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Understanding bias/variance tradeoff in estimation

So far, we discussed ATE estimation via G-computation or IPTW. This hinged on
being able to estimate a regression function well.

Empirical moment approach works well if W is low-dimensional and discrete.

If W has continuous components, the estimator breaks down.

Generally, we must borrow information across W levels to learn about these functions.

Key question: how much borrowing is just the right amount?

If we borrow little information across participants, then our estimator is only using a
small portion of the data:

info borrowed from very similar patients ñ low bias;

fewer patients to borrow info from ñ high variance.
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Understanding bias/variance tradeoff in estimation

Consider estimating EpY | A “ 1,W “ ´3.5q.
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Understanding bias/variance tradeoff in estimation

We could use patients with ´4 ďW ď ´3 to learn about those with W “ ´3.5.
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Understanding bias/variance tradeoff in estimation

This motivates the uniform kernel estimator with h-sized window:

pEpY | A “ 1,W “ wq “ average outcome among patients with |W ´ w | ď
h

2
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Understanding bias/variance tradeoff in estimation

How big should h be?

Small h ñ borrowing info from very similar patients ñ low bias.
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Understanding bias/variance tradeoff in estimation

How big should h be?

Small h ñ fewer patients to borrow info from ñ high variance.
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Understanding bias/variance tradeoff in estimation

How big should h be?

Big h ñ borrowing info from less similar patients ñ high bias.
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Understanding bias/variance tradeoff in estimation

How big should h be?

Big h ñ more patients to borrow info from ñ low variance.
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Understanding bias/variance tradeoff in estimation

Linear regression is an example of a method that borrows heavily.

It turns out β̂ is a weighted average of all pairwise slopes.

Weights equal to squared distance between observations.
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Understanding bias/variance tradeoff in estimation

Linear regression is an example of a method that borrows heavily.

low variance, but potentially high bias.
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Understanding bias/variance tradeoff in estimation

We have many different regression tools that tradeoff bias and variance to different
degrees and in different ways.

(nonparametric) empirical moment, kernel regression, neural networks, random forests;

(semiparametric) generalized additive models, partially linear additive models;

(parametric) linear regression, logistic regression, spline regression.

For any single regression method, the tradeoff between bias and variance is generally
governed by modeling choices and/or tuning parameters.

linear regression with linear versus 4th degree polynomial terms;

uniform kernel estimator with large versus small window h;

regression tree with maximum depth one versus thirty.

The best bias/variance tradeoff depends on the (unknown) true regression function.
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Estimation via cross-validated risk assessment

How can we use the observed data to learn about the true relationship?

Why not try out a bunch of different regressions and see which one fits best?

This is what we will do, but we must be careful!

Estimators must generally be pre-specified.

What do we mean by “fits best”?

How do we evaluate this fit appropriately?

We need a careful framework for candidate regression evaluation to avoid bias.

Pick the method that gives an answer that makes sense (e.g., has small p-value)?

If sample size is huge, we might find an effect even if there is no effect.

We also risk producing misleading inference about our estimate of the effect.

Standard confidence intervals and p-values require complete pre-specification.

They will usually not account for uncertainty in trying many models.
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Estimation via cross-validated risk assessment

As an example, the G-computation ATE estimator can be implemented in two steps:

1 Use specified regression technique to estimate outcome regression EpY | A,W q.

2 Plug resulting estimate into G-computation formula.

What if we replace 1 with:

1a Evaluate a collection of different pre-specified regression techniques;

1b Choose the “best” technique as final regression estimate Q̄n?

We can still entirely pre-specify the estimation procedure.

We need to determine how to pick the “best” technique.

Can we have a fair competition between estimators to determine the best?
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Estimation via cross-validated risk assessment

How will we score our estimators to determine which is closest to the truth?

We focus on the outcome regression; same arguments for the propensity score.

