
Modern Statistical Learning Methods for
Observational Biomedical Data

——————————————————————————–
Lab 3:

TMLE for multiple timepoint interventions

David Benkeser
Emory Univ.

Marco Carone
Univ. of Washington

Larry Kessler
Univ. of Washington

Module 14
5th Annual Summer Institute for Statistics in Clinical Research

07/22/2018

Installing R packages

To follow along with this demonstration, you will need several R packages.
Packages are freely available from the Comprehensive R Archive Network (CRAN).
Packages are downloaded to your local computer via the install.packages function.
Packages are loaded into your current R session via require or library

these packages are needed to execute the demo
pkgs <- c("ltmle","SuperLearner")
see what packages are currently installed
installed_pacakges <- row.names(installed.packages())
loop over the needed packages
for(p in pkgs){

check if package is installed
already_installed <- p %in% installed_pacakges
if not already installed, install it
if(!already_installed){

install.packages(p)
}
and load package
library(p, character.only = TRUE)

}

2 / 42

Simulating data

We will use the data discussed in Chapter 5 to illustrate key ideas.

Y | A1 “ a1, L1 “ `1,A0 “ a0 „ Normalp1` a1 ` 2`1, 1q
A1 | L1 “ `1,A0 “ a0 „ Bernoullipexpitp´1` `1 ` a0qq

L1 | A0 “ a0 „ Normalp1` a0, 1q
A0 „ Bernoullip0.5q

set a seed for reproducibility
set.seed(212)
n <- 5000
A0 <- rbinom(n, size = 1, p = 0.5)
L1 <- rnorm(n, mean = A0 + 1, sd = 1)
A1 <- rbinom(n, size = 1, p = plogis(-1 + L1 + A0))
Y <- rnorm(n, mean = 1 + A1 + 2 * L1, 1)

3 / 42

Failure of naive approach to causal inference
In this example, we demonstrate numerically the failure of the standard, regression-based
approach to causal inference.

fit a regression of Y ~ A1 + L1 + A0
fit <- glm(Y ~ A1 + L1 + A0)
show results
fit

##
Call: glm(formula = Y ~ A1 + L1 + A0)
##
Coefficients:
(Intercept) A1 L1 A0
1.04814 0.98394 1.98862 -0.04264
##
Degrees of Freedom: 4999 Total (i.e. Null); 4996 Residual
Null Deviance: 34720
Residual Deviance: 4767 AIC: 13960

The fitted regression gives an estimate of the conditional mean of Y ,

pE rY | A1, L1,A0s “ 1.05` 0.98A1 ` 1.99L1 `´0.04A0 .

4 / 42

Failure of the naive approach to causal inference

Can causal effects be read off the regression of Y on pA1, L1,A0q?

Effect of differing A1 values but same A0 value:

E rY p1, 1q ´ Y p1, 0qs “ 1
pE rY | A1 “ 1, L1,A0 “ 1s ´ pE rY | A1 “ 0, L1,A0 “ 1s

“ 1.05` 0.98ˆ 1` 1.99L1 `´0.04ˆ 1´ p1.05` 0.98ˆ 0` 1.99L1 `´0.04ˆ 1q
“ 0.98

E rY p0, 1q ´ Y p0, 0qs “ 1
pE rY | A1 “ 1, L1,A0 “ 0s ´ pE rY | A1 “ 0, L1,A0 “ 0s

“ 1.05` 0.98ˆ 1` 1.99L1 `´0.04ˆ 0´ p1.05` 0.98ˆ 0` 1.99L1 `´0.04ˆ 0q
“ 0.98

5 / 42

Failure of the naive approach to causal inference

Can causal effects be read off the regression of Y on pA1, L1,A0q?

Effect of differing A1 values but same A0 value:

E rY p1, 1q ´ Y p0, 1qs “ 2
pE rY | A1 “ 1, L1,A0 “ 1s ´ pE rY | A1 “ 0, L1,A0 “ 0s

“ 1.05` 0.98ˆ 1` 1.99L1 `´0.04ˆ 1´ p1.05` 0.98ˆ 1` 1.99L1 `´0.04ˆ 0q
“ ´0.04

E rY p1, 0q ´ Y p0, 0qs “ 2
pE rY | A1 “ 0, L1,A0 “ 1s ´ pE rY | A1 “ 0, L1,A0 “ 0s

“ 1.05` 0.98ˆ 0` 1.99L1 `´0.04ˆ 1´ p1.05` 0.98ˆ 0` 1.99L1 `´0.04ˆ 0q
“ ´0.04

6 / 42

Failure of naive approach to causal inference

Can causal effects be read off the regression of Y on pA1, L1,A0q?

