
Modern Statistical Learning Methods for
Observational Biomedical Data

——————————————————————————–

Chapter 5:
Identification and inference on the

average treatment effect of a time-varying intervention

David Benkeser
Emory Univ.

Marco Carone
Univ. of Washington

Larry Kessler
Univ. of Washington

Module 3

5th Annual Summer Institute for Statistics in Clinical Research

07/24/2018

1 / 55



Contents of this chapter

1 Motivation for considering time-varying interventions

2 Identification of average treatment effects

3 Failure of naive approach to causal inference

4 Simple estimation procedures

5 Improved estimation procedures

6 Illustrations in practice

7 Dynamic treatment rules

2 / 55



Motivation for considering time-varying interventions

In many clinical contexts, the treatment of interest is administered in phases over time.

antihypertensive drug therapy administered daily;

biphosphonate drug therapy administered weekly;

injection of antiretroviral suspension administered every month;

immunosuppressant infusion therapy administered every two months.

The observed data is often of the form

L0 ÝÑ A0

time 0

ÝÑ L1 Ñ A1

time 1

ÝÑ ¨ ¨ ¨ ÝÑ LK ÝÑ AK

time K

ÝÑ Y ,

where we have defined components

Lk “ covariates recorded at time k;

Ak “ treatment assignment at time k;

Y “ outcome recorded at the end of the study.
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Motivation for considering time-varying interventions

We can consider the counterfactual outcome Y pa0, a1, . . . , aK q defined by enforcing
treatment assignment pA0,A1, . . . ,AK q “ pa0, a1, . . . , aK q.

This allows to define causal contrasts that address the scientific question of interest.

(Chapters 24-26 of van der Laan & Rose, 2011; Chapter 4 of of van der Laan & Rose,
2018; Chapter 19 of Hernán & Robins, 2018)

Weekly alendronate therapy for osteoporosis and one-year incidence of hip fracture:

Lk “ covariates recorded at week k
(e.g., sex, age, dexascan values, thyroid hormone levels, side effects, fracture status);

Ak “ indicator that alendronate was taken at week k;

Y “ indicator that hip fracture occurred within one year.

We may be interested in the average effect

E rY p1, 1, . . . , 1qs ´ E rY p0, 0, . . . , 0qs

of year-long weekly alendronate therapy on one-year risk of hip fracture versus no
alendronate therapy, or other contrasts defined by values of pa0, a1, . . . , a52q.
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Motivation for considering time-varying interventions

Even when the treatment is administered at a single time-point, it is often the case
that the data are incompletely recorded in the follow-up period.

missing data: patient did not show up to a scheduled clinic visit;

loss to follow-up: patient moved out of the country and dropped out of the study.

It would be natural then to consider a counterfactual outcome defined by enforcing

1 the administration of a particular treatment (baseline only or time-varying);

2 complete follow-up and complete recording of data (time-varying).

What would the outcome have been had:

ą the patient taken an experimental treatment regime, the follow-up been
complete, and all data been completely recorded?

ą the patient taken a control treatment regime, the follow-up been complete, and
all data been completely recorded?
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Motivation for considering time-varying interventions

For example, if treatment is only administered at baseline, we could set:

Lk “ covariates recorded at time k;

A0 “ treatment assignment at time 0 (i.e., at baseline);

Ak “ indicator that, at time k, patient has not yet been lost to follow-up

and all measurements on this patient are complete;

Y “ outcome recorded at the end of the study.

We might then be interested in

ATE “ E rY p1, 1, 1, . . . , 1qs ´ E rY p0, 1, 1, . . . , 1qs .
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Motivation for considering time-varying interventions

If treatment is administered over time, we could instead set:

Lk “ covariates recorded at time k;

Ak,1 “ indicator that, at time k, patient has not yet been lost to follow-up

and all measurements on this patient are complete;

Ak,2 “ indicator of treatment assignment at time k;

Y “ outcome recorded at the end of the study.

and let Y ppa0,1, a0,2q

a0

, pa1,1, a1,2q

a1

, . . . , paK ,1, aK ,2q

aK

q be the counterfactual defined by

pA0,A1, . . . ,AK q “ pa0, a1, . . . , aK q ,

where we write Ak :“ pAk,1,Ak,2q.

We might then be interested in

E rY pp1, 1q, p1, 1q, . . . , p1, 1qqs ´ E rY pp1, 0q, p1, 0q, . . . , p1, 0qqs .
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Identification of average treatment effects

Our goal is to contrast the mean outcome under various sequences of interventions
occurring over time. We focus on treatment profile pa0, a1, . . . , aK q “ p1, 1, . . . , 1q but
other profiles can be dealt with similarly.

(Sequentially) randomized trial

We can imagine conducting a trial in which, at each of these time-points, individuals
are randomized to one of the possible interventions.

In this case, at each time-point, the intervention assignment is independent of the
possible counterfactual outcomes.