A loss function L measures how far the prediction of Y made by Q̄n is from the actual
value of Y . Common loss functions used include:

squared error loss: LpQ̄nqpw , a, yq :“ ty ´ Q̄npa,wqu
2;

log-likelihood loss: LpQ̄nqpw , a, yq :“ ´log
“

Q̄npa,wq
y p1´ Q̄npa,wqu

1´y
‰

The average loss of a candidate estimator Q̄n is called its risk:

RpQ̄nq :“ E rLpQ̄nqpW ,A,Y qs

“
ÿ

w,a,y

LpQ̄nqpw , a, yqPpW “ w ,A “ a,Y “ yq .

The risk can used to score the performance of different candidate estimators.
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Estimation via cross-validated risk assessment

How do we know that risk is a good way to keep score?

We say that L is a valid loss function for estimating the true outcome regression Q̄ if
choosing the estimator Q̄n “ Q̄ results in the minimum possible risk.

Example: minimizing mean squared error

RpQ̄nq “ E
“

Y ´ Q̄npA,W q
‰2

“ E
“

Y ´ Q̄pA,W q ` Q̄pA,W q ´ Q̄npA,W q
‰2

“ E
“

Y ´ Q̄pA,W q
‰2
` 2E

 “

Y ´ Q̄pA,W q
‰ “

Q̄pA,W q ´ Q̄npA,W q
‰(

` E
“

Q̄pA,W q ´ Q̄npA,W q
‰2

“ E
“

Y ´ Q̄pA,W q
‰2

looooooooooomooooooooooon

always ě 0

`E
“

Q̄pA,W q ´ Q̄npA,W q
‰2

looooooooooooooooomooooooooooooooooon

when is this 0?

An estimator with a small risk is preferred – just like in golf, we prefer lower scores!

Unsurprisingly, the estimator with the smallest risk is the true outcome regression.
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Estimation via cross-validated risk assessment

How does this relate to the bias/variance tradeoff?

RpQ̄nq “ EtrY ´ Q̄pA,W qs2u ` EtrQ̄pA,W q ´ Q̄npA,W qs2u

The second term can be written as

E
“

Q̄pA,W q ´ Q̄npA,W q
‰2

“ E
 

Q̄pA,W q ´ E rQ̄npA,W qs ` E rQ̄npA,W qs ´ Q̄npA,W q
(2

“ E
 

Q̄pA,W q ´ E rQ̄npA,W qs
(2
` E

 

E rQ̄npA,W qs ´ Q̄npA,W q
(2

Combining these, we see that the risk RpQ̄nq can be decomposed as

E
“

Y ´ Q̄pA,W q
‰2

looooooooooomooooooooooon

noise

`E
 

Q̄pA,W q ´ E rQ̄npA,W qs
(2

loooooooooooooooooooomoooooooooooooooooooon

bias squared

`E
 

E rQ̄npA,W qs ´ Q̄npA,W q
(2

looooooooooooooooooooomooooooooooooooooooooon

variance

.

Mean squared error is the sum of noise inherent to the data, bias of the estimator, and
variance of the estimator.
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Estimation via cross-validated risk assessment

How can we estimate the risk of an estimator?

Idea: Use empirical risk estimate RnpQ̄nq “
1
n

n
ř

i“1

 

Yi ´ Q̄npAi ,Wi q
(2

.

Problem: Q̄n was fit using the same data that we use to estimate its risk!

Analogy: a student got a glimpse of the exam before taking it.

focused on learning test questions very well;
test result does not reflect how well student has learned the subject.

Consider fitting to n “ 100 observations the linear model W `W 2 ` ¨ ¨ ¨ `W 20

Q̄np1,wq “ β0,n ` β1,nw ` β2,nw
2 ` ¨ ¨ ¨ ` β20,nw

20

versus fitting the true linear model W `W 2 `W 3

Q̄np1,wq “ β0,n ` β1,nw ` β2,nw
2 ` β3,nw

3.