Effect of differing A1 and A0 values:

E rY p1, 1q ´ Y p0, 0qs “ 3
pE rY | A1 “ 1, L1,A0 “ 1s ´ pE rY | A1 “ 0, L1,A0 “ 0s

“ 1.05` 0.98ˆ 1` 1.99L1 `´0.04ˆ 1´ p1.05` 0.98ˆ 0` 1.99L1 `´0.04ˆ 0q
“ 0.98`´0.04 “ 0.94

E rY p1, 0q ´ Y p0, 1qs “ 1
pE rY | A1 “ 0, L1,A0 “ 1s ´ pE rY | A1 “ 1, L1,A0 “ 0s

“ 1.05` 0.98ˆ 0` 1.99L1 `´0.04ˆ 1´ p1.05` 0.98ˆ 1` 1.99L1 `´0.04ˆ 0q
“ ´0.04´ 0.98 “ ´1.02

7 / 42

Illustration of G-computation

We will now demonstrate that the G-computation formula gives correct answers.

Goal: compute E rE rY | A1 “ a1, L1,A0 “ a0s| A0 “ a0s for different values of pa0, a1q.

A helpful way to think about regression quantities

E r Z
loomoon

outcome

| S “ s
loomoon

stratification

, C
loomoon

covariates

s

Considering the inner expectation, we have

E r Y
loomoon

outcome

| A1 “ a1,A0 “ a0
looooooooooomooooooooooon

stratification

, L1
loomoon

covariate

s .

8 / 42

Illustration of G-computation

For example, if a0 “ 1, a1 “ 1,

full data.frame
full_data <- data.frame(A0 = A0, L1 = L1, A1 = A1, Y = Y)
subset data to observations with A0 = 1 & A1 = 1
data_11 <- subset(full_data, A0 == 1 & A1 == 1)
fit regression of Y ~ L1
fit_11 <- glm(Y ~ L1, data = data_11)
fit_11

##
Call: glm(formula = Y ~ L1, data = data_11)
##
Coefficients:
(Intercept) L1
1.899 2.031
##
Degrees of Freedom: 2140 Total (i.e. Null); 2139 Residual
Null Deviance: 9740
Residual Deviance: 1959 AIC: 5892

9 / 42

Illustration of G-computation

The fitted regression gives us the estimate

pE rY | A1 “ 1, L1,A0 “ 1s “ 1.9` 2.03L1 .

Now, we need to estimate the outer expectation,

E rE r Y | A1 “ 1, L1,A0 “ 1s
loooooooooooooooooomoooooooooooooooooon

outcome

| A0 “ 1
looomooon

stratification

s

I.e., regression with outcome 1.9` 2.03L1 in observations with A0 “ 0 and no covariates.

10 / 42

Illustration of G-computation

get predicted value for everyone
full_data$Q2n_11 <- predict(fit_11, newdata = full_data)
subset data to observations with A0 = 1
data_1 <- subset(full_data, A0 == 1)
fit regression
fit_1 <- glm(Q2n_11 ~ 1, data = data_1)
intercept is estimate of E[Y(1,1)]
fit_1

##
Call: glm(formula = Q2n_11 ~ 1, data = data_1)
##
Coefficients:
(Intercept)
5.963
##
Degrees of Freedom: 2532 Total (i.e. Null); 2532 Residual
Null Deviance: 10060
Residual Deviance: 10060 AIC: 10690

11 / 42

Exercise

Use G-computation to obtain estimates of E rY p0, 1qs,E rY p1, 0qs, and E rY p0, 0qs

subset data to observations with A0 = a0 & A1 = a1

fit regression of Y ~ L1 in A0/A1 subset data

get predicted value for everyone

subset data to observations with A0 = a0

fit intercept-only regression in A0 subset data

intercept is estimate of E[Y(a0,a1)]