Y p1, 1, . . . , 1q K A0 , Y p1, 1, . . . , 1q K A1 , . . . , Y p1, 1, . . . , 1q K AK .
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Identification of average treatment effects

Our goal is to contrast the mean outcome under various sequences of interventions
occurring over time. We focus on treatment profile pa0, a1, . . . , aK q “ p1, 1, . . . , 1q but
other profiles can be dealt with similarly.

Observational study

In an observation study, there are often factors that influence both the intervention
assignment mechanisms and the counterfactual outcome distribution.

Examples of time-varying confounding:

a patient may discontinue chemotherapy because they have ceased to respond,
which may itself be a marker of disease progression;

a patient may have ceased smoking because they developed respiratory
symptoms, which may be a sign of lung cancer.
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Identification of average treatment effects

Our goal is to contrast the mean outcome under various sequences of interventions
occurring over time. We focus on treatment profile pa0, a1, . . . , aK q “ p1, 1, . . . , 1q but
other profiles can be dealt with similarly.

Observational study

The vector of time-varying covariates pL0, L1, . . . , LK q can be used to deconfound the
relationship between Y and pA0,A1, . . . ,AK q provided

Y p1, 1, . . . , 1q K A0 | L0 , Y p1, 1, . . . , 1q K A1 | L1,A0 “ 1 , . . .

Y p1, 1, . . . , 1q K AK | LK ,AK´1 “ 1K ,

where the symbol 1j is used to denote a vector p1, 1, . . . , 1q of length j .

In other words, at each time-point, intervention assignment is randomized within each
stratum defined by recorded patient history up to that point, among patients who have
received the intervention of interest so far.

This is referred to as the sequential randomization (or exchangeability) condition.
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Identification of average treatment effects

Our goal is to infer what the mean outcome would be in the target population under
the multi time-point intervention of interest.

We must be able to observe the intervention of interest for each different “type” of
individual (as defined by recorded covariates) from this population:

PpA0 “ 1 | L0 “ `0q ą 0 for each possible `0;

PpA1 “ 1 | L1 “ ¯̀
1,A0 “ 1q ą 0 for each possible ¯̀

1;

¨ ¨ ¨

PpAK “ 1 | LK “ ¯̀
K ,AK “ 1K q ą 0 for each possible ¯̀

K .

As before, this is referred to as the positivity condition.
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Identification of average treatment effects

We first focus on a setting with three time-points (K “ 2).

E rY | A1 “ 1, L1,A0 “ 1, L0s

“ E rY p1, 1q | A1 “ 1, L1,A0 “ 1, L0s “ E rY p1, 1q | L1,A0 “ 1, L0s

“ mean counterfactual outcome among patients treated at time 0, with
covariate value L1 at time 1 and L0 at time 0

E rE rY | A1 “ 1, L1,A0 “ 1, L0s | A0 “ 1, L0s

“ E rY p1, 1q | A0 “ 1, L0s “ E rY p1, 1q | L0s

“ mean counterfactual outcome among patients with covariate value L0 at time 0

E rE rE rY | A1 “ 1, L1,A0 “ 1, L0s | A0 “ 1, L0s s

“ E rY p1, 1qs

“ mean counterfactual outcome
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Identification of average treatment effects

This can be generalized to an arbitrary number of time-points (i.e., arbitrary K).

Under the sequential randomization and positivity conditions, it can be shown that the
mean counterfactual outcome value E rY p1, 1, . . . , 1qs is given by

E
”

E
”

E
”

. . .
”

E
”

E
´

Y
ˇ

ˇ

ˇ
AK “ 1K`1, LK

¯ˇ

ˇ

ˇ
AK´1 “ 1K , LK´1

ı

. . .
ıˇ

ˇ

ˇ
L1,A0 “ 1

ıˇ

ˇ

ˇ
L0

ıı

,

where, for any k, we write Ak :“ pA0,A1, . . . ,Ak q and Lk :“ pL0, L1, . . . , Lk q.

This is the multi time-point extension of the G-computation formula (Robins, 1986).
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Identification of average treatment effects

This can be generalized to an arbitrary number of time-points (i.e., arbitrary K).

Under the sequential randomization and positivity conditions, it can be shown that the
mean counterfactual outcome value E rY p1, 1, . . . , 1qs is given by

E
”

E
”

E
”

. . .
”

E
”

E
´

Y
ˇ

ˇ

ˇ
AK “ 1, LK

¯

Q̄K`1pLK q

ˇ

ˇ

ˇ
AK´1 “ 1, LK´1

ı

Q̄K pLK´1q

. . .
ıˇ

ˇ

ˇ
L1,A0 “ 1

ı

Q̄2pL1q

ˇ

ˇ

ˇ
L0

ı

Q̄1pL0q

ı

Q̄0

.
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Identification of average treatment effects

The idea of inverse probability of treatment weighting naturally suggests a simple
identification formula, as in the single time-point setting.

Individuals who received the entire treatment regime of interest are not representative
of the target population because of (time-varying) confounding.

What about upweighting their contribution to recover representativeness?

The generalized propensity scores are defined as

gk p¯̀k q :“ PpAk “ 1 | Lk “ ¯̀
k ,Ak´1 “ 1k q for k “ 0, 1, 2, . . . ,K .

