population quantity, defined by58

Hl = 2pl(1 − pl)(1 − fW ) (1)

where Hl is the population proportion of heterozygotes for the reference allele at SNP l and pl59

is the population proportion of that reference allele. The same value of fW is assumed to apply60

for all SNPs. An immediate consequence of this definition is that the population proportions of61

homozygotes for the reference and alternative alleles are p2

l +pl(1−pl)fW and (1−pl)
2+pl(1−pl)fW62

respectively. This formulation allows fW to be negative, and it is bounded below by the maximum63

of −pl/(1 − pl) and −(1 − pl)/pl. It is bounded above by 1. Hardy-Weinberg equilibrium, HWE,64

corresponds to fW = 0 and textbooks (e.g. Hedrick 2000) point out that negative values of fW65

indicate more heterozygotes than expected under HWE.66

Observed heterozygote proportions H̃l haveHl as within-population expectation EW over samples67

from the study population, EW (H̃l) = Hl, and this would provide a simple estimator of fW if the68

allele population proportions were known. In practice, however, these proportions are not known.69

Steele et al. (2014) suggested use of a database external to the study sample to provide reference70

allele proportions in forensic applications where a reference database is used for making inferences71

about the population relevant for a particular crime. The more usual approach is to use sample72

proportions p̃l in the study sample in place of the true proportions pl (equation 1 of Li and Horvitz,73

1953):74

f̂Wl
= 1 −

H̃l

2p̃l(1 − p̃l)
(2)

The moment estimator in Equation 2 is also an MLE of fW when only one locus is considered, but75
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it is biased (Robertson and Hill 1984) since not only is it a ratio of statistics but also the expected76

value EW [2p̃l(1 − p̃l)] over repeated samples of n randomly chosen individuals from the population77

is 2pl(1 − pl)[1 − (1 + fW )/(2n)] (e.g. Weir 1996, p39).78

This approach can be used to estimate the within-population inbreeding coefficient fj for each79

individual j in a sample from one population. These are the “simple” estimators of Hall et al.80

(2017) and the f̂HOMj
of Yengo et al. (2017):81

f̂HOMjl
= 1 −

H̃jl

2p̃l(1 − p̃l)
(3)

The sample heterozygosity indicator H̃jl is one if individual j is heterozygous at SNP l and is zero82

otherwise. Averaging Equation 3 over individuals gives the estimator based on SNP l in Equation 283

although it is the individual-specific values with which we are concerned in this paper.84

A single SNP provides estimates that are either 1 or a negative value depending on p̃l, so many85

SNPs are used in practice. In both Hall et al. (2012) and Yengo et al. (2017) data were combined86

over loci as weighted or “ratio of averages” estimators:87

f̂Homj
= 1 −

∑

l(H̃jl)
∑

l[2p̃l(1 − p̃l)]
(4)

Gazal et al. (2014) referred to this estimator as fPLINK as it is an option in PLINK. We show88

below the generally good performance of this weighted estimator even though it is a function of89

sample allele frequencies. We will consider throughout that a large number L of SNPs are used so90

that ratios of sums of statistics over loci, such as in Equation 4, have expected values equal to the91

ratio of expected values of their numerators and denominators. Ochoa and Storey (2021) showed92

statistics of the form ÃL/B̃L, where ÃL =
∑L

l=1
al/L and B̃L =

∑L
l=1

bl/L, have expected values93

that converge almost surely to the ratio A/B when EW (ÃL) = AcL and EW (B̃L) = BcL. This result94

requires |al|, |bl| to both be no greater than some finite quantity C , cL to converge to a finite value95

c as L increases, and for Bc not to be zero. For the ratio in Equation 4, al = H̃jl, bl = 2p̃l(1− p̃l) so96

A = (1− fj), B = 1 for large sample sizes n, and cL =
∑

l 2pl(1− pl)/L ≤ 1/2 so the conditions are97

satisfied, providing at least one SNP is polymorphic. For an “average of ratios” estimator of the98

form
∑L

l=1
(al/bl)/L, the denominators bl can be very small and convergence of its expected value99

is not assured.100

As an alternative to using sample allele frequencies, Hall et al. (2012) used maximum likelihood101

to estimate population allele proportions for multiple loci whereas Ayres and Balding (1998) used102

Markov chain Monte Carlo methods in a Bayesian approach that integrated out the allele proportion103
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parameters. Neither of those papers considered data of the size we now face in sequence-based104

studies of many organisms, and we doubt the computational effort to estimate, or integrate over,105

hundreds of millions of allele proportions in Equations 2 or 3 adds much value to inferences about f .106

The allele-sharing estimators we describe in the next section regard allele probabilities as unknown107

nuisance parameters and we show how to avoid estimating them or assigning them values.108

Hall et al. (2012) used an EM algorithm to find MLEs for fj when population allele proportions109

were regarded as being known and equal to sample proportions. Alternatively, a grid search can be110

conducted over the range of validity for the single parameter fj that maximizes the log-likelihood111

ln[Lik(fj)] = Constant +
L

∑

l=1

{H̃jl ln[(1 − fj)] + (1 − H̃jl) ln[1 − 2p̃l(1 − p̃l)(1 − fj)]} (5)

Estimation of the within-population inbreeding coefficients fW (FIS of Wright 1922) and fj does112

not require any information beyond genotype proportions in samples from a study population, nor113

does it make any assumptions about that population or the evolutionary forces that shaped the114

population. The coefficients are simply measures of dependence of pairs of alleles within individuals.115