19 / 47



Estimation via cross-validated risk assessment
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Estimation via cross-validated risk assessment
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Estimation via cross-validated risk assessment

This illustrates two key points:

1 we are overly optimistic about how well we are fitting each estimator;

2 we would select the wrong estimator.

What we really need is external data to properly evaluate estimators.

We could get a better idea about how well our estimators are doing.

We could objectively select the correct estimator to use.

. . . but such data are rarely available.

Instead, we use cross-validation to estimate risk.

Fit regression on part of the data, evaluate on another part.

Mimics evaluating fit on external data.

Many forms of cross-validation; we focus on V -fold cross-validation.
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Estimation via cross-validated risk assessment

Data are divided into V sets of size „ n
V

. Here, V “ 10.

Fold 1 = training sample T1 + validation sample V1.

Training sample is used to fit (“train”) the regressions.

Validation sample is used to estimate risk (“validate”).

Several factors to consider when choosing V :

large V = more data to fit regressions (helpful in small
datasets or with high-dimensional covariates);

small V = more data to evaluate risk (helpful for
outcomes with skewed distributions);

large V = greater computation time.
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Estimation via cross-validated risk assessment

The validation set rotates until each set has been used as validation once.
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Estimation via cross-validated risk assessment

Consider cross-validation for our problem.
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Estimation via cross-validated risk assessment

Consider cross-validation for our problem.

1 Define first training sample T1 and
validation sample V1.
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Estimation via cross-validated risk assessment

Consider cross-validation for our problem.

1 Define first training sample T1 and
validation sample V1.

2 Split data into training sample T1

(size nt) and validation sample V1

(size nv ).
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Estimation via cross-validated risk assessment

Consider cross-validation for our problem.

1 Define first training sample T1 and
validation sample V1.

2 Split data into training sample T1

(size nt) and validation sample V1

(size nv ).

3 Fit Q̄n,1 in training sample T1.
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Estimation via cross-validated risk assessment

Consider cross-validation for our problem.

1 Define first training sample T1 and
validation sample V1.

2 Split data into training sample T1

(size nt) and validation sample V1

(size nv ).

3 Fit Q̄n,1 in training sample T1.

4 Estimate risk in validation sample V1

Rn,1pQ̄n,1q “
1

nv

ÿ

iPV1

 

Yi ´ Q̄n,1p1,Wi q
(2
.
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Estimation via cross-validated risk assessment

Consider cross-validation for our problem.

1 Define second training sample T2 and
validation sample V2.

2 Split data into training sample T2

(size nt) and validation sample V2

(size nv ).

3 Fit Q̄n,2 in training sample T2.

4 Estimate risk in validation sample V2

Rn,2pQ̄n,2q “
1

nv

ÿ

iPV2

 

Yi ´ Q̄n,2p1,Wi q
(2
.
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Estimation via cross-validated risk assessment

How can we estimate the risk of an estimator?

The cross-validated risk is the average risk over the folds, which we estimate by

RCV ,npQ̄nq :“
1

V

V
ÿ

v“1

Rn,v pQ̄n,v q .

The estimated cross-validated risk should provide a close approximation of the true
risk of an estimator.

We should choose the estimator with the lowest estimated cross-validated risk!

An early reference to this idea appears in Stone (1974), though some earlier
examples are also available.Commonly referred to as the cross-validation selector, or the discrete super
learner due to optimality results (van der Laan, Polley & Hubbard, 2007).
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Super learning and oracle inequalities

Say we want to compare different outcome regression estimators Q̄n,k , k “ 1, 2, . . . ,K .

Denote by Q̄n,kcv
n

the estimator with the smallest cross-validated risk.

The best amongst all candidate estimators is the oracle selector

kor
n :“ argmin

k

1

V

V
ÿ

v“1

RpQ̄n,k,v q .

The oracle estimator depends on the true risk and thus is unknown in practice.

Serves as a benchmark – the best we could do given these K estimators.