For a patient with partial history Lk “ ¯̀
K , the composite probability of receiving

treatment profile Ak “ p1, 1, . . . , 1q is simply given by

ḡk p¯̀k q :“
k
ź

j“0

gj p¯̀j q “ g0p`0qg1p¯̀1qg2p¯̀2q ¨ ¨ ¨ gk p¯̀k q .
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Identification of average treatment effects

If ḡK p¯̀K q is small, a patient with history ¯̀
K and treatment profile 1K`1 is an unlikely

occurrence in the sampling population.

This patient needs to serve as stand-in for the many such patients not seen.

The IPTW identification formula is given by

E rY p1, 1, . . . , 1qs “ E

„"

A0A1 . . .AK

ḡK pLK q

*

Y



for treatment profile pa0, a1, . . . , aK q “ p1, 1, . . . , 1q, and similarly for other profiles.

How does the risk of positivity violations compare to the single time-point setting?
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Identification of average treatment effects

The equivalence between the IPTW and G-computation identification formulas can be
established through repeated uses of the law of total expectation.

E

«#

A0A1 . . .AK

g0pL0qg1pL1q . . . gK pLK q

+

Y

ff

“ E

«

E

«#

A0A1 . . .AK

g0pL0qg1pL1q . . . gK pLK q

+

Y

ˇ

ˇ

ˇ

ˇ

ˇ

LK ,AK

ffff

“ E

«#

A0A1 . . .AK

g0pL0qg1pL1q . . . gK pLK q

+

Q̄K`1pLK q

ff

“ E

«#

A0A1 . . .AK´1

g0pL0qg1pL1q . . . gK´1pLK´1q

+

Q̄K`1pLK q

gK pLK q
E
´

AK

ˇ

ˇ

ˇ
LK ,AK´1

¯

ff

“ E

«#

A0A1 . . .AK´1

g0pL0qg1pL1q . . . gK´1pLK´1q

+

E
”

Q̄K`1pLK q

ˇ

ˇ

ˇ
LK´1,AK´1 “ 1K´1

ı

ff

“ E

«#

A0A1 . . .AK´1

g0pL0qg1pL1q . . . gK´1pLK´1q

+

Q̄K pLK´1q

ff

“ . . .

17 / 55



Failure of naive approach to causal inference

When can causal effects be read off regression models in single time-point settings?

LINEAR MODEL without an interaction between A and W :

EpY | A “ a,W “ wq “ β0 ` β1a ` β2w

EpY | A “ 1,W “ wq ´ EpY | A “ 0,W “ wq “ β1

E rEpY | A “ 1,W q ´ EpY | A “ 0,W qs “ β1

Regression coefficients generally cannot be interpreted as average treatment effects.

18 / 55



Failure of naive approach to causal inference

When can causal effects be read off regression models in single time-point settings?

LINEAR MODEL with an interaction between A and W :

EpY | A “ a,W “ wq “ β0 ` β1a ` β2w ` β3aw

EpY | A “ 1,W “ wq ´ EpY | A “ 0,W “ wq “ β1 ` β3w

E rEpY | A “ 1,W q ´ EpY | A “ 0,W qs “ β1 ` β3EpW q

Regression coefficients generally cannot be interpreted as average treatment effects.
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Failure of naive approach to causal inference

When can causal effects be read off regression models in single time-point settings?

GENERALIZED LINEAR MODEL (e.g., logistic model):

EpY | A “ a,W “ wq “ expit pβ0 ` β1a ` β2wq

EpY | A “ 1,W “ wq ´ EpY | A “ 0,W “ wq “ expit pβ0 ` β1 ` β2wq ´ expit pβ0 ` β2wq

E rEpY | A “ 1,W q ´ EpY | A “ 0,W qs “ Erexpit pβ0 ` β2W q ´ expit pβ0 ` β1 ` β2W qs

Regression coefficients generally cannot be interpreted as average treatment effects.
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Failure of naive approach to causal inference

A0 L1 A1 Y

Y | A1 “ a1, L1 “ `1,A0 “ a0 „ Normalp1` a1 ` 2`1, 1q

A1 | L1 “ `1,A0 “ a0 „ Bernoullipexpitp´1` `1qq

L1 | A0 “ a0 „ Normalp1` a0, 1q

A0 „ Bernoullip0.5q
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Failure of naive approach to causal inference

Y | A1 “ a1, L1 “ `1,A0 “ a0 „ Normalp1` a1 ` 2`1, 1q

A1 | L1 “ `1,A0 “ a0 „ Bernoullipexpitp´1` `1qq

L1 | A0 “ a0 „ Normalp1` a0, 1q

A0 „ Bernoullip0.5q

Using the G-computation formula, we can compute mean counterfactual outcomes
corresponding to different treatment profiles:

ErY p1, 1qs “ ErErY | A1 “ 1, L1,A0 “ 1s | A0 “ 1s “ Er2` 2L1 | A0 “ 1s “ 6

ErY p1, 0qs “ ErErY | A1 “ 0, L1,A0 “ 1s | A0 “ 1s “ Er1` 2L1 | A0 “ 1s “ 5

ErY p0, 1qs “ ErErY | A1 “ 1, L1,A0 “ 0s | A0 “ 1s “ Er2` 2L1 | A0 “ 0s “ 4

ErY p0, 0qs “ ErErY | A1 “ 0, L1,A0 “ 0s | A0 “ 1s “ Er1` 2L1 | A0 “ 0s “ 3

22 / 55



Failure of naive approach to causal inference

Can causal effects be read off the regression of Y on pA1, L1,A0q?

