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Installing R packages

To follow along with this demonstration, you will need several R packages.
Packages are freely available from the Comprehensive R Archive Network (CRAN).
Packages are downloaded to your local computer via the install.packages function.
Packages are loaded into your current R session via require or library

# these packages are needed to execute the demo
pkgs <- c("drtmle","earth","SuperLearner","nloptr",

"quadprog","plotmo","plotrix","TeachingDemos")
# see what packages are currently installed
installed_pacakges <- row.names(installed.packages())
# loop over the needed packages
for(p in pkgs){

# check if package is installed
already_installed <- p %in% installed_pacakges
# if not already installed, install it
if(!already_installed){

install.packages(p)
}
# and load package
library(p, character.only = TRUE)

}
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Simulating data
We will use simulated data sets where we know the truth to demonstrate some key ideas.

We generate a data set of n “ 300 observations.
There are two covariates, W “ pW1,W2q.
The treatment probability is logistic-linear in W1,W2.
The outcome is generated according to a linear model.
The true ATE is 0.20.

# set a seed for reproducibility
set.seed(212)
# sample size
n <- 300
# W1 has Normal distribution, W2 has Uniform distribution
W1 <- rnorm(n); W2 <- runif(n)
# make a data.frame of covariates
W <- data.frame(W1 = W1, W2 = W2)
# pr(A = 1 | W) is logistic linear in W
g1W <- plogis(-1 + W1 - W2 + W1*W2)
# generate binary treatment
A <- rbinom(n, 1, g1W)
# E[Y | A, W] is logistic linear in A, W
QAW <- plogis(W1 - W2 + A)
# generate outcome by adding random error
Y <- rbinom(n, 1, QAW)
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The drtmle package

The drtmle package facilitates doubly-robust estimation and inference about average
treatment effects. It is available on CRAN and GitHub.

These slides are based off the package vignette.

Learning objectives for today:

1 understanding and executing basic calls to drtmle;
2 understanding interface between drtmle and SuperLearner;
3 implementing estimators of additional regressions for robust inference;
4 implementing drtmle with missing treatment assignments and missing outcomes.
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Basic calls to drtmle

A rundown of the most important options for the drtmle function:

W = covariates;
A = treatment assignment (can have multiple discrete values);
Y = outcome (i.e., Y for outcome regression, A for propensity score);
family = gaussian() or binomial(), description of Y;
a_0 = drtmle will estimate counterfactual mean for all values of a_0 supplied by user;
SL.Q = super learner library for the outcome regression;
SL.g = super learner library for the propensity score;
SL.Qr = super learner library for residual outcome regression;
SL.gr = super learner library for residual outcome regression;
stratify = should outcome regression pool over levels of A (stratify = FALSE) or
should a separate outcome regression be fit for each level of A (stratify = TRUE);
maxIter = maximum number of TMLE iterations (sane default is 3, smaller number
= faster run);
tolg = truncation level for propensity score (default is 0.01, sanity is context
dependent).
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Basic calls to drtmle

Let’s start by making a simple call to drtmle and parsing the output.

Get counterfactual mean for both levels of treatment.
The outcome is binary, so we use family = binomial() for SuperLearner wrappers.
The super learner library for both regressions uses polynomial multivariate adaptive
regression splines and logistic regression.
The super learner library for the residual regression uses same library.
We fit a single outcome regression using observations with A = 1 and A = 0.

set.seed(123)
fit1 <- drtmle(W = W, A = A, Y = Y, a_0 = c(0,1), family = binomial(),

SL_g = c("SL.earth", "SL.glm"),
SL_Q = c("SL.earth", "SL.glm"),
SL_gr = c("SL.earth", "SL.glm"),
SL_Qr = c("SL.earth", "SL.glm"),
stratify = FALSE)

fit1
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Basic calls to drtmle

Let’s start by making a simple call to drtmle and parsing the output.

$est is the estimates for each value of a_0 (shown as row name).
$cov is the estimated asymptotic covariance matrix divided by sample size.