We show in the next section that, in the absence of additional information, these coefficients also116

govern the behavior of common published inbreeding estimators for the probability of alleles being117

identical by descent.118

Genetic Sampling119

Inbreeding parameters of most interest in genetic studies are those that recognize the contribution120

of previous generations to inbreeding in the present study population. This requires accounting121

for “genetic sampling” (Weir 1996) between generations, thereby leading to an ibd interpretation122

of inbreeding: ibd alleles descend from a single allele in a reference population. It also allows the123

prediction of inbreeding coefficients by path counting when pedigrees are known (Wright 1922). If124

individual J is ancestral to both individuals j′ and j′′, and if there are n individuals in the pedigree125

path joining j′ to j′′ through J , then Fj =
∑

(0.5)n(1+FJ) where FJ is the inbreeding coefficient of126

ancestor J and Fj is the inbreeding coefficient of offspring j of parents j′ and j′′. The sum is over127

all ancestors J and all paths joining j′ to j′′ through J . The expression is also the coancestry θj′j′′128

of j′ and j′′: the probability an allele drawn randomly from j′ is ibd to an allele drawn randomly129

from j′′.130

The allele proportion pl in a study population has expectation πl over evolutionary replicates of131
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the population from an ancestral reference population to the present time. Sample allele proportions132

p̃l provide information about the population proportions pl, and their statistical sampling properties133

follow from the binomial distribution. We do not invoke a specific genetic sampling distribution for134

the pl about their expectations πl although we do assume the second moments of that distribution135

depend on probabilities of ibd for pairs of alleles. One consequence of the assumed moments is that136

the probability of individual j in the study population being heterozygous, i.e. the total expected137

value ET of the heterozygosity indicator over replicates of the history of that individual, is138

ET (H̃jl
) = 2πl(1 − πl)(1 − Fj) (6)

The quantity Fj is the individual-specific version of FIT of Wright (1922) and we can regard it as139

the probability the two alleles at any locus for individual j are ibd. There is an implicit assumption140

in Equation 6 that the reference population needed to define ibd is infinite and in HWE: there is141

probability Fj that j has homologous alleles with a single ancestral allele in that population and142

probability (1−Fj) of j having homologous alleles with distinct ancestral alleles there. In the first143

place, the single ancestral allele has probability π of being the reference allele for that locus and144

the implicit assumption is that two ancestral alleles are both the reference type with probability π2.145

This does not mean there is an actual ancestral population with those properties, any more than146

use of ET means there are actual replicates of the history of any population or individual, and we147

note that Equation 6 does not allow higher heterozygosity than predicted by HWE. Nonetheless,148

the concept of ibd allows theoretical constructions of great utility and we now present a framework149

for approaching empirical situations.150

Inbreeding, or ibd, implies a common ancestral origin for uniting alleles and statements about151

sample allele proportions p̃l require consideration of possible ibd for other pairs of alleles in the152

sample. The total expectation of 2p̃l(1− p̃l) over samples from the population and over evolutionary153

replicates of the study population is (Weir 1996, p176)154

ET [2p̃l(1 − p̃l)] = 2πl(1 − πl)

[

(1 − θS) −
1

2n
(1 + FW − 2θS)

]

(7)

where FW is the average inbreeding coefficient in the sample, FW =
∑n

j=1
Fj/n, and θS is the155

average coancestry in the sample, θS =
∑n

j=1

∑

j′ 6=j θjj′/[n(n − 1)]. Equivalent expressions were156

given by McPeek et al. (2004) and DeGiorgio and Rosenberg (2008). We note the relationship157

fW = (FW −θS)/(1−θS) given by Wright (1922) and we showed in WG17 the equivalent expression158

fj = (Fj − θS)/(1 − θS) for individual-specific values (θS is Wright’s FST ).159
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For a large number of SNPs, the expectation of a ratio estimator of the type considered here is160

the ratio of expectations (Ochoa and Storey 2021). Therefore, the total expectations of the f̂Homj
,161

taking into account both statistical and genetic sampling, are162

ET (f̂HOMj
) = 1 −

1 − Fj

(1 − θS) − 1

2n
(1 + FW − 2θS)

=
fj −

1

2n
(1 + fW )

1 − 1

2n
(1 + fW )

(8)

For all sample sizes, f̂HOMj
has an expected value less than the true value fj, with the bias being163

of the order of 1/n. The ranking of ET (f̂HOMj
) values, however, is the same as the ranking of the fj164

and, therefore, of the Fj. For large sample sizes, Equation 8 reduces to ET (f̂HOMj
) = fj . Averaging165

over individuals shows that ET (f̂HOM) = fW : the population-level estimator in Equation 2 has total166

expectation of fW , not FW .167

A different outcome is found for the fUNIj
estimator of Yengo et al. (2017) (i.e. f̂ III of Yang168

et al. 2011; fGCTA3 of Gazal et al. 2014). This estimator, with the weighted (w) ratio of averages169

over loci we recommend, as opposed to the unweighted (u) average of ratios over loci used in their170

papers, is171

f̂w
UNIj

=

∑L

l=1
[X2

jl − (1 + 2p̃l)Xjl + 2p̃2

l ]
∑L

l=1
2p̃l(1 − p̃l)

(9)

In this equation Xjl is the reference allele dosage, the number of copies of the reference allele, at172

SNP l for individual j. It is equivalent to the estimator given by Ritland (1996, equation 5) and173

attributed by him to Li and Horvitz (1953).174

Ochoa and Storey (2021) showed that f̂w
UNIj

has expectation, for a large number of SNPs and a175

large sample size, of176

ET (f̂w
UNIj

) =
Fj − 2Ψj + θS

1 − θS

= fj − 2ψj (10)

where Ψj is the average coancestry of individual j with other members of the study sample: Ψj =177

