Suppose that $E(T \mid M=m, A=a, N=w)=\beta_{m} m+\beta_{A} a+f_{1}(w)$

$$
E(m \mid A=a, W=w)=\alpha_{A} a+f_{2}(w)
$$

What does this imply for the value of the NDE and NIE? To find ont, we must use the (meditational) 6-computation formula, which states that $E\left[Y\left(a, M\left(a^{*}\right)\right)\right]=E\left[E\left[E\left(Y(M, A=a, W) \mid A=a^{*}, W\right]\right]\right.$ for arbitrary $a, a^{*} \in\{0,1\}$.

So, we can unite $E\left[Y\left(a, m\left(a^{*}\right)\right)\right]=E\left[E\left[\beta_{M} M+\beta_{A} a+f_{1}(W) \mid A=a^{*}, W\right]\right]$

$$
\begin{aligned}
& =E\left[\beta_{M} E\left(M\left(A=\alpha^{*}, W\right)+\beta_{A} a+f_{1}(W)\right]\right. \\
& =E\left[\beta_{M}\left(\alpha_{A} a^{*}+f_{2}(W)\right)+\beta_{A} a+f_{1}(W)\right] \\
& =\alpha_{A} \beta_{M} a^{*}+\beta_{A} a+\beta_{M} E\left[f_{2}(W)\right]+E\left[f_{1}(W)\right]
\end{aligned}
$$

ord this implies that $E[Y(1, M(1))]=\alpha_{A} \beta_{M}+\beta_{A}+\beta_{M} E\left[f_{2}(w)\right]+E\left[f_{1}(W)\right]$

$$
\begin{aligned}
& E[\varphi(1, m(0))]=\beta_{A}+\beta_{M} E\left[f_{2}(W)\right]+E\left[f_{1}(W)\right] \\
& E[\zeta(0, M(1))]=\alpha_{A} \beta_{M}+\beta_{M} E\left[f_{2}(W)\right]+E\left[f_{1}(W)\right] \\
& E[\zeta(0, m(0))]=\beta_{M} E\left[f_{2}(W)\right]+E\left[f_{1}(W)\right] .
\end{aligned}
$$

Therefore, we find that pure $N D E=E[Y(1, m(0))]-E[Y(0, M(0))]=\beta_{A}$
total $N D E=E[Y(1, M(1))]-E[Y(0, M(1))]=\beta A$
pul $N_{I} E=E[Y(0, M(1))]-E[Y(0, M(0))]=\alpha_{A} \beta M$
total $N\left(E=E[Y(1, M(1))]-E[Y(1, M(0))]=\alpha_{A} \beta M\right.$
So, in the case of simple linear models (n without interactions), the NDE is β_{A} ard the $N_{I E}$ is $\alpha_{A} \beta_{m}$ for both versions. This coincides with results from Baron ξ_{1} Kenvey (1986).

Suppose now that $E(Y \mid M=m, A=a, W=w)=\beta_{M} m+\beta_{A} a+\beta_{M A} m a+f_{1}(\omega)$

$$
E(M \mid A=a, W=w)=\alpha_{A} a+f_{2}(w) .
$$

Doing similar calculations as above, we find that
pure $N D E=E[Y(1, M(0))]-E[Y(0, M(0))]=\beta_{A}+\beta_{M A} E\left[f_{1}(w)\right]$
total $N D E=E[Y(1, M(1))]-E[\varphi(0, M(1))]=\beta_{A}+\beta_{M A}\left(\alpha_{A}+E\left[f_{1}(W)\right]\right)$
pul N IE $=E[Y(0, M(1))]-E[Y(0, M(0))]=\alpha_{A} \beta_{M}$
total $N\left(E=E[Y(1, M(1))]-E[Y(1, M(0))]=\alpha_{A} \beta_{M}+\alpha_{A} \beta_{M A}\right.$
This gives a generalization of the "product of coefficient"" approach derived above. Now, the value of NDE or NIE does depend on which veisionis considered.

