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Contents of this chapter

1 How can we analyze data with missing outcomes?

2 How can we analyze data with missing covariates?

3 What happens if we do not measure all confounders?

4 How can we analyze data with continuously-valued treatments?

5 How can we summarize subgroup effects and covariate/treatment interactions?
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Missing outcomes

In observational studies and clinical trials, the outcome Y is typically not observed for
every participant.

People withdraw consent, move out of area, stop showing up for study visits,. . .

The observed data unit is then O :“ pW ,A,∆,∆Y q, with ∆ denoting an
indicator of having a measured outcome.

People who are lost may be meaningfully different from those who remain under study.

What if every patient who had more serious disability three months after imaging
did not show up for their one-year visit?

If the analysis excludes these patients, we are making inference about treatment
efficacy in a possibly very different population.

Can we account for possibly informative missingness?
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Missing outcomes

Ideally, for each patient in the population, we would like to:

1 Set treatment to A “ 1 and observe patient at end of study (i.e., set ∆ “ 1).

2 Set treatment to A “ 0 and observe patient at end of study (i.e., set ∆ “ 1).

The relevant counterfactual means are denoted by E rY p1, 1qs and E rY p0, 1qs, where
Y pa, δq is the counterfactual outcome corresponding to setting A “ a and ∆ “ δ.

The difference E rY p1, 1qs ´ E rY p1, 0qs is the ATE of interest in the full population.

What assumptions do we need to identify these parameters?
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Missing outcomes

Previously, we required the randomization condition

Y p1q K A |W

which implies the treatment is randomized within strata of recorded covariates.

This will hold if:

the study guarantees it by design (e.g., stratified randomized trial);

all potential confounders have been recorded.

We now require the stronger randomization condition

Y pa, 1q K A |W and Y pa, 1q K ∆ |W

implying that treatment and missingness are randomized within strata.

It is generally difficult to ensure the latter through study design. We must hope that
all potential confounders have been recorded.
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Missing outcomes

Previously, we required the positivity assumption

PpA “ a |W “ wq ą 0 for every plausible value w

which implies all patients may potentially be assigned to treatment group A “ a.

We now require the stronger positivity condition that, for all plausible value w ,

PpA “ a |W “ wq ą 0 and Pp∆ “ 1 | A “ a,W “ wq ą 0 .

Each patient must have had the chance to receive treatment and remain under study.
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Missing outcomes

If the randomization and positivity conditions hold, then by the G-computation formula

E rY pa, 1qs “ E rEp∆Y | A “ a,∆ “ 1,W qs

“
ÿ

w

Ep∆Y | A “ a,∆ “ 1,W “ wqPpW “ wq .

We can define the subgroup-specific average treatment effect as

SATEpwq :“ Ep∆Y | A “ 1,∆ “ 1,W “ wq ´ Ep∆Y | A “ 0,∆ “ 1,W “ wq .

G-computation pools subgroup-specific treatment effects across target population:

ATE “ E rY p1, 1qs ´ E rY p0, 1qs

“
ÿ

w

SATEpwqPpW “ wq .

The G-computation excluding missing observations instead gives
ÿ

w

SATEpwqPpW “ w | ∆ “ 1q .
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Missing outcomes

The inverse-probability-of-treatment-weighted (IPTW) identification formula can
also be modified to account for missing outcomes.

E rY pa, 1qs “ E

„

I pA “ a,∆ “ 1q∆Y

PpA “ a,∆ “ 1 |W q



“ E

„

I pA “ a,∆ “ 1q∆Y

PpA “ a |W qPp∆ “ 1 | A “ a,W q



This is a weighted average of the outcome of patients with A “ a, weighted according
to their propensity of being assigned to group A “ a and remaining under study.

If PpA “ 1 |W “ wq “ .05, a patient with W “ w had a 5% chance of being
treated. Before, this patient stood in for approximately 19 similar patients not treated.

Now, this patient must also stand in patients who had a missing outcome.