∑n

j′=1,j′ 6=j θjj′/(n − 1). We term ψj = (Ψj − θS)/(1 − θS) the within-population individual-specific178

average kinship coefficient. The Ψj have an average of θS over members of the sample, so the179

average of the ψj’s is zero and expected value of the average of the f̂w
UNIj

is fW , as is the case for180

f̂ASj
.181

Equation 10 shows that the f̂w
UNIj

have expected values with the same ranking as the Fj values182

only if there is no kinship among pairs of individuals or if every individual j in the sample has the183

same average kinship ψj with other sample members.184
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Finally, we mention another common estimator described by VanRaden (2008) and termed185

fGCTA1 by Gazal et al. (2014) and available from the GCTA software (Yang et al., 2011) with186

option --ibc. We referred to this as the “standard” estimator in WG17. The weighted version for187

multiple loci is188

f̂w
STDj

=

∑

l(Xjl − 2p̃l)
2

∑

l 2p̃l(1 − p̃l)
− 1 (11)

and it has the large-sample expectation of (fj − 4ψj) as is implied by Equation 13 of WG17 and189

as was given by Ochoa and Storey (2021). We summarize the various measures of inbreeding and190

coancestry in Table 1, and we include sample sizes in the expectations shown in Table 2.191

Tables 1 and 2192

The f̂HOM, f̂UNI, f̂STD and f̂MLE estimators of individual or population inbreeding coefficients193

make explicit use of sample allele proportions. This means that all four have small-sample biases,194

and none of the four provide estimates of the ibd quantities F or Fj. We showed that f̂HOM is195

actually estimating the within-population inbreeding coefficients: the total inbreeding coefficients196

relative to the average coancestry of pairs of individuals in the sample, but f̂UNI and f̂STD are197

estimating expressions that also involve average kinships ψ.198

Allele Sharing199

In a genetic sampling framework, and with the ibd viewpoint, we consider within-individual allele200

sharing proportions Ajl for SNP l in individual j (we used M rather than A in WG17 and in Goudet201

et al. 2018). These equal one for homozygotes and zero for heterozygotes and sample values can202

be expressed in terms of allele dosages, Ãjl = (Xjl − 1)2. We also consider between-individual203

sharing proportions Ajj′l for SNP l and distinct individuals j and j′. These are equal to one for204

both individuals being the same homozygote, zero for different homozygotes, and 0.5 otherwise.205

Observed values can be written as Ãjj′l = [1 + (Xjl − 1)(Xj′l − 1)]/2, with an average over all pairs206

of distinct individuals in a sample of ÃSl. Astle and Balding (2009) introduced Ãjj′l as a measure207

of identity in state of alleles chosen randomly from individuals j and j′, and Ochoa and Storey208

(2021) used a simple transformation of this quantity. The allele sharing for an individual with itself209

is Ajjl = (1 + Ajl)/2.210
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The same logic that led to Equation 6 provides total expectations for allele-sharing proportions211

for all j, j′:212

ET (Ãjj′l) = 1 − 2πl(1 − πl)(1 − θjj′)

ET (ÃSl) = 1 − 2πl(1 − πl)(1 − θS)

Note that θjj = (1 + Fj)/2. The nuisance parameter 2πl(1 − πl) cancels out of the ratio ET (Ãjj′l −213

ÃSl)/ET (1 − ÃSl) and this motivates definitions of allele-sharing estimators of the inbreeding coef-214

ficient for individual j and the kinship coefficient for individuals j, j′ as215

f̂ASj
=

∑

l(Ãjl
− ÃSl

)
∑

l(1 − ÃSl)
, ψ̂ASjj′

=

∑

l(Ãjj′l − ÃSl
)

∑

l(1 − ÃSl)
(12)

For a large number of SNPs, these are unbiased for fj and ψjj′ for all sample sizes. We show below216

the satisfactory behavior of f̂ASj
for simulated data, and consistency of rankings over different217

sampling frames, such as population, ancestry group or whole world for the 1000 Genomes data218

(The 1000 Genomes Project Consortium 2015). We showed in WG17 there is no need to filter on219

minor allele frequency to preserve the lack of bias.220

For large sample sizes, (1 − ÃSl) ≈ 2p̃l(1 − p̃l). Under that approximation, f̂ASj
is the same221

as f̂Homj
but the approximation is not necessary in computer-based analyses. Summing the large-222

sample estimates over individuals not equal to j gives an estimator for the average individual kinship223

ψj:224

ψ̂ASj
= −

∑

l(Xjl − 2p̃l)(1 − 2p̃l)
∑

l 4p̃l(1 − p̃l)
(13)

Adding 2ψ̂ASj
to f̂w

UNIj
gives f̂ASj

, as expected, as does adding 4ψ̂ASj
to f̂w

STDj
. Similarly, ψ̂ASjj′

is225

obtained by adding ψ̂ASj
and ψ̂ASj′

to ψ̂STDjj′
, where (Yang et al. 2011)226

ψ̂STDjj′
=

∑

l(Xjl − 2p̃l)(Xj′l − 2p̃l)
∑

l 4p̃l(1 − p̃l)

These are the elements of the first method for constructing the GRM given by VanRaden (2008).227

When inbreeding and coancestry coefficients are defined as ibd probabilities they are non-228

negative, but the within-population values f and ψ will be negative for individuals, or pairs of229

individuals, having smaller ibd allele probabilities than do pairs of individuals in the sample, on230

average. Individual-specific values of f always have the same ranking as the individual-specific231