## $est
##
## 0 0.4317429
## 1 0.7003781
##
## $cov
## 0 1
## 0 1.131273e-03 8.398455e-05
## 1 8.398455e-05 5.985252e-03
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Basic calls to drtmle

drtmle also contains a ci method for computing doubly-robust confidence intervals.

contrast specifies what quantity you would like a confidence interval for (default is
for counterfactual means). Examples of other quantities on subsequent slides.
est specifies which estimator to get a confidence interval for (drtmle =
doubly-robust confidence intervals; tmle = TMLE confidence intervals; aiptw =
AIPTW confidence intervals).
level determines nominal coverage probability of the interval (default is 95%).

ci(fit1)

## $drtmle
## est cil ciu
## 0 0.432 0.366 0.498
## 1 0.700 0.549 0.852
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Basic calls to drtmle

If contrast is a vector, then ci computes confidence interval for the dot product of
contrast and fit1$est.

E.g., if contrast = c(1,-1) then ci computes confidence interval for the ATE.

ci(fit1, contrast = c(-1, 1))

## $drtmle
## est cil ciu
## E[Y(1)]-E[Y(0)] 0.269 0.105 0.432
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Basic calls to drtmle

More generally, contrast may be input as a list, which allows the ci method to compute
confidence intervals of the form

f ´1 f phpψnqq ˘ z1´α{2∇f phpψnqq
T Σn∇f phpψnqq

(

, where

f (contrast$f) is the transformation of the confidence interval,
f ´1 (contrast$f_inv) is the back-transformation of the interval,
h (contrast$h) is a contrast of counterfactual means, and
∇f phpψnqq(contrast$fh_grad) defines the gradient of the transformed contrast at
the estimated counterfactual means.
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Basic calls to drtmle

For example, we may be interested in the risk ratio E rY p0qs{E rY p1qs.

The true risk ratio in the simulated data example is 0.66.

This confidence interval is often computed on the log scale and back-transformed,

exp
„

log
"

ψnp1q
ψnp0q

*

˘ z1´α{2σ
log
n



,

where σlog
n is the estimated standard error on the log-scale.

By the delta method, an estimate of the standard error of the log-risk-ratio is

σlog
n “ ∇gpψnq

T Σn∇gpψnq ,

where Σn is the doubly-robust covariance matrix estimate output from drtmle and ∇gpψq
is the gradient of logtE rY p1qs{E rY p0qsu.
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Basic calls to drtmle

This confidence interval can be computed using the following code.

riskRatio <- list(f = function(eff){ log(eff) },
f_inv = function(eff){ exp(eff) },
h = function(est){ est[1]/est[2] },
fh_grad = function(est){ c(1/est[1],-1/est[2]) })

ci(fit1, contrast = riskRatio)

## $drtmle
## est cil ciu
## user contrast 0.616 0.475 0.8
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Basic calls to drtmle

This method of computing confidence intervals can also be useful for constructing
confidence intervals about counterfactual means.

Example: Y is binary so counterfactual mean is between 0 and 1. We would like our
confidence interval to respect this.

We can build an interval on the logit scale and back-transform,

expit
„

log
"

ψnp1q
1´ ψnp1q

*

˘ z1´α{2σ
logit
n



.

logitMean <- list(f = function(eff){ qlogis(eff) },
f_inv = function(eff){ plogis(eff) },
h = function(est){ est[1] },
fh_grad = function(est){ c(1/(est[1] - est[1]^2), 0) })

ci(fit1, contrast = logitMean)

## $drtmle
## est cil ciu
## user contrast 0.432 0.367 0.498
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Basic calls to drtmle

Hypothesis tests can be implemented in much the same way using the wald_test method.

null specifies what value to test against.

Here, we perform two two-sided hypothesis tests:

wald_test(fit1, null = c(0.5, 0.6))

## $drtmle
## zstat pval
## H0: E[Y(0)]=0.5 -2.029 0.042
## H0: E[Y(1)]=0.6 1.297 0.194
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Basic calls to drtmle

As with ci, wald_test allows for testing linear combinations of counterfactual means via
the contrast option.

We can use this to test the null hypothesis that ATE = 0.
We can test that the ATE equals a particular value via null option.

# test ATE = 0
wald_test(fit1, contrast = c(1, -1))

## $drtmle
## zstat pval
## H0:E[Y(0)]-E[Y(1)]=0 -3.223 0.001

# test ATE = 0.1
wald_test(fit1, contrast = c(1, -1), null = 0.1)

## $drtmle
## zstat pval
## H0:E[Y(0)]-E[Y(1)]=0.1 -4.422 0
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Basic calls to drtmle

wald_test also allows testing of arbitrary smooth contrasts of counterfactual means.