If Pp∆ “ 1 | A “ 1,W “ wq “ 0.95, a treated patient with W “ w had a 95%
chance of completing the study. This patient has weight

1

PpA “ 1 |W “ wqPp∆ “ 1 | A “ 1,W “ wq
“

1

0.05ˆ 0.95
« 21 .
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Missing outcomes

The AIPTW estimator of ψ1 can also be modified to account for missing outcomes:

1

n

n
ÿ

i“1

„

I pAi “ 1,∆i “ 1q

gnpWi q



Yi

looooooooooooooooooomooooooooooooooooooon

IPTW estimator

`
1

n

n
ÿ

i“1

„

1´
I pAi “ 1,∆i “ 1q

gnpWi q



Q̄np1,Wi q

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

augmentation term

.

Here, gn is an estimator of the extended propensity score

gpwq :“ Pp∆ “ 1,A “ 1 |W “ wq ,

the conditional probability of being assigned A “ 1 and remaining under observation.

A modified version of TMLE can be implemented, by fitting the augmentation
regression using the covariate

Z1 “
I pA “ 1,∆ “ 1q

gnpW q
.

The estimate gn could simply be constructed by fitting a regression of the binary
outcome Ã :“ I pA “ 1,∆ “ 1q on covariate vector W .
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Missing outcomes

Recall that the randomization condition requires

Y pa, 1q K A |W and Y pa, 1q K ∆ |W

implying that treatment and missingness are randomized within strata.

This must preclude the possibility that no confounding happens after A is assigned.

Do we believe that nothing happens between treatment assignment and end of study
that influences a patient’s outcome and probability of remaining under study?

W A ∆ ∆Y

???
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Missing outcomes

We then have time-varying confounding, as is common in longitudinal data.

K ` 1 treatment decisions (or missingness indicators);

Time-varying confounders measured between each treatment decision;

Counterfactual outcome is Y pāq, where ā :“ ta0, a1, . . . , aK u;

How do we identify and estimate E rY pāqs?

L0 A0 L1 A1 . . . AK Y
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Key points: missing outcomes

Missingness is a problem in both observational data and clinical trials.

Ignoring missing outcome data can bias estimates of causal effects.

Typically, we can view censoring as another “treatment” decision and, if no
time-varying confounding, we can easily modify G-computation, IPTW, and
efficient approaches accordingly.

If time-varying confounding, additional identification results and estimation
strategies are necessary.
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Missing covariates

In practice, covariates may also be missing for certain observations.

Consider the case of two covariates W “ pW1,W2q, where W2 is missing for some
participants. So, in reality, we observe W˚ “ pW1,∆2,∆2W2q.

Just as with missing outcomes, ignoring data with missing covariates could also cause
bias in causal effect estimates.

We recommend this general strategy for handling missing covariates:

1 Does randomization holds given W˚?

If so, can proceed with standard approach with adjustment for W1, ∆2 and ∆2W2.
See Greenland & Finkle (1995) for limitations of this strategy.

2 Otherwise, does randomization hold for ∆2 given W1?

If so, treat missing indicator as intervention node, and use methods for multi time-point
interventions. Intervention is on p∆2,Aq in the sequence

W1 ÝÑ ∆2 ÝÑ W2 ÝÑ A ÝÑ Y .

3 Otherwise, assess which randomization assumption is more plausible, and refer to
section on missing confounders.
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Missing covariates

As an example, say W2 represents a yes/no item on a health questionnaire to which
some patients do not answer. In the observed data, W2 can take values yes, no or NA.

Let ∆2 “ I pW2 ‰ NAq and ∆2W2 “ ∆2I pW2 “ yesq.

How can we determine whether Y paq K A |W1,∆2,∆2W2?

Consider a stratum of patients who refuse to answer the questionnaire and have
the same value of W1.

Reasonable to assume that treatment is randomized in this stratum?

Or are there meaningful differences between people in this stratum who do and
do not receive treatment?

If reasonable, then

E rY paqs “ E rEpY | A “ a,W1,∆2,∆2W2qs

and we can proceed using the standard methodology we have discussed.
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Missing covariates

There are several options for estimating the outcome regression and propensity score.
Considering the propensity score, how could we estimate PpA “ 1 |W1,∆2,∆2W2q?

The standard regression approach treats missingness as its own category, e.g.,

PpA “ 1 |W1,∆2,∆2W2q “ expitpα0 ` α1W1 ` α2∆2 ` α3∆2W2q .