12 / 42

Solution

Here is a function that computes the answer for any given ‘a0‘, ‘a1‘

cfmean_gcomp <- function(a0, a1, full_data){
subset data to observations with A0 = a0 & A1 = a1
data_a0a1 <- subset(full_data, A0 == a0 & A1 == a1)
fit regression of Y ~ L1 in A0/A1 subset data
fit_a0a1 <- glm(Y ~ L1, data = data_a0a1)
get predicted value for everyone
full_data$Q2n_a0a1 <- predict(fit_a0a1, newdata = full_data)
subset data to observations with A0 = a0
data_a0 <- subset(full_data, A0 == a0)
fit intercept-only regression in A0 subset data
fit_a0 <- glm(Q2n_a0a1 ~ 1, data = data_a0)
intercept is estimate of E[Y(a0,a1)]
return(as.numeric(fit_a0$coefficients))

}
evaluate the function
EY11_gcomp <- cfmean_gcomp(a0 = 1, a1 = 1, full_data)
EY10_gcomp <- cfmean_gcomp(a0 = 1, a1 = 0, full_data)
EY01_gcomp <- cfmean_gcomp(a0 = 0, a1 = 1, full_data)
EY00_gcomp <- cfmean_gcomp(a0 = 0, a1 = 0, full_data)

13 / 42

Solution

Here are the estimated counterfactual means.

should be ~ 6, 5, 4, 3
round(c(EY11_gcomp, EY10_gcomp, EY01_gcomp, EY00_gcomp), 2)

[1] 5.96 4.96 4.04 3.03

14 / 42

Illustration of IPTW

Similarly, the IPTW identification result can be used. In this example, we can write

E rY pa0, a1qs “ E
„ IpA0 “ a0qIpA1 “ a1q
PpA0 “ a0qPpA1 “ a1 | A0 “ a0, L1q

Y

.

This result suggests using the estimate

pE rY pa0, a1qs “
1
n

n
ÿ

i“1

„ IpA0i “ a0qIpA1i “ a1q
pPpA0 “ a0qpPpA1 “ a1 | A0 “ a0, L1 “ L1i q

Yi

.

A helpful way to think about regression quantities

Pr Z “ z
loomoon

binary outcome
IpZ“zq

| S “ s
loomoon

stratification

, C
loomoon

covariates

s

15 / 42

Illustration of IPTW

Here is a function that computes the IPTW estimator for any given a0, a1.

cfmean_iptw <- function(a0, a1, full_data){
subset data to observations with A0 = a0
data_a0 <- subset(full_data, A0 == a0)
fit logistic regression of I(A1 = a1) ~ L1 in a0 subset
ps_a1 <- glm(I(A1 == a1) ~ L1, data = data_a0, family = binomial())
get predicted value for everybody
full_data$phat_a1 <- predict(ps_a1, newdata = full_data,

type = 'response')
fit regression of I(A0 = a0) ~ 1 in full_data
ps_a0 <- glm(I(A0 == a0) ~ 1, data = full_data, family = binomial())
get predicted value for everybody
full_data$phat_a0 <- predict(ps_a0, newdata = full_data,

type = 'response')
compute iptw estimator
EYa0a1 <- with(full_data, mean(

as.numeric(A0 == a0) * as.numeric(A1 == a1) / (phat_a0 * phat_a1) * Y
))
intercept is estimate of E[Y(a0,a1)]
return(EYa0a1)

}

16 / 42

Illustration of IPTW

evaluate the function
EY11_iptw <- cfmean_iptw(a0 = 1, a1 = 1, full_data)
EY10_iptw <- cfmean_iptw(a0 = 1, a1 = 0, full_data)
EY01_iptw <- cfmean_iptw(a0 = 0, a1 = 1, full_data)
EY00_iptw <- cfmean_iptw(a0 = 0, a1 = 0, full_data)
should be ~ 6,5,4,3
round(c(EY11_iptw, EY10_iptw, EY01_iptw, EY00_iptw),2)

[1] 5.96 5.28 4.02 2.99

17 / 42

The ltmle package

The ltmle package facilitates doubly-robust estimation about average treatment effects of
longitudinal interventions. It is available on CRAN and GitHub.

A Journal of Statistical Software paper is also available.

Learning objectives for today:

1 understanding and executing basic calls to ‘ltmle‘;
2 understanding interface between ‘ltmle‘ and ‘SuperLearner‘;
3 executing calls to ‘ltmle‘ with censoring;
4 executing calls to ‘ltmle‘ for longitudinal treatment rules.