We can generally test the null hypothesis that f phpψ0qq equals f0 (the function f applied to
the value passed to null) using the Wald statistic

Zn :“
f phpψnqq ´ f0

∇f phpψnqqT Σn∇f phpψnqq
.

We can use the riskRatio contrast defined previously to test H0 : E rY p0qs{E rY p1qs “ 1.

wald_test(fit1, contrast = riskRatio, null = 1)

## $drtmle
## zstat pval
## H0: user contrast = 1 -3.635 0
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Note on common warning messages

You may see the following warning messages:

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

Indicates that some logistic regression has lead to predicted values of 0 or 1.
May indicate over-fitting of a regression, but generally for our purposes safe to ignore.

## Warning in method$computeCoef(Z = Z, Y = Y, libraryNames =
## libraryNames, : Algorithm 2 is duplicated. Setting weight to
## 0.

Indicates that two regressions had an identical fit in SuperLearner.
E.g., SL.step chooses the intercept-only model, which is the same as SL.mean.
The duplicated algorithm is dropped from the super learner.
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Note on the SL.Qr and SL.gr

Additional residual regressions are needed for doubly-robust inference.

How these extra regressions are fit is specified via SL.Qr and SL.gr.

It is difficult to know a-priori how these regressions should be fit. Thus, we recommend
being as flexible as possible in their estimation.

A sensible “default” library might include SL.glm, SL.gam, SL.mean, SL.earth, and
SL.npreg.
SL.npreg is kernel regression with cross-validated bandwidth selection (discussed in
Chapter 3).
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Note on custom regression estimators

It is not necessary to use super learning to estimate regressions in drtmle.

glm_ options may be used to fit these regressions (see documentation).

For example, say that to estimate the outcome regression, we would like to use the
screening wrapper that we wrote in Lab 1 and

screen for variables that change the coefficient of A more than 10%;
fit logistic regression with the resulting variables.

Users can write their own wrapper function that is passed to SL_ option.

Format of function identical to what is used by SuperLearner (see Lab 1).
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Note on custom regression estimators
Here is the same screening function from Lab 1.

screen_confounders <- function(Y, X, family, trt_name = "A",
change = 0.1, ...){

# fit treatment only model & get coefficient for treatment
fit_init <- glm(as.formula(paste0("Y ~ ", trt_name)),

data = X, family = family)
trt_coef <- fit_init$coef[2]
# identify which column of X is the trt variable
trt_col <- which(colnames(X) == trt_name)
# set all variables except trt to not be included initially
include <- rep(FALSE, ncol(X)); include[trt_col] <- TRUE
# loop over variables in X other than trt
for(j in seq_len(ncol(X))[-trt_col]){

# find variable name
var_name <- colnames(X)[j]
# fit trt + variable model, get trt coefficient
fit <- glm(as.formula(paste0("Y ~ ", trt_name, "+", var_name)),

data = X, family = family)
new_trt_coef <- fit$coef[2]
# check if changed more than specified amount
include[j] <- abs((new_trt_coef - trt_coef)/trt_coef) > change

}
return(include)

}
20 / 35



Note on custom regression estimators

Now we write a SuperLearner-style wrapper that does what we want.

SL.screened_regression <- function(Y, X, newX, family, ...){
# screen columns of X using screen_confounders
include_cols <- screen_confounders(Y = Y, X = X, family = family)
# fit main terms glm with only those columns
fitted_glm <- glm(Y ~ ., data = X[ , include_cols], family = family)
# get predictions
pred <- predict(fitted_glm, newdata = newX[ , include_cols],

type = "response")
# format output
out <- list(fit = list(fitted_model = fitted_glm,

include_cols = include_cols),
pred = pred)

# assign class
class(out$fit) <- "SL.screened_regression"
return(out)

}
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Note on custom regression estimators

We also need to define a predict method.

predict.SL.screened_regression <- function(object, newdata, ...){
pred <- predict(object$fitted_model,

newdata = newdata[ , object$include_cols],
type = "response")

return(pred)
}
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Note on custom regression estimators
We can now use drtmle with a main-terms logistic regression for the propensity and our
custom outcome regression wrapper.

set.seed(123)
fit2 <- drtmle(W = W, A = A, Y = Y, a_0 = c(0,1), family = gaussian(),

# specify main terms logistic regression via glm_g
glm_g = "W1 + W2",
# specify custom outcome regression via SL_Qs
SL_Q = "SL.screened_regression",
# the residual regression stay the same
SL_gr = c("SL.earth", "SL.glm", "SL.mean"),
SL_Qr = c("SL.earth", "SL.glm", "SL.mean"),
stratify = FALSE)

fit2

## $est
##
## 0 0.4312075
## 1 0.6927319
##
## $cov
## 0 1
## 0 0.0010901910 0.0001009967
## 1 0.0001009967 0.0053828564
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Missing data

drtmle supports missing data in A and Y. The estimators we have discussed can be modified
to allow for missingness.