Another option: we could “impute” missing values of W2 (e.g., based on W1) and fit
a “full data” method on the imputed data. For example, we could

1 fit linear regression of W2 on W1 in subset of the data with ∆2 “ 1;

2 fill in W2 with predicted value from regression for observations with ∆2 “ 0;

3 fit a random forest with outcome A and predictors W1 and imputed W2.

The choice of imputation technique can now be viewed as a tuning parameter for an
algorithm. Let the super learner determine which is best!

15 / 26



Missing covariates

If there is residual confounding due to missingness in W2, we can ask whether
randomization holds for ∆2 given W1.

Can we explain the missingness in W2 by the fully measured covariate W1?

Example: We typically have some demographic information on all patients. Is this
enough to explain why they did not answer questionnaire?

If so, then we might view ∆2 as an intervention node and define our counterfactual of
interest as Y p1, aq, the outcome we would observe if we forced ∆2 “ 1 and A “ a.

In such case, we have that:

positivity requires positive probability of measuring W2 for all strata of W1;

we require sequential randomization: ∆2 randomized given W1 and A randomized
given ∆2 “ 1, W1 and W2.

Each of G-computation, IPTW, AIPTW and TMLE can be implemented in a
longitudinal (i.e., multi time-point) framework – this will be covered in a two-day
extension of this module next year!
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Key points: missing covariates

Ignoring missing covariate data can bias estimates of causal effects.

Randomization may hold based on the observed missing data structure; however,
this cannot be assessed using our observed data. Prior knowledge is key!

If randomization fails to hold for missing data but we can predict missingness of
covariates using available data, we can use approaches for multi time-point
interventions.

17 / 26



Unmeasured confounding

In many observational studies, it is known that some confounders were not measured,
and the ATE is therefore not identified by G-computation and IPTW formulas.

Recall that this cannot generally be assessed just by inspecting the data.

Be prepared to defend your interpretations against skeptics.

There are several ways to proceed in this situation:

1 modify interpretation of the results;

2 perform sensitivity analysis;

3 estimate bounds on causal effects;

4 explore alternative identification results.
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Unmeasured confounding

Under appropriate conditions, we stated that the causal effect of interest was given by

E rEpY |A “ 1,W q ´ EpY |A “ 0,W qs

and that is what we sought to estimate.

However, we can also simply interpret this estimand as a covariate-adjusted marginal
association, leaving aside claims of strict causality.

For example, in our BOLD analysis, we could have interpreted our estimand as

the difference in average disability score among patients with identical baseline
covariate values who did versus did not receive early imaging, standardized to the

baseline covariate distribution in the BOLD patient population.

A few comments:

For this interpretation, no causal assumptions are required at all.

This is arguably the closest we can get using the data to the true causal effect.

Sensitivity analysis ties in scientific knowledge to help determine how close to the
true effect we may be.
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Unmeasured confounding

Sensitivity analysis is a commonly used term in associative analysis.

How sensitive is a parametric model to including/removing a covariate,
including/removing an interaction, etc?

How well does this parametric model fit the observed data (e.g., model checking)?

For causal analysis, we take an alternative approach to sensitivity analysis.

How much unmeasured confounding would there need to be in order to make an
observed association disappear?

A rich literature exists on this topic (see additional reading). We provide an example
from D́ıaz & van der Laan (2013).

Chagas disease affects 8 million people in Latin America.

Long incubation periods of the disease (up to 30 years) make clinical trials to
study treatment efficacy prohibitively expensive.

This also makes observational studies difficult as many participants are lost to
follow-up over these long periods of time.

Analysis combines data from 19 observational studies that did not measure
participant-level confounders.
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Unmeasured confounding

The observed data unit is O :“ pA,∆,∆Y q, where Y is a binary cure status and ∆
indicates whether a patient’s cure status was observed at the end of the study.

The causal parameter of interest is the average treatment effect amongst the treated,

ATT “ E rY p1q ´ Y p0q|A “ 1s .

However, we know that sicker patients tend to receive treatment and also may drop
out of studies more often due to their health. As such, ATT cannot be identified
based on the observed data.

Nevertheless, consider estimating

ATTobs “ Ep∆Y |A “ 1q ´ Ep∆Y |∆ “ 1,A “ 0q .