F values, and they are estimable. Negative estimates can be avoided by the transformation to232
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(f̂ASj
− f̂min

ASj
)/(1 − f̂min

ASj
) where f̂min

ASj
is the smallest value over individuals of the f̂ASj

’s. We don’t233

see the need for this transformation, and we noted above the recognition of the utility of negative234

values. Ochoa and Storey (2021) wished to estimate Fj rather than fj and, to overcome the lack of235

information about the ancestral population serving as a reference point for ibd, they assumed the236

least related pair of individuals in a sample have a coancestry of zero. We showed in WG17 that237

this brings estimates in line with path-counting predicted values when founders are assumed to be238

not inbred and unrelated, but we prefer to avoid the assumption. We stress that, absent external239

information or assumptions, F is not estimable. Instead, linear functions of F that describe ibd of240

target pairs of alleles relative to ibd in a specified set of alleles are estimable and have utility in241

empirical studies.242

Runs of Homozygosity243

Each of the inbreeding estimators considered so far has been constructed for individual SNPs and244

then combined over SNPs. Observed values of allelic state are used to make inferences about the245

unobserved state of identity by descent. Estimators based on runs of homozygosity (ROH), however,246

suppose that ibd for a region of the genome can be observed. Although F is the probability an247

individual has ibd alleles at any single SNP, in fact ibd occurs in blocks within which there has248

been no recombination in the paths of descent from common ancestor to the individual’s parents.249

Whereas a single SNP can be homozygous without the two alleles being ibd, if many adjacent250

SNPs are homozygous the most likely explanation is that they are in a block of ibd (Gibson et251

al. 2006). There can be exceptions, from mutation for example, and several publications give252

strategies for identifying runs of homozygotes for which ibd may be assumed (e.g. Gazal et al.253

2014, Joshi et al. 2015). These strategies include adjusting the size of the blocks, the numbers of254

heterozygotes or missing values allowed per block, the minor allele frequency, and so on. These255

software parameters affect the size of the estimates (Meyermans et al. 2020). More sophisticated256

methods (e.g. Narasimhan et al. 2016) use hidden Markov models where ibd is the hidden status257

of an observed homozygote. This model-based approach necessarily has assumptions, such as HWE258

in the sampled population.259

We provide more details elsewhere, but we note here that ROH methods offer a useful alternative260

to SNP-by-SNP methods even though they cannot completely compensate for lack of information261

on the ibd reference population. We note also that shorter runs of ibd result from more distant262
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relatedness of an individual’s parents, so that ROH procedures can be set to distinguish recent263

(familial) ibd from distant (evolutionary) ibd. SNP-by-SNP estimators do not make a distinction264

between these two time scales.265

Simulation Study266

We generated a founder set of 50 founder individuals with 20,000 SNPs over a 20 Morgan map267

by using the mspms program (Kelleher et al. 2016). We then used quantiNemo software (Neuen-268

schwander et al. 2019) to simulate a five-generation pedigree of hermaphroditic individuals mating269

randomly, excluding selfing, with each mating producing a number of offspring drawn from a Poisson270

distribution with mean two. The zero-th generation was the 50 founders, the first generation had271

47 individuals and the second, third, fourth and fifth generations had 58, 56, 57 and 65 individuals272

respectively. We followed the founder gametes through the pedigree using acustom R script and273

allowing for recombination based on the 20 Morgan genetic map.274

Each of the 100 alleles per SNP among the founders was given a unique identifier so that alleles275

in subsequent generations with the same identifier had actual identity by descent relative to the276

founders. The average actual ibd proportions over loci, within individuals and between each pair277

of individuals, provided “gold standard” inbreeding and coancestry coefficients, as opposed to the278

pedigree-based values we calculated by path counting.279

The pedigree was constructed to provide fairly high levels of predicted coancestry among pairs280

of the 283 non-founder individuals, ranging from zero to 0.464, with a mean of θS = 0.053, assuming281

the 50 founders were unrelated and not inbred. The pedigree inbreeding coefficients ranged from282

zero to 0.367, with a mean of FW = 0.050. The within-population inbreeding coefficient for the283

set of 283 non-founder individuals is f = (FW − θS)/(1 − θS) = 0.003. Note, however, that the284

50 individuals regarded as founders for the subsequent 283 had their own joint histories from the285

mspms simulation. These 50 had an average within-individual allele sharing of ÃW = 0.80385 and an286

average between-individual allele sharing of ÃS = 0.80355. The difference of these two proportions,287

which would be zero for a reference set of non-inbred and unrelated individuals, provides a within-288

founder allele-sharing inbreeding coefficient f̂
W

of 0.0015.289

The various estimators of inbreeding examined with these data are shown in Table 2, and the290

correlation coefficients for each pair of estimates over the whole set of 283 non-founder individuals291

are shown in Table 3. There are very high correlations between pedigree and gold-standard values292
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and also very high correlations between f̂HOM and f̂AS values, both as expected. In populations293

without substructure, random mating would lead to similar values for inbreeding and coancestry294

levels, so f̂AS and ψ̂AS values would have similar values. There are lower correlations of f̂UNI and295

f̂STD with pedigree-based or gold-standard inbreeding coefficients since those estimates reflect both296

f and ψ.297

We see in Table 3 that F̂ROH values are the most highly correlated with FGold: this high correla-298

tion was obtained by adjusting the block size (100 SNPs) and the block overlap amount (50 SNPs)299