Let ∆A and ∆Y be indicators that A and Y are observed, respectively.

The outcome regression is Ep∆YY | ∆AA “ a,∆A “ 1,∆Y “ 1,W q.

The propensity score is

prp∆A “ 1,∆AA “ a,∆Y “ 1 |W q

“ pr0p∆A “ 1 |W q ˆ pr0p∆AA “ a | ∆A “ 1,W q ˆ pr0p∆Y “ 1 | ∆A “ 1,∆AA “ a,W q .

We can introduce missing values to A and Y in our running example.

set.seed(123)
DeltaA <- rbinom(n, 1, plogis(2 + W$W1))
DeltaY <- rbinom(n, 1, plogis(2 + W$W2 + A))
A[DeltaA == 0] <- NA
Y[DeltaY == 0] <- NA
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Missing data

The syntax is the same except for SL.g, which now must specify a regression for each of the
three components of the PS.

SL.g is now a list with named entries "DeltaA", "A", and "DeltaY".
Each entry in the list specifies the super learner library for that regression.
If only a single library is passed to SL.g, it is used for each of the three regressions.

set.seed(123)
fit3 <- drtmle(W = W, A = A, Y = Y, a_0 = c(0,1), family = binomial(),

SL_g = list(DeltaA = c("SL.earth", "SL.glm", "SL.mean"),
A = c("SL.earth", "SL.glm", "SL.mean"),
DeltaY = c("SL.glm", "SL.mean")),

SL_Q = c("SL.earth", "SL.glm", "SL.mean"),
SL_gr = c("SL.earth", "SL.glm", "SL.mean"),
SL_Qr = c("SL.earth", "SL.glm", "SL.mean"),
stratify = FALSE)
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Missing data

fit3

## $est
##
## 0 0.4428648
## 1 0.8408505
##
## $cov
## 0 1
## 0 1.430528e-03 -1.817527e-05
## 1 -1.817527e-05 1.949183e-03

# calls to ci and wald_test are same as before
ci(fit3)

## $drtmle
## est cil ciu
## 0 0.443 0.369 0.517
## 1 0.841 0.754 0.927
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Multi-level treatments

So far we have only considered binary treatments. However, drtmle can handle treatments
with an arbitrary number of discrete values.

Suppose A assumes values in A. The propensity score estimation is modified to ensure that
ÿ

aPA

pprpA “ a |W “ wq “ 1 for all w .

The number of multi-level regression methodologies is somewhat limited, so drtmle uses a
sequence of binary regressions to ensure compatible propensity score estimates.

For example, if A “ t0, 1, 2u, then obtain estimates

pprpA “ 0 |W q , and pprpA “ 1 | A ą 0,W q ,

and we set

pprpA “ 1 |W q “ pprpA “ 1 | A ą 0,W qr1´ pprpA “ 0 |W qs

pprpA “ 2 |W q “ 1´ pprpA “ 0 |W q ´ pprpA “ 1 |W q .
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Multi-level treatments

Here we generate data that has three treatment levels, A = 0,1,2.

set.seed(1234)
n <- 300
W <- data.frame(W1 = runif(n), W2 = rbinom(n, 1, 0.5))
A <- rbinom(n, 2, plogis(W$W1 + W$W2))
Y <- rbinom(n, 1, plogis(W$W1 + W$W2*A))

The call to drtmle is the same as before:

fit4 <- drtmle(W = W, A = A, Y = Y, stratify = FALSE,
SL_Q = c("SL.earth", "SL.glm"),
SL_g = c("SL.earth", "SL.glm"),
SL_Qr = c("SL.earth", "SL.glm"),
SL_gr = c("SL.earth", "SL.glm"),
family = binomial(), a_0 = c(0,1,2))
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Multi-level treatments