Can we bound the difference between ATT and ATTobs by a quantity that we
understand scientifically?
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Unmeasured confounding

The worst-case scenario for the treatment would be if all participants with missing
outcomes who received treatment were not cured.

In this case, Ep∆Y |A “ 1q is a conservative gauge of E rY p1q|A “ 1s, in the sense that

Ep∆Y |A “ 1q ď E rY p1q|A “ 1s .

This gives us the inequality

ATTobs ´ ATT “ tEp∆Y |A “ 1q ´ Ep∆Y |∆ “ 1,A “ 0qu

´ tE rY p1q|A “ 1s ´ E rY p0q|A “ 1su

ď E rY p0q|A “ 1s ´ Ep∆Y |∆ “ 1,A “ 0q

ď E rY p0q|A “ 1s .

The difference between ATTobs and ATT is at most the probability of “spontaneous
cure” amongst the treated, an interpretable quantity.
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Unmeasured confounding

We can now study tests of H0 : ATT ď 0
by studying H0 : ATTobs ď δ for different
choices of δ, a hypothesized spontaneous
cure probability.

We would reject H0 at level α “ 0.05 for
any value of δ ď 0.44.

Because sicker patients receive
treatment, it is likely that
E rY p0q|A “ 1s ď E rY p0q|A “ 0s.

Êp∆Y |∆ “ 1,A “ 0q “ 0.01, so it is
likely that EpY p0q|A “ 1q ď 0.44.

An interpretable bound allows us to
conclude that there is likely at least some
causal effect of treatment, even with
confounding present.

3.2.2 Example 2

Díaz and van der Laan [14] presented a targeted minimum loss-based estimator (TMLE, see e.g. [16, 17]), for
the parameter ΨðPÞ defined in eq. (4). TMLE is a loss-based semi-parametric estimation method that yields a
substitution estimator of a target parameter of the probability distribution of the data that solves the
efficient influence curve estimating equation, and thereby yields a double robust locally efficient estimator
of the parameter of interest, under regularity conditions.

In the original paper, Díaz and van der Laan [14] found ψn ¼ 0:0179 and σn ¼ 0:0071. Figure 1(b) shows
the function δ0ðαÞ ¼ σnðt $ zαÞ, defined as the bound on δ0 that leads to a rejection of the hypothesis of no
effect for different probabilities of type I error α. This figure shows that if the difference between the
probabilities of death EfEðY jAþ 12;WÞg and EfEðY jA& þ 12;WÞg is as large as 0.8%, then the hypothesis of
no effect of the intervention is rejected at a type I error probability of less than 0.1. In particular, if ψf

0 ¼ ψ0,
then the hypothesis of no effect of the intervention is rejected with a probability of type I error smaller
than 0.01.

3.3 Estimator and confidence interval for each value of sensitivity parameter

As a trivial by-product of the procedure described above, analogue to the point and interval estimators
presented by Robins, Scharfstein, and Rotnitzky in their series of articles, if the sensitivity parameter is
defined as δ0 ¼ ψ0 $ ψf

0, it is possible to construct an asymptotically linear estimator of the causal
parameter as a function of each hypothesized value δ0. That is, if δ0 ¼ δ is known, the estimate of ψf

0 is
given by ψf

nðδÞ ¼ ψn $ δ, with standard error given by σfn ¼ σn. A ð1$ αÞ 100% confidence interval is thus
given by ðψn $ δ$ zα=2σn;ψn $ δ$ zα=2σnÞ and can be computed for a range of values δ defined based on
subject-matter expert knowledge at no additional analytical or computational cost.

3.4 A generalization of the sensitivity analysis

The sensitivity analysis presented in this section can be generalized as follows. Consider a function f such
that it can be established that ψf

0 ' f ðψ0; δ0Þ for an observed data parameter ψ0 (that needs not approximate
ψf
0) and a sensitivity parameter δ0. In such case, the untestable hypothesis of no causal effect H0 : ψf

0 ( 0
implies the hypothesis H1

0 : f ðψ0; δ0Þ ( 0, which can be tested for a range of user-given values of the
sensitivity parameter δ0. Rejecting H1

0 with a probability of type I error smaller than α will thus lead to
rejection of H0 with at most the same probability of type I error.
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(a) Example 1 (b) Example 2
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Figure 1 Upper bounds on δ0 for which null hypothesis of no treatment effect is rejected at different probabilities of type I
error α
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Figure: Choices of δ for which H0 : ATT ď 0 is
rejected at different type I error probabilities (α)
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Unmeasured confounding

This form of sensitivity analysis is closely related to approaches in the “partial
identifiability” literature (Manski, 1990), wherein bounds on the difference between
the causal effect and the observed association are derived.