to bring estimates close to the known FGold values. In practice the FGold values are not known and300

the other estimators are all evaluated without external information. The high correlation of f̂AS301

and maximum likelihood values shows that f̂MLE is estimating f rather than F because it uses the302

sample allele frequencies in place of the unknown allele probabilities. The weighted and unweighted303

versions of f̂UNI are highly correlated with each other and with their gold values, but this is not the304

case for f̂STD.305

Table 3306

Figure 1 (left) illustrates the linear relationship between fPedj
and FPedj

: fPedj
= (FPedj

−307

θPedS
)/(1 − θPedS

) where θPedS
= 0.053 is the average coancestry of pairs of non-founders, also308

calculated from the pedigree. The FGoldj
and fGoldj

values are highly, and equally, correlated with309

the corresponding pedigree values, as is shown for fGoldj
in Figure 1 (center). The variation we see310

in Figure 1 (center) for fGoldj
around FPedj

reflects the relatively small number of 20K SNPs and311

the relatively small map length spanned by these SNPs. We have previously (Hill and Weir 2011)312

pointed out the variation of actual inbreeding about expected values, even for whole genomes, and313

Wang (2016) showed that the number of SNPs also has an effect. The expected lack of relationship314

between pedigree-based values of individual average coancestry ψj and individual inbreeding fj,315

leading to variable rankings for some estimators based on sample allele frequencies, is shown in316

Figure 1 (right).317

Figure 1318

Figure 2 (left) illustrates the similarity of F̂ROH and FGold and Figure 2 (center) shows good319

agreement between F̂ROH and f̂AS. Figure 2 (right) shows the low bias of the allele-sharing estimators320

f̂ASj
for the gold-standard within-population inbreeding coefficients fGoldj

. Figure 3 shows f̂UNIj
to321
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be a better estimator of fGoldj
than is f̂STDj

, as noted by Yang et al. (2011), and better performance322

for the weighted than unweighted averages over SNPs.323

Figures 2 and 3324

1000 Genomes Data325

We used 77m SNPs from the 22 autosomes for the 26 populations of the 1000 Genomes whole genome326

data to estimate inbreeding coefficients for all 2504 individuals in the project. Our focus was on the327

invariance of estimate rankings as the reference set of individuals changed from the population from328

which each individual was sampled, to the continental group for that population, to the whole world.329

We calculated the estimates f̂ASj
and f̂u

UNIj
for each individual and each reference set, and ranked330

estimates within each population. The two sets of estimates for all individuals are shown separately331

in Figure 4. Figures S1 and S2 show f̂u
UNIj

versus f̂ASj
for estimates and ranks respectively.332

Figure 4333

Figure 4 shows that within-population inbreeding coefficients f̂AS for all 1000 Genomes popu-334

lations (except the AMR group: CLM, MXL, PEL, PUR) are essentially the same, and generally335

close to zero, when they are estimated relative to average coancestry within each population or336

continental group but change when the complete set of 26 populations is used as a reference. These337

latter values compare the allele sharing for each individual to the same reference value, the average338

sharing over all pairs of individuals in the whole dataset. The world reference shows markedly differ-339

ent f̂AS values for the African populations (AFR), reflecting their higher levels of genetic diversity.340

The rankings for f̂AS within a population, by construction, do not change with reference set. There341

are some high value outliers when the world is used as a reference: four of the five highest values342

are from AMR/PEL. These high f̂AS values reflect admixture, consanguineous matings and high343

evolutionary coancestry. On the other hand, the f̂UNI values are higher for African individuals than344

for any other individuals when the allele frequencies are from all 26 populations: this reflects an345

African-specific pattern of negative average individual kinships ψ, rather than higher values of the346

inbreeding coefficients F .347

The critical role that average kinship plays in inbreeding estimation is illustrated in Figure 5.348

With the world as reference set, the allele-sharing inbreeding estimates f̂AS are tightly clustered349

for European (EUR) individuals, a little more diverse for East Asian (EAS) individuals, much350
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more diverse for South Asian (SAS) and African (AFR) individuals, and substantially diverse for351

American (AMR) individuals. These values are consistent with those reported for the numbers of352

variant sites per genome (The 1000 Genomes Project Consortium, 2015). The variation among353

African and American average kinships ψ̂AS is substantial: as these quantities determine how the354

expected values of F̂UNI and F̂STD differ from the f target parameters, it is clear that these estimates355

cannot be used to rank individuals by their inbreeding levels.356

Figure 5357

For the African population ASW, individual NA20294 has f̂AS values of −0.009, 0.001,−0.130358

using ASW, AFR or World as a reference set and each estimate is ranked as number 16 among the359

61 ASW estimates. The same individual has f̂u
UNI

values of −0.007 (rank 36), 0.001 (rank 16) and360

0.028 (rank 60) using ASW, AFR or World allele frequencies. Estimator f̂u
UNI

indicates NA20294361

to be among the least inbred of the ASW individuals when AFR sample allele frequencies are used,362

but among the most inbred when world-wide sample allele frequencies are used, even though the363

individual’s own genotype is the same for each analysis. Other examples of rankings changing with364

reference population for f̂UNI are shown in Figure S3. This can have implications for studies of365

inbreeding depression, where trait values are regressed on estimated inbreeding coefficients.366

A comparison of runs-of-homozygosity estimates F̂ROHj
with SNP-by-SNP estimates is shown in367