The output now includes an estimated counterfactual mean for each level of treatment.

fit4

## $est
##
## 0 0.7181684
## 1 0.7746543
## 2 0.7720335
##
## $cov
## 0 1 2
## 0 2.279984e-02 -9.057861e-05 -1.146287e-04
## 1 -9.057861e-05 1.481616e-03 9.782748e-05
## 2 -1.146287e-04 9.782748e-05 1.129728e-03
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Multi-level treatments

The confidence interval and testing procedures extend to multi-level treatments.

ci(fit4)

## $drtmle
## est cil ciu
## 0 0.718 0.422 1.014
## 1 0.775 0.699 0.850
## 2 0.772 0.706 0.838

wald_test(fit4, null = c(0.4, 0.5, 0.6))

## $drtmle
## zstat pval
## H0: E[Y(0)]=0.4 2.107 0.035
## H0: E[Y(1)]=0.5 7.135 0.000
## H0: E[Y(2)]=0.6 5.118 0.000
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Multi-level treatments

The contrast option works as well.

ci(fit4, contrast = c(-1, 1, 0))

## $drtmle
## est cil ciu
## E[Y(1)]-E[Y(0)] 0.056 -0.25 0.363

ci(fit4, contrast = c(-1, 0, 1))

## $drtmle
## est cil ciu
## E[Y(2)]-E[Y(0)] 0.054 -0.251 0.359
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Multi-level treatments

The contrast option works as well. We can modify the previous riskRatio object to
compute the risk ratio comparing A “ 1 to A “ 0:

riskRatio_1v0 <- list(f = function(eff){ log(eff) },
f_inv = function(eff){ exp(eff) },
h = function(est){ est[2]/est[1] },
fh_grad = function(est){ c(1/est[2], -1/est[1], 0) })

ci(fit4, contrast = riskRatio_1v0)

## $drtmle
## est cil ciu
## user contrast 1.079 0.725 1.606
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Multi-level treatments

The contrast option works as well. We can modify the previous riskRatio object to
compute the risk ratio comparing A “ 2 to A “ 0:

riskRatio_2v0 <- list(f = function(eff){ log(eff) },
f_inv = function(eff){ exp(eff) },
# note now comparing 3rd to 1st estimate
h = function(est){ est[3]/est[1] },
fh_grad = function(est){ c(0, -1/est[1], 1/est[3]) })

ci(fit4, contrast = riskRatio_2v0)

## $drtmle
## est cil ciu
## user contrast 1.075 0.944 1.225
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Example write-up of TMLE analysis

Methods

We estimated the average counterfactual outcome if patients received treatment versus if
patients received control using super learning and targeted minimum loss-based estimation
with robust inference (Benkeser et al. 2017). This procedure requires regression of the
outcome on treatment and confounders and of the treatment on confounders. The set of
putative confounders included in these regressions included [. . . ]. For the outcome
regressions, we estimated the linear combination of candidate regression estimators that
minimizes ten-fold cross-validated mean squared-error. We included three candidate
regression estimators in the super learner: polynomial multivariate regression splines, main
terms logistic regression, and intercept-only regression. The same set of candidate
estimators was used for estimating the probability of treatment. However, in this case we
estimated the logistic-linear combination of regression estimators that minimizes ten-fold
cross-validated negative log-likelihood loss. To produce robust inference, this procedure
additionally requires residual smoothing, which was also achieved via super learning (details
in Appendix A). We tested the null hypothesis that the average outcomes were the same
under treatment versus control using a two-sided, level 0.05 Wald test with robust influence
function-based standard errors estimates (Benkeser et al. 2017). Analyses were performed
using the SuperLearner and drtmle R packages (Polley et al, 2018; Lendle et al 2017).
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Example write-up of TMLE analysis

Results

The super learners for the outcome regression gave weight to several algorithms with the
majority of the weight placed on polynomial multivariate adaptive regression splines, while
for the treatment probability the main-terms logistic regression received the most weight the
most weight (Table 1, Appendix A).

The estimated average counterfactual outcome if patients received treatment at all three
time points was . . . (95% CI: . . . , . . . ). The estimated average counterfactual outcome if
patients received control at all three time points was . . . (95% CI: . . . , . . . ). Our test of the
null hypothesis of equality of these quantities rejected the null hypothesis (p-value = . . . ).
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