Usually, very few (if any) assumptions are required to derive bounds, though this
sometimes results in highly conservative bounds. For example, we may have generated
bounds on the ATE that always include zero.

Interested? Take the Causal Inference module at the UW Summer Institute in
Statistics and Modeling in Infectious Diseases.
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Unmeasured confounding

In special situations, there may be alternative ways to identify causal effects.

Instrumental variables are a common tool to estimate causal effects with unmeasured
confounding (Balke & Pearl, 1997).

An instrument is a variable Z that is related to A but not to Y .

Example: Encouragement to seek early imaging.

Under some conditions (Angrist, Imbens & Rubin, 1996), the average treatment effect
is identified by

ATE “ E

"

conditional effect of Z on Y
hkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkj

EpY |Z “ 1,W q ´ EpY |Z “ 0,W q

PpA “ 1|Z “ 1,W q ´ PpA “ 1|Z “ 0,W q
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

conditional effect of Z on A

*

.
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Key points: unmeasured confounding

If you work with observational data (or even clinical trials data with missing
outcomes!), you should worry about unmeasured confounding.

Ideally, this is corrected at the design stage by collecting a rich set of covariates
on trial participants.

There are several possible approaches to tackle (to the extent possible)
unmeasured confounding at the analysis stage.
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Continuous-valued treatments

In some cases, the treatment of interest A is not binary, but continuous rather.

Examples: time of early imaging, dose of drug, level of exposure.

We are often interested in a counterfactual outcome under a range of interventions.

What is the mean outcome if we intervene to set A “ a for various a P A?

We use A to denote the set of interventions, which could take only a few values,
many values, or an infinite number of values.
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Continuous-valued treatments

If A includes only a few values, all the tools we have developed apply directly.

We have tools to estimate E rY paqs for any particular a.

Test, e.g., the null hypothesis H0 : E rY plowqs “ E rY pmediumqs “ E rY phighqs.

For statistical reasons beyond the scope of this course, it is not possible to estimate a
continuous dose-response curve without making strong assumptions.

Heuristically, we simply do not observe enough patients with every intervention
level we might care about.

What can we do in this situation?

If A contains many values, we could still use a multiple degree-of-freedom test to test
the null hypothesis that the mean is the same across all A.

Could we summarize the change in mean across a using a single parameter?
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Continuous-valued treatments

We can describe trends using parameters of working models, also known as marginal
structural models.

“Working model” implies that we do not necessarily believe this model to be true.

Be careful: often, marginal structural models are used in a parametric context in
which they are assumed to be true (i.e., not simply working models).

We choose working model mpa, βq and define the target parameter as a projection
onto this model (Neugebauer, van der Laan, 2007).

working model: mpa, βq “ β0 ` β1a;

projection: β0 “ argminβ
ř

aPAtE rY paqs ´mpa, βqu2;

interpretation: the “best-fitting straight line” to the true causal dose-response
curve. If β1 ą 0, then increasing a tends to cause increases in the average
outcome.
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Continuous-valued treatments

How interesting a given target parameter is depends on the underlying causal curve.

Linear working models for curves that are monotone may be highly relevant...

...but if the curve is parabolic?
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Continuous-valued treatments

In order to efficiently estimate parameters of marginal structural models, we need
propensity scores PpA “ a |W q for all a P A.

If A has multiple levels, we could use multinomial logistic regression.

It is also possible to use sequential super learning.

The positivity assumption can be troublesome when treatments have many levels.

We need positive probability of receiving every treatment in every strata.

Choosing a weighted projection onto MSM can help alleviate these problems –
this is akin to using ‘stabilized weights’:

β0 “ argminβ
ÿ

aPA
wpaq tE rY paqs ´mpa, βqu2

If wpaq “ PpA “ aq and a is rare, this level is down-weighted when choosing the
best-fitting line.
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Continuous-valued treatments

Compare the true value of the parameter for the unweighted projection to the
weighted projection:

The choice between the two must consider the tradeoff between scientific interest
and statistical stability.