Figure 6. The ROH estimates were produced with the --homozyg--homozyg-snp2 --homozyg-kb100368

options in PLINK (Meyermans et al. 2020). The values of F̂ROHj
depend on the PLINK settings369

for minor allele frequency pruning and linkage disequilibrium pruning, as well as on SNP density, so370

their expected values may differ from the true Fj values. The left panel shows f̂ASj
values and these371

have a correlation of 0.998 with F̂ROHj
. The right panel shows f̂UNIj

estimates and these appear to372

have little relationship with F̂ROHj
.373

Figure 6374

Narasimhan et al. (2016) used a hidden Markov model for obtaining f̂ROHj
values (Figure375

S4). There is very good agreement with f̂ASj
values, providing the admixed AMR populations are376

not used. Gazal et al. (2015) also used a hidden Markov model to obtain inbreeding estimates,377

although their method requires sample allele frequencies and so may have estimates of F confounded378

by average individual-specific average kinships. However, there is good agreement of f̂ASj
values379

with the values given by Gazal et al. (Figure S5).380
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DISCUSSION381

Discussions on the estimation of individual inbreeding coefficients generally refer to F , the prob-382

ability an individual has pairs of homologous alleles that are identical by descent. Among the383

estimators we have considered here, F̂ROH addresses F by assuming that long runs of homozygous384

SNPs represent ibd regions. The ROH estimates, however, are conditional on the settings used385

to calculate the estimates, and actual ibd in short runs of homozygotes may be ignored, so the386

expected values of these estimators is not known. The Bayesian approach of Vogl et al. (2002) also387

addresses F but at the computational cost of estimating allele proportions in a reference popula-388

tion assumed to have zero inbreeding or relatedness. All the other estimators considered here are,389

instead, addressing the within-population inbreeding coefficient f that compares F values to ibd390

probabilities for pairs of individuals. There is no need to specify the reference population implicit in391

the definition of identity by descent. There is also no need to assume the particular individuals in a392

sample have an inbreeding coefficient of zero. For large numbers of SNPs, allele-sharing estimators393

f̂AS are unbiased for f for all sample sizes and have values for a set of individuals that have invariant394

ranks over studies that include that set. We show that estimators using sample allele frequencies395

are estimating some combination of f and of individual-specific average kinships ψ with individuals396

in the study. Estimators with expectations depending on ψ do not have invariant rankings, as we397

showed with data from the 1000 Genomes project as the study scope varied from the population to398

the continent to the world.399

Our ibd-based model rests on expectations of allele-sharing proportions satisfying expressions400

such as Equation 6. There is no requirement for non-overlapping generations, or homogeneous401

populations, for example. This generality is a consequence of not needing allele frequencies, whether402

these refer to a population or to an individual.403

The role of ibd probabilities in theoretical population and quantitative genetic contexts is well404

known, but we suggest it is rank-invariant estimators for the within-population parameters fj that405

are of relevance for empirical studies and we offer the examples in the following sections.406

Genotype Probabilities407

There is often a need to estimate genotype probabilities from observed allele proportions using408

formulations with allele probabilities and ibd probabilities F (e.g. National Research Council 1996409

for forensic science). Following Equation 7 we see that it is 2p̃l(1 − p̃l)(1 − fj) rather than 2p̃l(1 −410
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p̃l)(1 − Fj) that is unbiased for 2πl(1 − πl)(1 − Fj) if Fj and fj are known.411

Inbreeding Depression412

Inbreeding is known to affect, linearly, the expected value of quantitative traits, and studies of413

inbreeding depression often proceed by regressing trait means on inbreeding levels. In Yengo et al.414

(2017), we used F̂ROH, f̂HOM and f̂UNI as inbreeding estimates. Kardos et al. (2018) pointed out that415

we did not discuss the distinction between F and f . We responded (Yengo et al. 2018) with reasons416

for not wishing to use F̂ROH and we could have pointed out the linear relationship between fj and Fj417

and the high correlation we showed above between f̂ASj
and F̂ROHj

means that regressing on either418

F̂ROH or f̂AS should lead to similar results. A SNP with highly significant inbreeding depression419

revealed by regressing trait values on F̂ROH should also be highly significant when regressing on f̂ASj
.420

In less-homogeneous populations than represented by the UK Biobank data (Allen et al. 2012) we421

used in Yengo et al. (2017), it would appear to be better to use f̂ASj
than f̂UNIj

to avoid any effects422

of individual-specific average kinships on inbreeding estimates. Alemu et al. (2021) pointed out423

that f̂HOM (and f̂AS), gives equal weights to all SNPs, whereas f̂UNI gives greater weight to SNPs424

with rare alleles. Alemu et al. did not consider the role of individual average kinships in the bias425

of f̂UNI.426

Genetic Relatedness Matrix427

Inbreeding is also known to affect, linearly, the additive component of genetic variance. For ad-428

ditive traits, the genetic variance for individual j is (1 + Fj)σ
2
A where σ2

A is the additive variance429

for populations in Hardy-Weinberg equilibrium. Consequently, the expected value of the sample430

variance ṼT of trait values over a sample of n individuals is (Speed et al. 2012)431

ET (ṼT ) =
1

n

(

tr(G) −
1

n− 1
ΣG

)

σ2

A + σ2

e

Here the trait is additive and the errors, with variance σ2
e , are independent of genetic effects. The432