Effect of differing A1 values but same A0 value:

ErY p1, 1q ´ Y p1, 0qs “ 1 “ ErY | A1 “ 1, L1,A0 “ 1s ´ ErY | A1 “ 0, L1,A0 “ 1s

ErY p0, 1q ´ Y p0, 0qs “ 1 “ ErY | A1 “ 1, L1,A0 “ 0s ´ ErY | A1 “ 0, L1,A0 “ 0s

Effect of differing A0 values but same A1 value:

ErY p1, 1q ´ Y p0, 1qs “ 2 ‰ 0 “ ErY | A1 “ 1, L1,A0 “ 1s ´ ErY | A1 “ 1, L1,A0 “ 0s

ErY p1, 0q ´ Y p0, 0qs “ 2 ‰ 0 “ ErY | A1 “ 0, L1,A0 “ 1s ´ ErY | A1 “ 0, L1,A0 “ 0s

Effect of differing A1 and A0 values:

ErY p1, 1q ´ Y p0, 0qs “ 3 ‰ 1 “ ErY | A1 “ 1, L1,A0 “ 1s ´ ErY | A1 “ 0, L1,A0 “ 0s

ErY p1, 0q ´ Y p0, 1qs “ 1 ‰ ´1 “ ErY | A1 “ 0, L1,A0 “ 1s ´ ErY | A1 “ 1, L1,A0 “ 0s
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Failure of naive approach to causal inference

Why does this happen?

A0 L1 A1 Y

The regression of Y on pA0, L1,A1q fixes L1: as such, the causal path between A0 and
Y is blocked. The observed (lack of) association between A0 and Y is thus not causal.

This is a case of treatment-confounder feedback, whose presence often invalidates
naive approaches to causal inference (see Chapter 20 of Hernán & Robins, 2018).

Causal methods are even more critical in the context of time-varying interventions!
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Failure of naive approach to causal inference

Is treatment-confounder feedback present in these examples?

A0 L1 A1 Y

A0 L1 A1 Y

U
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Failure of naive approach to causal inference

Is treatment-confounder feedback present in these examples?

L1 YA0 A1

L1 Y

U

A0 A1
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Simple estimation procedures

The IPTW identification formula (slide 13) suggests a simple estimation strategy.

First, we may construct estimates g0n, g1n, . . . , gKn of propensity scores g0, g1, . . . , gK
using our favorite regression estimator for binary outcomes:

g0p`0q: mean of A0 given L0 “ `0;

g1p¯̀1q: mean of A1 given L1 “ ¯̀
1 and A0 “ 1;

. . .

gK p¯̀K q: mean of AK given LK “ ¯̀
K and AK´1 “ 1K .

Then, we can compute the corresponding IPTW estimator of E rY p1, 1, . . . , 1qs as

ψn,IPTW :“
1

n

n
ÿ

i“1

"

A0iA1i . . .AKi

g0npL0i qg1npL1i q . . . gKnpLKi q

*

Yi .
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Simple estimation procedures

The G-computation formula suggests another natural estimation strategy.

We first illustrate in the three time-point setting, in which case the estimand is simply

E rE rE pY | A1 “ 1, L1,A0 “ 1, L0q | A0 “ 1, L0s s .

1 Get estimate Q̄2,n of the regression function

Q̄2p`1, `0q :“ E pY | A1 “ 1, L1 “ `1,A0 “ 1, L0 “ `0q ,

taking Y as outcome and pA1, L1,A0, L0q as covariate vector.

2 Get estimate F1n of the distribution F1 of L1 given A0 “ 1 and L0, taking L1 as
outcome and pA0, L0q as covariate vector, and average Q̄2n over F1n to get

Q̄1np`0q :“ EF1n
r Q̄2npL1, `0q| A0 “ 1, L0 “ `0 s “

ż

Q̄2np`1, `0qdF1np`1 | `0q .

3 Average Q̄1n over the empirical distribution F0n of L0 to get

ψG,n :“ Q̄0n :“ EF0n
r Q̄1npL0q s “

1

n

n
ÿ

i“1

Q̄1npL0i q .
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Simple estimation procedures

In general, STEP 2 must be performed K ´ 1 times, each time taking the output from
the previous step and averaging it out relative to an estimated conditional distribution.

This can be challenging since it requires the user to:

estimate an entire conditional distribution;

average out an estimated regression function with respect to this estimate.