We can compare the performance of Q̄n,kcv
n

to Q̄n,kor
n

.

How well do we mortals do compared to the oracle?

Compare estimators in terms of difference in risk d0pQ̄n, Q̄q :“ RpQ̄nq ´ RpQ̄q.
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Super learning and oracle inequalities

Under conditions, van der Vaart, Dudoit & van der Laan (2006) showed that, for any
λ ą 0 and for p denoting proportion in validation sample,

1

V

V
ÿ

v“1

d0pQ̄v,n,kcv
n
, Q̄q

looooooooooooomooooooooooooon

super learner vs. truth

ď p1` 2λq
V
ÿ

v“1

d0pQ̄v,n,kor
n
, Q̄q

looooooooooomooooooooooon

oracle vs. truth

` 2Cpλq

ˆ

1` logK

np

˙

looooooooooomooooooooooon

goes to 0 as n grows

.

Some observations on oracle inequality:

1 Discrete super learner is essentially as close to the truth as oracle.

2 The number of algorithms K is allowed to be very large.

Many studies have demonstrated excellent performance in practice as well (Rose,
2013; Pirracchio et al., 2015).
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Super learning and oracle inequalities

Practically, the oracle inequality suggests that we should include as many different
pre-specified estimators as possible.

(nonparametric) empirical moment, kernel regression, neural networks, random forests;

(semiparametric) generalized additive models, partially linear additive models;

(parametric) linear regression, logistic regression, spline regression.

Any given method could result in multiple different potential estimators.

random forest with different tuning parameters;

generalized additive models with different knots and degrees;

linear regression with interactions and stepwise selection;

Certain estimators will work well on some data sets and poorly on others.

The oracle is the best estimator for this data set.

The super learner performs as well as the oracle.
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Super learning and oracle inequalities

What about model checking?

When a single parametric regression is used, post-hoc model checking is common.

Examine residual plots, add/remove terms, refit.

Inference is based on the final-selected model.

Estimators must generally be pre-specified.

Any post-hoc checking we might do should also be pre-specified.

Standard confidence intervals and p-values require complete pre-specification.

They will usually not account for uncertainty in post-hoc checking.

Super learning avoids the need for post-hoc checking.

Include in your library any model choice that could result from model checking.

Oracle inequality ensures that super learner chooses the correct one.
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Super learning and oracle inequalities

Super learning eliminates the need to put all our eggs in a single estimation basket. . .

. . . and allows us to avoid post-hoc changes to the analysis plan.

Examples of cross-validated risks (relative to linear regression) in real datasets:

Method Study 1 Study 2 Study 3 Study 4
Linear regression 1.00 1.00 1.00 1.00
Lasso regression 0.91 0.95 1.00 0.91
D/S/A 0.22 0.95 1.04 0.43˚

Ridge regression 0.96 0.90 1.02 0.98
Random forest 0.39 0.72˚ 1.18 0.71
MARS 0.02˚ 0.82 0.17˚ 0.61

Discrete super learner picks the best (˚) estimator and fits using the full data.
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Super learning and oracle inequalities

Super learning eliminates the need to bank
on a single estimation technique for each
of the outcome regression and propensity
score.

Using the BOLD data, we estimated the
outcome regression and propensity score.

Ten algorithms were run with and
without variable screening based on
univariate associations.

Table shows cross-validated risk
(relative to linear/logistic regression)
for each method.

BART fit the outcome regression
best, but fit the propensity score very
poorly.

Method OR PS
GLM 1.000 1.000
Step GLM 0.998 0.999
BART 0.988˚ 4.462
MARS 1.016 1.010
GAM 0.995 0.995
LASSO 1.010 0.993
RF 0.997 0.991
Bayes GLM 1.000 0.998
SVM 1.082 1.013
RPART 1.129 1.041
GLM + screen 0.999 0.991
Step GLM + screen 0.999 0.992
BART + screen 0.989 4.476
MARS + screen 1.012 1.002
GAM + screen 0.994 0.987˚

LASSO + screen 1.010 1.006
RF + screen 0.997 0.989
Bayes GLM + screen 0.999 0.990
SVM + screen 1.061 1.018
RPART + screen 1.129 1.059
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Super learning and oracle inequalities

The discrete super learner performs as well as the best candidate regression. But what
if different estimators capture different features of the data?