GRM G has trace tr(G) and sum of off-diagonal elements ΣG. If the GRM elements are (1 + Fj)433

on the diagonal and 2θjj′ off the diagonal then the trace is n(1 + FW ) and the sum of off-diagonal434

elements is n(n− 1)θS so the genetic component of VT is (1+FW − 2θS)σ2

A. If the GRM is replaced435

by a matrix with allele-sharing inbreeding and kinship estimates, this becomes (1+fW )σ2
A, reflecting436
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that it is the within-population estimated GRM that is used in practice. We show elsewhere that437

the same expected variance holds with GRMs constructed with f̂STD or f̂UNI.438

In summary, we have shown that inbreeding measures of utility in empirical studies are “within-439

population” with the choice of population being at the discretion of the investigator. With allele-440

sharing inbreeding estimators, the population specifies the set of individuals whose pairwise coances-441

try is the reference against which inbreeding is measured. For estimators making explicit use of442

sample allele frequencies, it is the population that furnishes those frequencies, although then in-443

breeding estimates are confounded by individual-specific average kinships. We showed algebraically444

and empirically that allele-sharing estimators have invariant rankings across choice of population.445
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SOFTWARE446

Estimation of inbreeding coefficients can be performed with the following software.447

F̂HOM: PLINK448

F̂Uni: PLINK2, GCTA.449

F̂Std: PLINK1, GCTA.450

F̂ROH: PLINK1, BCFtools/ROH, FSuite.451

F̂AS: SNPRelate, hierFstat.452

F̂MLE: SNPRelate.453

Software is available at:454

BCFtools/ROH: https://samtools.github.io/bcftools/howtos/roh-calling.html455

FSuite: http://genestat.cephb.fr/software/index.php/FSuite456

GCTA: http://gump.qimr.edu.au/gcta457

hierFstat: https://cran.r-project.org/web/packages/hierfstat/index.html458

PLINK: http://pngu.mgh.harvard.edu/purcell/plink/459

PLINK2: https://www.cog-genomics.org/plink/2.0/460

SNPRelate: http://www.bioconductor.org/packages/release/bioc/html/SNPRelate.html461
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Table 1: Measures of Inbreeding and Coancestry.

Measure Description Evaluation

Fj Inbreeding coefficient for individual j: FPED: Path counting.

ibd probability for homologous alleles FGold: Actual ibd in simulations.

θjj′ Coancestry for individuals j, j′: ibd probability FPED: Path counting.

for random alleles from j and j′. FGold Actual ibd in simulations.

The following hold for PED and Gold values.

FW Average inbreeding coefficient. FW = 1

n

∑n

j=1
Fj for n individuals.

Ψj Average coancestry coefficient for individual j. Ψj = 1

n−1

∑n

j′=1j′ 6=j
θjj′

θS Average coancestry coefficient. θS = 1

n

∑n

j=1
Ψj

fj Within-population inbreeding coefficient fj =
Fj−θS

1−θS

for individual j.

fW Average within-population inbreeding coefficient. fW = FW −θS

1−θS

ψj Within-population average kinship coefficient for ψj =
Ψj−θS

1−θS

individual j.
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Table 2: Estimators of Inbreeding.

Estimate Calculation∗ Expected Value†

F̂ROHj
Proportion of homozygous blocks. No explicit expression.

F̂MLEj
Maximization of likelihood for fj. No explicit expression.

F̂HOMj
1 −

∑

l Xjl(2 −Xjl)
∑

l 2p̃l(1 − p̃l)
fj −

1

2n
(1 + fW )

1 − 1

2n
(1 + fW )

F̂HOMW
1 − 1

n

∑n

j=1

∑

l Xjl(2 −Xjl)
∑

l 2p̃l(1 − p̃l)
fW − 1

2n
(1 + fW )

1 − 1

2n
(1 + fW )

F̂ASj

∑

l(Ãjl − ÃSl)
∑

l(1 − ÃSl)
fj

F̂ASW

1

n

∑n

j=1
F̂ASj

fW

F̂w
UNIj

∑

l[X
2

jl − (1 + 2p̃l)Xjl + 2p̃2

l ]
∑

l 2p̃l(1 − p̃l)
fj − 2ψj −

1

2n
(3 + 4fj − 8ψj − fW )

1 − 1

2n
(1 + fW )

F̂w
UNIW

1

n

∑n
j=1

F̂w
UNIj

fW − 3

2n
(1 + fW )

1 − 1

2n
(1 + fW )

F̂ u
UNIj

1

L

∑L

l=1

X2

jl − (1 + 2p̃l)Xjl + 2p̃2

l

2p̃l(1 − p̃l)
No explicit expression.

F̂w
STDj

∑

l(Xjl − 2p̃l)
2

∑

l 2p̃l(1 − p̃l)
− 1

fj − 4ψj −
1

2n
(3 + 4fj − 8ψj − fW )

1 − 1

2n
(1 + fW )

F̂w
STDW

1

n

∑n

j=1
F̂w

STDj

fW − 3

2n
(1 + fW )

1 − 1

2n
(1 + fW )

F̂ u
STDj

1

L

∑L
l=1

(Xjl − 2p̃l)
2

2p̃l(1 − p̃l)
− 1 No explicit expression.

∗ Xjl is the reference allele dosage for SNP l in individual j.

∗ p̃l = 1

2n

∑n

j=1
Xjl is the sample allele frequency for SNP l.

† For weighted averages over large numbers of loci.

25



Table 3: Correlations among inbreeding measures∗ for simulated data.