18 / 42

https://CRAN.R-project.org/package=ltmle
https://github.com/joshuaschwab/ltmle
https://www.jstatsoft.org/article/view/v081i01

Simulated data
To illustrate a more general setting, we simulate a data structure with three treatments.

set seed for reproducibility & set sample size of 500
set.seed(212); n <- 500
baseline variables
L0 <- data.frame(L01 = rnorm(n), L02 = rbinom(n, 1, 0.5))
first treatment
gA0 <- plogis(0.2 * L0$L01 - 0.2 * L0$L02)
A0 <- rbinom(n = n, size = 1, prob = gA0)
intermediate variable at time 1
L1 <- rnorm(n = n, mean = -A0 + L0$L01 - L0$L02, sd = 1)
second treatment decision
gA1 <- plogis(0.2 * A0 - L1 + L0$L01)
A1 <- rbinom(n = n, size = 1, prob = gA1)
intermediate variable at time 2
L2 <- rnorm(n = n, mean = -A0*A1 + 2*A1 - L0$L01 + L1, sd = 2)
third treatment decision
gA2 <- plogis(A0 - A1 + 2*A0*A1 - L0$L01 + 0.2 * L1*L0$L02)
A2 <- rbinom(n = n, size = 1, prob = gA2)
outcome
Y <- rnorm(n = n, mean = L0$L01 * L0$L02 * L2 - A0 - A1 - A2*A0*L2, sd = 2)
put into a data frame
full_data <- data.frame(L0, A0 = A0, L1 = L1,

A1 = A1, L2 = L2, A2 = A2, Y = Y)
19 / 42

Simulated data

Take a look at the first six rows of data:

head(full_data)

L01 L02 A0 L1 A1 L2 A2 Y
1 -0.2391731 0 1 -2.0936558 1 -0.4755031 1 -1.5500339
2 0.6769356 0 1 1.1531256 0 1.3390966 1 -4.4178134
3 -2.4403360 0 0 -1.5562041 1 3.7861115 1 -3.7538463
4 1.2408845 0 0 -0.2899494 1 1.2289257 0 0.7606519
5 -0.3265144 1 1 -3.7865679 1 -2.5503459 1 1.1983679
6 0.1544909 1 1 -1.2827057 1 3.7191556 1 -3.5444271

We are interested in estimating the effect of receiving treatment at all three time points
versus receiving control at all three time points.

True value of E rY p1, 1, 1qs “ ´1.5.
True value of E rY p0, 0, 0qs “ 0.

20 / 42

Basic calls to ltmle

A rundown of the most important options for the ltmle function:

data = data.frame where the order of the columns corresponds to the time-ordering
of variables (important!);
Anodes = names of treatment nodes;
Cnodes = names of censoring nodes;
Lnodes = names of time-varying covariate nodes;
SL.library = list with named entries Q and g specifying super learner libraries for
the iterated outcome regressions and propensity scores;
abar = binary vector of length length(Anodes) or list of length 2 to contrast
treatments;
gbounds = a vector of lower and upper bounds on estimated propensity scores;
stratify = if TRUE then regressions are performed separately for each abar. If
FALSE (default), then regressions are pooled over abar.

For survival analysis:

Ynodes = names or indexes of time-varying outcome nodes;
survivalOutcome = TRUE if outcome is event that occurs only once, FALSE otherwise.
Alternatively, see package survtmle.

For treatment rules:

rule function that can be applied to each row of data, which should return a numeric
vector of treatment assignments of length length(Anodes).

21 / 42

https://CRAN.R-project.org/package=survtmle

Basic calls to ltmle

Let’s start by making a simple call to ltmle and parsing the output.

Get counterfactual mean for all treatment and all control.
The super learner library for propensity scores and outcome regressions uses
polynomial multivariate adaptive regression splines, logistic regression, and
intercept-only regression.
We fit regressions pooled over all treatments.

set.seed(123)
ltmle_fit1 <- ltmle(

data = full_data,
Anodes = c("A0", "A1", "A2"),
Lnodes = c("L01","L02","L1","L2"),
Ynodes = "Y",
SL.library = list(Q = c("SL.earth", "SL.glm", "SL.mean"),

g = c("SL.earth", "SL.glm", "SL.mean")),
stratify = FALSE, abar = list(treatment = c(1,1,1),

control = c(0,0,0))
)

22 / 42

Basic calls to ltmle

Some Ynodes are not in [0, 1], and Yrange was NULL, so all Y nodes are
being transformed to (Y-min.of.all.Ys)/range.of.all.Ys

Feature/flaw of ltmle: outcomes automatically scaled to be between 0 and 1.
In general, this is fine. It prevents regression estimators from extrapolating outside
the range of the observed data.
However, super learner is called with family = binomial(), even though the
outcome assumes values continuously between 0 and 1. This may cause issues with
some wrappers (e.g., SL.glmnet).