We may gain from taking combinations of candidate estimators rather than
picking just one!

Idea originated with “model stacking” of Wolpert (1992) and Breiman (1996);

Idea generalized and re-branded as super learning (van der Laan, Polley, &
Hubbard, 2007).

Consider estimators that are convex combinations of the candidate estimators:

Q̄n,ω :“
K
ÿ

k“1

ωk Q̄n,k with ωk ě 0 and
K
ÿ

k“1

ωk “ 1 .

This defines an infinite collection (or ensemble) of candidate estimators that contains

each individual estimator in the library;

each convex combination of estimators, e.g., 0.3Q̄n,1 ` 0.2Q̄n,10 ` 0.5Q̄n,25.

It is straightforward to find combination that minimizes cross-validated risk

ωcv
n :“ argminω

1

V

V
ÿ

v“1

RnpQ̄v,n,ωq .

38 / 47



Super learning and oracle inequalities

Method MSE ωcv
n MSE ωcv

n

GLM 1.000 0.00 1.000 0.00
Step GLM 0.998 0.05 0.999 0.00
BART 0.988 0.21 4.462 0.00
MARS 1.016 0.02 1.010 0.16
GAM 0.995 0.21 0.995 0.00
LASSO 1.010 0.00 0.993 0.28
RF 0.997 0.00 0.991 0.00
Bayes GLM 1.000 0.00 0.998 0.00
SVM 1.082 0.00 1.013 0.00
RPART 1.129 0.01 1.041 0.04
GLM + screen 0.999 0.00 0.991 0.00
Step GLM + screen 0.999 0.00 0.992 0.00
BART + screen 0.989 0.00 4.476 0.00
MARS + screen 1.012 0.19 1.002 0.00
GAM + screen 0.994 0.00 0.987 0.38
LASSO + screen 1.010 0.19 1.006 0.02
RF + screen 0.997 0.00 0.989 0.11
Bayes GLM + screen 0.999 0.00 0.990 0.00
SVM + screen 1.061 0.11 1.018 0.00
RPART + screen 1.129 0.00 1.059 0.00

BOLD results for
outcome regression and
propensity score.

Many methods receive
zero weight in the super
learner.

Often, though not always,
weight received is
proportional to method’s
performance.
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Super learning and oracle inequalities

# install and load SuperLearner package
install.packages("SuperLearner")
require(SuperLearner)

# define simple super learner library
# see listWrappers () for all algorithms included
SL.lib <- c("SL.glm","SL.step.forward","SL.mean")

# fit super learner
fit <- SuperLearner(Y = Y, X = data.frame(A,W),

SL.library = SL.lib ,
method="method.CC_LS")

40 / 47



Super learning and oracle inequalities

Often, we would like to objectively evaluate the performance of the super learner.

Theory says we do well eventually, but did we do well in these data?

The risk of the super learner can be estimated using cross-validation.

First fit super learner in training sample (using nested cross-validation).

Evaluate risk in validation sample.

Method Study 1 Study 2 Study 3 Study 4
Linear regression 1.00 1.00 1.00 1.00
Lasso regression 0.91 0.95 1.00 0.91
D/S/A 0.22 0.95 1.04 0.43
Ridge regression 0.96 0.90 1.02 0.98
Random forest 0.39 0.72 1.18 0.71
MARS 0.02˚ 0.82 0.17 0.61
Super learner 0.02˚ 0.67˚ 0.16˚ 0.22˚
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Super learning and oracle inequalities

# load SuperLearner package
require(SuperLearner)

# define simple super learner library
SL.lib <- c("SL.glm","SL.step.forward","SL.mean")

# fit cv super learner
fit <- CV.SuperLearner(Y = Y, X = data.frame(A,W),

SL.library = SL.lib ,
method="method.CC_LS")

# plot cv risk results
plot(fit)
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Super learning and oracle inequalities

Super Learner applied to 13 public data sets (Polley, Rose, van der Laan, 2011).