FPED FGold F̂ROH fPED fGold f̂AS f̂HOM f̂MLE fGold

UNI
f̂w

UNI
f̂u

UNI
fGold

STD
f̂w

STD
f̂u

STD

FPED 1.00 0.94 0.92 1.00 0.94 0.84 0.84 0.80 0.80 0.71 0.74 0.44 0.36 −0.25

FGold 0.94 1.00 0.99 0.94 1.00 0.90 0.90 0.88 0.86 0.78 0.80 0.48 0.41 −0.24

F̂ROH 0.92 0.99 1.00 0.92 0.99 0.91 0.91 0.89 0.87 0.80 0.82 0.50 0.45 −0.20

fPED 1.00 0.94 0.92 1.00 0.94 0.84 0.84 0.80 0.80 0.71 0.74 0.44 0.36 −0.25

fGold 0.94 1.00 0.99 0.94 1.00 0.90 0.90 0.88 0.86 0.78 0.80 0.48 0.41 −0.24

f̂AS 0.84 0.90 0.91 0.84 0.90 1.00 1.00 0.99 0.77 0.86 0.86 0.42 0.44 −0.22

f̂HOM 0.84 0.90 0.91 0.84 0.90 1.00 1.00 0.99 0.77 0.86 0.86 0.42 0.44 −0.22

f̂MLE 0.80 0.88 0.89 0.80 0.88 0.99 0.99 1.00 0.82 0.92 0.91 0.53 0.57 −0.10

fGold

UNI
0.80 0.86 0.87 0.80 0.86 0.77 0.77 0.82 1.00 0.89 0.91 0.86 0.74 0.18

f̂w

UNI
0.71 0.78 0.80 0.71 0.78 0.86 0.86 0.92 0.89 1.00 0.98 0.75 0.84 0.17

f̂u
UNI

0.74 0.80 0.82 0.74 0.80 0.86 0.86 0.91 0.91 0.98 1.00 0.76 0.80 0.17

fGold

STD
0.44 0.48 0.50 0.44 0.48 0.42 0.42 0.53 0.86 0.75 0.76 1.00 0.87 0.55

f̂w

STD
0.36 0.41 0.45 0.36 0.41 0.44 0.44 0.57 0.74 0.84 0.80 0.87 1.00 0.53

f̂u
STD

−0.25 −0.24 −0.20 −0.25 −0.24 −0.22 −0.22 −0.10 0.18 0.17 0.17 0.55 0.53 1.00

∗ As shown in Tables 1 and 2.
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Figure 1: Allele sharing estimates for 283 non-founders in simulated pedigree.
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Figure 2: Values of ROH estimates of F and allele-sharing estimates of f for 283 non-founders in

simulated pedigree.
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Figure 3: Values of UNI and STD estimates for 283 non-founders in simulated pedigree.
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f̂w
AS

; f̂u
UNI

Figure 4: Individual inbreeding coefficient estimates for 1000 Genomes data.

Green: Population as reference; Blue: Continental group as reference; Red: World as reference.

Populations (left to right): ACB, ASW, ESN, GWD, LWK, MSL, YRI (AFR); CLM, MXL, PEL,

PUR (AMR); CDX, CHB, CHS, JPT, KHV (EAS); CEU, FIN, GBR, IBS, TSI (EUR); BEB, GIH,

ITU, PJL, STR (SAS).
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Figure 5: Estimates ψ̂ASj
of within-population individual-specific average kinships (Y-axis)

vs estimates f̂ASj
of within-population individual-specific inbreeding coefficients (X-axis) for 1000

Genomes data, with the World as reference set. Gold: AFR; Red: AMR; Purple: SAS; Blue: EUR;

Green: EAS.
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Figure 6: PLINK-estimates f̂ROH (Y-axis) vs SNP by SNP estimates for 1000 Genomes data,

with the World as a reference set. Left Panel: f̂w
AS (X-axis) ; Right panel: f̂u

UNI (X-axis). Solid line

X = Y in both panels. Gold: AFR, not ACB, ASW; Orange: AFR, ACB and ASW; Red: AMR;

Purple: SAS; Blue: EUR; Green: EAS.
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Supplementary Figure S1: 1000 Genomes Estimates

Figure S1: Values of f̂UNI (Y-axis) versus f̂AS (X-axis) for the 1000 Genomes populations.

Population reference in green, continental reference in blue, world reference in red.
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Supplementary Figure S2: 1000 Genomes Estimate Ranks

Figure S2: Ranks of f̂UNI (Y-axis) versus ranks of f̂AS (X-axis) for the 1000 Genomes popula-

tions. Population reference in green, continental reference in blue, world reference in red.
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Supplementary Figure S3:

Use of Continent vs World Allele Frequencies.

Figure S3: Values of f̂UNI for each of the 1000 Genomes populations with the continent for that

population providing the sample allele frequencies (Y axis) versus the world providing the sample

allele frequencies (X axis). Red: AFR; Gold: AMR; Green: SAS; Blue: EUR; Purple: SAS.
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Supplementary Figure S4:

Figure S4: BCF-tools-estimates f̂BCF (Y-axis) vs f̂w
AS

(X-axis) for 1000 Genomes data, with the

Population as a reference set. Left Panel: All 1000 Genomes populations; Right panel: Omitting

AMR populations. Solid line X = Y in both panels. Gold: AFR, not ACB, ASW; Orange: AFR,

ACB and ASW; Red: AMR; Purple: SAS; Blue: EUR; Green: EAS.
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Supplementary Figure S5:
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Figure S5: Fsuite estimates f̂FSuite (Y-axis) vs f̂w

AS
(X-axis) for 1000 Genomes data, with the

Population as a reference set. Left Panel: All 1000 Genomes populations; Right panel: Omitting

AMR populations. Solid line X = Y in both panels. Gold: AFR; Red: AMR; Purple: SAS; Blue:

EUR; Green: EAS.
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