Instead, a simpler sequential regression approach can be used (Bang & Robins, 2005).

To obtain Q̄1n, we could run our favorite regression method
on all observations with A0 “ 1

using Q̄2npL1i , L0i q as outcome and L0i as covariate.
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Simple estimation procedures

Target estimand: E rE rE pY | A1 “ 1, L1,A0 “ 1, L0q | A0 “ 1, L0s s

Y A1 L1 A0 L0

0 1 0.7 1 2.1

1 1 -0.2 0 -1.6

1 1 2.0 1 0.3

0 0 6.9 1 1.4

1 0 3.1 0 0.9

0 1 -5.2 1 -3.1

1 0 5.2 1 2.5

0 1 -1.1 1 -0.1
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Simple estimation procedures

Target estimand: E rE rE pY | A1 “ 1, L1,A0 “ 1, L0q | A0 “ 1, L0s s

Y A1 L1 A0 L0

0 1 0.7 1 2.1

1 1 -0.2 0 -1.6

1 1 2.0 1 0.3

0 0 6.9 1 1.4

1 0 3.1 0 0.9

0 1 -5.2 1 -3.1

1 0 5.2 1 2.5

0 1 -1.1 1 -0.1

STEP 1: Regress Y on L1 and L0 among those with A1 “ A0 “ 1. ÝÑ Q̄2n
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Simple estimation procedures

Target estimand: E rE rE pY | A1 “ 1, L1,A0 “ 1, L0q | A0 “ 1, L0s s

Y A1 L1 A0 L0

0 1 0.7 1 2.1

1 1 -0.2 0 -1.6

1 1 2.0 1 0.3

0 0 6.9 1 1.4

1 0 3.1 0 0.9

0 1 -5.2 1 -3.1

1 0 5.2 1 2.5

0 1 -1.1 1 -0.1

Q̄2npL1, L0q

0.34

0.19

0.26

0.31

0.29

0.15

0.36

0.25

STEP 1: Regress Y on L1 and L0 among those with A1 “ A0 “ 1. ÝÑ Q̄2n

Compute Q̄2npL1, L0q for every patient.
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Simple estimation procedures

Target estimand: E rE rE pY | A1 “ 1, L1,A0 “ 1, L0q | A0 “ 1, L0s s

Y A1 L1 A0 L0

0 1 0.7 1 2.1

1 1 -0.2 0 -1.6

1 1 2.0 1 0.3

0 0 6.9 1 1.4

1 0 3.1 0 0.9

0 1 -5.2 1 -3.1

1 0 5.2 1 2.5

0 1 -1.1 1 -0.1

Q̄2npL1, L0q

0.34

0.19

0.26

0.31

0.29

0.15

0.36

0.25

STEP 2: Regress Q̄2npL1, L0q on L0 among those with A0 “ 1. ÝÑ Q̄1n
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Simple estimation procedures

Target estimand: E rE rE pY | A1 “ 1, L1,A0 “ 1, L0q | A0 “ 1, L0s s

Y A1 L1 A0 L0

0 1 0.7 1 2.1

1 1 -0.2 0 -1.6

1 1 2.0 1 0.3

0 0 6.9 1 1.4

1 0 3.1 0 0.9

0 1 -5.2 1 -3.1

1 0 5.2 1 2.5

0 1 -1.1 1 -0.1

Q̄2npL1, L0q

0.34

0.19

0.26

0.31

0.29

0.15

0.36

0.25

Q̄1npL0q

0.40

0.22

0.20

0.36

0.21

0.34

0.20

0.29

STEP 2: Regress Q̄2npL1, L0q on L0 among those with A0 “ 1. ÝÑ Q̄1n

Compute Q̄1npL0q for every patient.
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Simple estimation procedures

Target estimand: E rE rE pY | A1 “ 1, L1,A0 “ 1, L0q | A0 “ 1, L0s s

Y A1 L1 A0 L0

0 1 0.7 1 2.1

1 1 -0.2 0 -1.6

1 1 2.0 1 0.3

0 0 6.9 1 1.4

1 0 3.1 0 0.9

0 1 -5.2 1 -3.1

1 0 5.2 1 2.5

0 1 -1.1 1 -0.1

Q̄2npL1, L0q

0.34

0.19

0.26

0.31

0.29

0.15

0.36

0.25

Q̄1npL0q

0.40

0.22

0.20

0.36

0.21

0.34

0.20

0.29

STEP 3: Average out values of Q̄1npL0q over all patients to get ψn,GCOMP :“ Q̄0n.
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Improved estimation procedures

Much like in the single time-point case, a hybrid between the G-computation and
IPTW estimators can be constructed, and enjoys improved properties.

The augmented IPTW (AIPTW) estimator is given by

ψn,AIPTW :“ Q̄0n `
1

n

n
ÿ

i“1

K
ÿ

j“0

#

A0iA1i . . .Aji

ḡjnpLji q

+

”

Q̄pj`1qnpLpj`1qi q ´ Q̄jnpLji q
ı

,

where Q̄0n is simply the G-computation estimator (see slide 23) (Robins ref).