60 Eric C. Polley et al.

which is close to the optimal R2 (results not shown, see Polley and van der Laan,
2010).

3.3.3.2 Data Analysis

To study the super learner in real data examples, we collected a number of publicly
available data sets. Table 3.3 contains descriptions of the data sets, which can be
found either in public repositories or in textbooks, with the corresponding citation
listed in the table. Sample sizes ranged from 200 to 654 observations, and the num-
ber of covariates ranged from 3 to 18. All 13 data sets have a continuous outcome
and no missing values.

The collection of prediction algorithms included the applicable algorithms from
the univariate simulations along with the algorithms listed in Table 3.4. These al-
gorithms represent a diverse set and should allow the super learner to work well in
most practical settings. For comparison across data sets, we kept the collection of
algorithms fixed for all data analyses.

In order to compare the performance of the k prediction algorithms across diverse
data sets with outcomes on different scales, we used the relative mean squared error,
which we denote RE for relative efficiency. The denominator is the mean squared
error of a linear statistical model:

RE(k) =
MSE(k)

MSE(lm)
, k = 1, . . . ,K.

The results for the super learner, the discrete super learner, and each individual algo-
rithm can be found in Figure 3.4. Each point represents the 10-fold cross-validated
relative mean squared error for a data set and the plus sign is the geometric mean

Table 3.3 Description of data sets, where n is the sample size and p is the number of covariates.
All examples have a continuous outcome.

Name n p Source

ais 202 10 Cook and Weisberg (1994)
diamond 308 17 Chu (2001)
cps78 550 18 Berndt (1991)
cps85 534 17 Berndt (1991)
cpu 209 6 Kibler et al. (1989)
FEV 654 4 Rosner (1999)
Pima 392 7 Newman et al. (1998)
laheart 200 10 Afifi and Azen (1979)
mussels 201 3 Cook (1998)
enroll 258 6 Liu and Stengos (1999)
fat 252 14 Penrose et al. (1985)
diabetes 366 15 Harrell (2001)
house 506 13 Newman et al. (1998)
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Super learning and oracle inequalities
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Super learning and oracle inequalities

In BOLD, super learner performed better
than any individual method for both
outcome regression and propensity score.

Method OR PS
GLM 1.000 1.000
Step GLM 0.998 0.999
BART 0.988 4.462
MARS 1.016 1.010
GAM 0.995 0.995
LASSO 1.010 0.993
RF 0.997 0.991
Bayes GLM 1.000 0.998
SVM 1.082 1.013
RPART 1.129 1.041
GLM + screen 0.999 0.991
Step GLM + screen 0.999 0.992
BART + screen 0.989 4.476
MARS + screen 1.012 1.002
GAM + screen 0.994 0.987
LASSO + screen 1.010 1.006
RF + screen 0.997 0.989
Bayes GLM + screen 0.999 0.990
SVM + screen 1.061 1.018
RPART + screen 1.129 1.059
Super learner 0.986˚ 0.983˚
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Key points of Chapter 3

Regression is typically needed to estimate ATE.

Borrowing information lightly leads to high bias but low variance.

Borrowing information heavily leads to low bias but high variance.

The risk allows us to score estimators on their bias and variance.

Super learner uses cross-validation to choose the estimator with the best risk.

Oracle inequalities establish that super learner is essentially as close to the truth
as the oracle estimator.

Nested cross-validation provides a useful tool for assessing the performance of the
super learner itself.
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