The unweighted projection may be more interesting, but we may obtain more
precise estimators of the weighted projection.
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Key points: continuous-valued treatments

If there are only several discrete categories of treatment, then standard
techniques may be applied to each level separately.

If many levels of ordered treatment, marginal structural models can be useful for
summarizing causal dose response curves.

Positivity issues can be handled by choosing appropriately weighted projections.

Parameters based on other types of intervention can also be used to study the
effect of a continuous treatment on an outcome.
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Subgroup effects and interactions

The treatment of interest may have a different effect in different subpopulations.

Example: Early imaging beneficial in younger patients? In older patients?

Describing whether and how the treatment’s efficacy differs across subpopulations is
often of interest. For example, what are the policy implications of a treatment with
null average effect because:

it results in worse outcomes in half the population, and better outcomes in half
the population, or;

it has no effect on anyone in the population?

The average treatment effect is not the “wrong” parameter to study, as many people
believe. It is still describing the effect of the treatment in the population on average.

G-computation: subgroup-specific treatment effect averaged over subgroups.

No need for those subgroup-specific effects to be the same!
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Subgroup effects and interactions

We use V to denote all the subgroups (defined by baseline covariates) in which we are
interested clinically.

Example: V “ tolder than 75, younger than 75u

Example: V “ t65yo, 66yo, . . . u

Example: V “ t65yo men, 65yo women, 66yo men, 66yo women, . . . u

The counterfactual parameters of interest are E rY paq|V “ vs for a P A, v P V.

For every subgroup v , what is the average outcome under each treatment a.

We might test whether the average treatment effect is the same for patients
across all subgroups.
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Subgroup effects and interaction

Identification and estimation of the counterfactual mean in patients with V “ v when
we assign treatment A “ a are straightforward modifications of previous techniques.

G-computation: E rY paq|V “ vs “ E rEpY |A “ a,V ,W q|V “ vs

Averaging is performed relative to distribution of W only in stratum V “ v .

IPTW: E rY paq|V “ vs “ E

„

I pA “ a,V “ vq

gpv ,W q
Y

ˇ

ˇ

ˇ

ˇ

V “ v



Reconstructing a population of patients with A “ a only in stratum V “ v .

Using the observed data, we can estimate

the outcome regression : Q̄pa, v ,wq :“ EpY | A “ a,V “ v ,W “ wq

the propensity score : gpv ,wq :“ PpA “ a | V “ v ,W “ wq .
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Subgroup effects and interactions

In this case, the G-computation estimator of E rY p1q | V “ vs is given by

ψn,G ,1,v :“
1

řn
i“1 I pVi “ vq

n
ÿ

i“1

I pVi “ vqQ̄np1, v ,Wi q .

Even though, we can use all patients to fit regressions, we are computing the outer
empirical mean only using patients with V “ v .

If there are few of these (e.g., v is a given age), this estimator is unstable.

If V assumes an infinite number of values (e.g., v is a given BMI), then we
cannot estimate this parameter without making strong assumptions.

We can again make use of nonparametric marginal structural models to summarize
these interactions.
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Subgroup effects and interactions

We choose working model mpa, v , βq and define the target parameter as a projection
onto this model.

Working model: mpa, v , βq “ β0 ` β1a` β2av ;

Weighted projection:

β0 “ argminβ
ÿ

aPA

ÿ

vPA
wpa, vqtE rY paq|V “ vs ´mpa, v , βqu2;

Interpretation: The “best-fitting working model” to the true causal dose-response
curve across different levels of v . If β2 ą 0, then there is a trend suggestive of
increasing average treatment effect for increasing v .
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Key points: subgroup effects and interactions

Average treatment effect is often relevant even when interactions are present.

Straightforward extensions of previous results allow us to estimate the average
treatment effect within particular strata.

Comparison of the average treatment effect across these strata constitutes testing
for an interaction.

Marginal structural models may be helpful (often necessary) to estimate
interactions between treatment and many subgroups (e.g., defined by a
continuous variable).
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