Since it builds upon estimates of all outcome regressions and propensity scores, the
construction of this estimator requires more effort than for estimators seen so far.

However, this estimator enjoys double-robustness, and can be used to construct valid
confidence intervals, even when flexible learning strategies (e.g., Super Learner) are
used to estimate the outcome regressions and propensity scores.
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Improved estimation procedures

What does double robustness refer to in the context of multi time-point interventions?

The estimator ψn,AIPTW built upon estimators

Q̄n :“ pQ̄1n, Q̄2n, . . . , Q̄pK`1qnq and gn :“ pg0n, g1n, . . . , gKnq

is doubly-robust, in the sense that it is consistent (i.e., hits the target) provided either
Q̄n hits the target Q̄0 or gn hits the target g0.

Scenario 1: Q̄n is consistent

time 0 time 1 time 2 time 3 ¨ ¨ ¨ end

Q̄ — X X X ¨ ¨ ¨ X

g
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Improved estimation procedures

What does double robustness refer to in the context of multi time-point interventions?

The estimator ψn,AIPTW built upon estimators

Q̄n :“ pQ̄1n, Q̄2n, . . . , Q̄pK`1qnq and gn :“ pg0n, g1n, . . . , gKnq

is doubly-robust, in the sense that it is consistent (i.e., hits the target) provided either
Q̄n hits the target Q̄0 or gn hits the target g0.

Scenario 2: gn is consistent

time 0 time 1 time 2 time 3 ¨ ¨ ¨ end

Q̄ ¨ ¨ ¨

g X X X X ¨ ¨ ¨ X
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Improved estimation procedures

What does double robustness refer to in the context of multi time-point interventions?

The estimator ψn,AIPTW built upon estimators

Q̄n :“ pQ̄1n, Q̄2n, . . . , Q̄pK`1qnq and gn :“ pg0n, g1n, . . . , gKnq

is doubly-robust, in the sense that it is consistent (i.e., hits the target) provided either
Q̄n hits the target Q̄0 or gn hits the target g0.

Scenario 3: gn is consistent at early times, Q̄n is consistent at later times

time 0 time 1 time 2 time 3 ¨ ¨ ¨ end

Q̄ X X ¨ ¨ ¨ X

g X X
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Improved estimation procedures

The targeted maximum likelihood estimation (TMLE) framework provides a recipe
for constructing a G-computation estimator that is also doubly-robust.

(Bang & Robins 2005; van der Laan & Gruber, 2012)

This estimator is constructed like the ‘sequential regression’ form of the G-computation
estimator, but includes a refinement step after each Q̄ estimator is obtained.

Using a given estimator gn of g0, the algorithm proceeds as follows:

(1) build estimate Q̄pK`1qn of Q̄K`1 using your favorite regression tool;

(2) refine Q̄pK`1qn, say to Q̄˚
pK`1qn

, to make it a targeted estimate; (‹)

(3) build estimate Q̄Kn of Q̄K by regressing Q̄˚
pK`1qn

pLK q using your favorite regression tool;

(4) refine Q̄Kn, say to Q̄˚Kn, to make it a targeted estimate; (‹)
¨ ¨ ¨

(2K+1) build estimate Q̄1n of Q̄1 by regressing Q̄˚2n using your favorite regression tool;

(2K+2) refine Q̄1n, say to Q̄˚1n, to make it a targeted estimate; (‹)

(2K+3) take final estimate to be the G-computation estimator ψn,TMLE :“ Q̄˚0n :“ 1
n

řn
i“1 Q̄

˚
1npL0i q.
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Improved estimation procedures

What do these so-called targeting steps consist of?

STEP (2): Get slope estimate βn from logistic regression with outcome Y , single covariate

Z :“ pA0A1 . . .AK q{ḡKnpLK q

and offset term logit Q̄pK`1qnpLK q using only data with A0 “ A1 “ . . . “ AK “ 1.

Set Q̄˚
pK`1qn

:“ expitrlogit Q̄pK`1qn ` βn{ḡKns.

STEP (4): Get slope estimate βn from logistic regression with outcome Q̄˚
pK`1qn

, single covariate

Z :“ pA0A1 . . .AK´1q{ḡpK´1qnpLK´1q

and offset term logit Q̄KnpLK´1q using only data with A0 “ A1 “ . . . “ AK´1 “ 1.

Set Q̄˚Kn :“ expitrlogit Q̄Kn ` βn{ḡpK´1qns.

STEP (2K+2): Get slope estimate βn from logistic regression with outcome Q̄˚2n, single covariate

Z :“ A0{ḡ0npL0q

and offset term logit Q̄1npL0q using only data with A0 “ 1. Set Q̄˚1n :“ expitrlogit Q̄1n ` βn{ḡ0ns.
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Improved estimation procedures

Properties of estimation procedures outlined

Q̄ + ḡ Q̄ + ḡ Q̄ + ḡ

difficulty target ci target ci target ci

IPTW + X X

G-COMP ++ X X

AIPTW +++ X X X X

TMLE ++++ X X X X X X

Q̄ + g : outcome regressions estimated well but not propensity scores
Q̄ + g : propensity scores estimated well but not outcome regressions
Q̄ + g : outcome regressions and propensity scores estimated well

target : does the estimator hit the right target?
ci : is valid inference possible and readily available, even when flexible learning

strategies (such as Super Leaner) are used?
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Improved estimation procedures

There is substantial work underway to produce novel estimators with even better
properties. All of these innovations are based on the idea of TMLE.

Enhanced robustness

Consistent estimation is possible under a wider range of scenarios than depicted on
slides 27, 28 and 29.

For this, more complicated procedures are needed and are being developed.
(Luedtke et al. 2017; Rotnitzky et al., 2017)

Robust inference

Typical double-robustness only refers to consistency.

However, constructing doubly-robust CI and tests is a much more important task. It is
also very difficult in multi time-point settings. (Benkeser et al., 2017)

Targeted estimation of propensity scores

Particularly when there are many potential confounders, good performance may be
difficult to achieve in smaller samples using the methods described so far.

Collaborative TMLE allows a smarter, data-driven selection of propensity score
estimators to improve performance in such cases. (van der Laan & Gruber, 2010)
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Illustrations in practice

Devenir Après Interruption de la FIV (DAIFI) study

(Chapter 25 of van der Laan & Rose, 2011)

ą Motivating question: How successful is IVF therapy in France?

ą Study sample: All women who received a first IVF cycle at two French IVF units
between 1998 and 2002 and were under 42 years of age at initiation.

ą Intervention considered: Four successive IVF cycles.

ą Outcome: Successful delivery arising from IVF.

ą Observational challenges:

Some couples abandon mid-course without a successful delivery.

Common factors likely influence discontinuation and overall chance of success.

ą Observed probability of success:

1st cycle 2nd cycle 3rd cycle 4th cycle

22% 32% 35% 37%
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Illustrations in practice

Devenir Après Interruption de la FIV (DAIFI) study

(Chapter 25 of van der Laan & Rose, 2011)

ą Data structure:

L0 “ information recorded at baseline (first cycle)

(e.g., age, center, # of embryos transferred or frozen, success of first cycle)

A0 “ second cycle attempted

L1 “ success of first two cycles

A1 “ third cycle attempted

L2 “ success of first three cycles

A2 “ fourth cycle attempted

Y “ success of first four cycles

ą Causal estimand of interest: E rY p1, 1, 1qs

ą Result of TMLE analysis: 50.5% (95%CI: 48.0–53.0)
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Illustrations in practice

HVTN 505 study

(Chapter 11 of van der Laan & Rose, 2018)

ą Motivating question: Does novel HIV vaccine exhibit sieve effects?

ą Study sample: Phase II preventive HIV vaccine efficacy trial. 2,405 participants
were randomized 1:1 to receive candidate vaccine or placebo.

ą Interventions considered: (Active vs control vaccine) + (no loss to follow-up).

ą Outcome: Infection with specific genotypes of HIV.

ą Observational challenges:

Participants may have unblinded using home HIV tests – higher dropout in control arm.

Risk behaviors may be informative of participant dropout and HIV infection risk.
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Illustrations in practice

HVTN 505 study

(Chapter 11 of van der Laan & Rose, 2018)
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Illustrations in practice

HVTN 505 study

(Chapter 11 of van der Laan & Rose, 2018)
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Dynamic treatments

Positivity violations are not uncommon, especially in multi time-point settings.
(Petersen, 2012)

They may happen in a study sample by chance (i.e., practical violations).

Can use estimators that borrow more information from other patients.

They may instead be a fundamental feature of the particular combination of
population and treatment considered.

Can change the reference population to exclude subgroups for which the average
treatment effect cannot be learned.

Can instead focus on more realistic interventions for which positivity holds, such as
dynamic treatments reflecting clinical practice.

49 / 55



Dynamic treatment rules

Counterfactuals defined by fixed treatment profiles are often neither particularly
clinically interesting nor supported by data.

Treatment decisions are usually dynamic and incorporate real-time patient information.

Example: mercaptopurine in IBD patients

static intervention: ‘always treat’ versus ‘never treat’

if patient develops signs of liver damage, therapy is usually stopped

liver function is a time-varying confounder between treatment status and survival

if poor liver function is a contraindication for therapy, it may not be possible to
observe treatment adherence among patients with recent liver failure

static intervention is unrealistic and not identifiable

dynamic intervention: ‘treat while liver function permits it’ versus ‘never treat’

dptq “

#

1 : if recent liver function is adequate

0 : otherwise
.
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Dynamic treatment rules

Counterfactuals can be naturally defined in terms of dynamic treatment rules
encoding treatment decisions that possibly depend on current and past patient info.

In the mercaptopurine example, we may want to learn about the average effect

ATEpd , d0q :“ E rY pdqs ´ E rY pd0qs

of rule d enforcing treatment whenever liver function permits it and rule d0 enforcing
no mercaptopurine use.

All methods discussed so far can be adapted for use with dynamic treatment rules.
Wherever we imposed Ak “ āk , we now instead set Ak to equal dpLk q or d0pLk q.
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Dynamic treatment rules

A vast subfield of causal inference focuses on the quest for optimal rules.
(Chakraborty & Moodie, 2013)

Of all candidate treatment rules, which one results in the
most beneficial average treatment effect?

This is referred to as an optimal dynamic treatment regime.

Finding the optimal rule and constructing confidence intervals for the average effect
corresponding to this rule using the same data is challenging.

(see, e.g.: Laber et al., 2014; Luedkte & van der Laan, 2016)
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Key points of Chapter 5

Methods for time-varying interventions are extremely versatile, and can be used
to tackle loss to follow-up and missing data.

The G-computation and IPTW formulas can be extended to time-varying settings.

Standard regression should never be used to study time-varying interventions.

While model-based G-computation and IPTW estimators are still available,
matching is no longer an option at all.

Doubly-robust estimators should be preferred as they confer efficiency, additional
robustness and the ability to use flexible nuisance estimators.

Much work is currently being done to further improve doubly-robust estimators.

Dynamic treatment rules may better reflect realistic interventions and prevent
positivity violations.

Methods above can be used to estimate the average effect of dynamic rules.

Identifying and making inference about optimal dynamic rules is more difficult.

53 / 55



References and additional reading

References:

Bang H, Robins JM (2005). Doubly robust estimation in missing data and causal inference models. Biometrics;
61(4)962-973. doi: 10.1111/j.1541-0420.2005.00377.x/

Benkeser, D, Carone, M, van der Laan, MJ & Gilbert, P (2017). Doubly-robust nonparametric inference on the
average treatment effect. Biometrika; 104(4)863-880. doi: 10.1093/biomet/asx053.

Chakraborty B, Moodie EE (2013). Statistical Methods for Dynamic Treatment Regimes. Springer New York.

Hernán MA, Robins JM (2018). Causal Inference. Chapman & Hall/CRC. Forthcoming – draft available online.

Laber EB, Lizotte DJ, Qian M, Pelham WE, Murphy SA (2014). Dynamic treatment regimes: technical challenges
and applications. Electronic Journal of Statistics; 8(1)1225-1272. doi: 10.1214/14-EJS920

Luedtke AR, van der Laan MJ (2016). Statistical inference for the mean outcome under a possibly non-unique
optimal treatment strategy. Annals of Statistics; 44(2)713-742. doi: 10.1214/15-AOS1384

Luedtke AR, Sofrygin O, van der Laan MJ, Carone M (2017). Sequential double-robustness in right-censored
longitudinal models. ArXiv technical report. ArXiv: 1705.02459

Petersen ML, Porter KE, Gruber S, Wang Y, van der Laan MJ (2012). Diagnosis and responding to violations in
the positivity assumption. Statistical Methods in Medical Research; 21(1)31-54. doi: 10.1177/0962280210386207

54 / 55

https://doi.org/10.1111/j.1541-0420.2005.00377.x
https://doi.org/10.1093/biomet/asx053
https://www.hsph.harvard.edu/miguel-hernan/causal-inference-book/
https://doi.org/10.1214/14-EJS920
https://doi.org/10.1214/15-AOS1384
https://arxiv.org/abs/1705.02459
https://doi.org/10.1177/0962280210386207


References and additional reading

References:

Robins JM (1986). A new approach to causal inference in mortality studies with a sustained exposure period – appli-
cation to control of the healthy worker survivor effect. Mathematical Modelling, 9(7)1393-1512. doi: 10.1016/0270-
0255(86)90088-6.

Rotnitzky A, Robins JM, Babino L (2017). On the multiply robust estimation of the mean of the g-functional. ArXiv
technical report. ArXiv: 1705.08582

van der Laan MJ, Gruber S (2010). Collaborative double robust targeted maximum likelihood estimation. Interna-
tional Journal of Biostaitstics; 6(1). doi: 10.2202/1557-4679.1182

van der Laan MJ, Rose S (2011). Targeted Learning: Causal Inference for Observation and Experimental Data.
Springer New York. 10.1007/978-1-4419-9782-1

van der Laan MJ, Gruber S (2012). Targeted minimum loss based estimation of causal effects of multiple time point
interventions. International Journal of Biostatistics; 8(1). doi: 10.1515/1557-4679.1370

van der Laan MJ, Rose S (2018). Targeted Learning in Data Science: Causal Inference for Complex Longitudinal
Studies. Springer New York. 10.1007/978-3-319-65304-4

55 / 55

https://doi.org/10.1016/0270-0255(86)90088-6
https://doi.org/10.1016/0270-0255(86)90088-6
https://arxiv.org/abs/1705.08582
https://doi.org/10.2202/1557-4679.1182
https://doi.org/10.1007/978-1-4419-9782-1
https://doi.org/10.1515/1557-4679.1370
https://doi.org/10.1007/978-3-319-65304-4