Qform not specified, using defaults:
formula for L1:
Q.kplus1 ~ L01 + L02 + A0
formula for L2:
Q.kplus1 ~ L01 + L02 + A0 + L1 + A1
formula for Y:
Q.kplus1 ~ L01 + L02 + A0 + L1 + A1 + L2 + A2

Qform indicates what variables to include in each outcome regression. If NULL
(default) it includes all variables from previous time points.
Confusingly, not an indication that a glm was used for the outcome regressions.
See the function documentation for more.

23 / 42

https://github.com/joshuaschwab/ltmle/issues/15
https://cran.r-project.org/web/packages/ltmle/ltmle.pdf#page=7

Basic calls to ltmle

gform not specified, using defaults:
formula for A0:
A0 ~ L01 + L02
formula for A1:
A1 ~ L01 + L02 + A0 + L1
formula for A2:
A2 ~ L01 + L02 + A0 + L1 + A1 + L2

gform indicates what variables to include in each propensity score. If NULL (default)
it includes all variables from previous time points.
Confusingly, not an indication that a glm was used for the propensity scores.
See the function documentation for more.

Warning messages:
In predict.lm(object, newdata, se.fit, scale = 1, type = ifelse(type == :
prediction from a rank-deficient fit may be misleading

Current version of ltmle is doing something silly to cause this error – safe to ignore.
A fix is pending.

24 / 42

https://cran.r-project.org/web/packages/ltmle/ltmle.pdf#page=7
https://github.com/joshuaschwab/ltmle/pull/18

Basic calls to ltmle

The summary method provides results.

summary(ltmle_fit1)

Estimator: tmle
Call:
ltmle(data = full_data, Anodes = c("A0", "A1", "A2"), Lnodes = c("L01",
"L02", "L1", "L2"), Ynodes = "Y", abar = list(treatment = c(1,
1, 1), control = c(0, 0, 0)), stratify = FALSE, SL.library = list(Q = c("SL.earth",
"SL.glm", "SL.mean"), g = c("SL.earth", "SL.glm", "SL.mean")))
##
Treatment Estimate:
Parameter Estimate: -1.6317
Estimated Std Err: 0.2474
p-value: <2e-16
95% Conf Interval: (-2.1166, -1.1468)
##
Control Estimate:
Parameter Estimate: 0.17039
Estimated Std Err: 0.28555
p-value: <2e-16
95% Conf Interval: (-0.38928, 0.73006)

25 / 42

Basic calls to ltmle

##
Additive Treatment Effect:
Parameter Estimate: -1.8021
Estimated Std Err: 0.37748
p-value: 1.8059e-06
95% Conf Interval: (-2.5419, -1.0622)

Treatment Estimate pertains to E rY p1, 1, 1qs.
Control Estimate pertains to E rY p0, 0, 0qs.
Additive Treatment Effect pertains to E rY p1, 1, 1qs ´ E rY p0, 0, 0qs.
All p-value’s are of null hypothesis that quantity equals 0.

Unfortunately, the full super learner objects for each regression cannot be accessed from
ltmle_fit1. However, the weights given to each regression at each time are saved.

26 / 42

Basic class to ltmle

weights for outcome regressions, because we set stratify = FALSE, the output in
ltmle_fit1fitQ[[1]] is the same as in ltmle_fit1fitQ[[2]]
ltmle_fit1fitQ[[1]]

$L1
Risk Coef
SL.earth_All 0.001685760 0.399302939
SL.glm_All 0.001663461 0.593744229
SL.mean_All 0.002460856 0.006952832
##
$L2
Risk Coef
SL.earth_All 0.007431811 0.526947556
SL.glm_All 0.007509260 0.464259051
SL.mean_All 0.009449858 0.008793393
##
$Y
Risk Coef
SL.earth_All 0.01089596 0.85480228
SL.glm_All 0.01598388 0.05266457
SL.mean_All 0.01793251 0.09253314

27 / 42

Basic class to ltmle

weights for propensity scores, because we set stratify = FALSE, the output in
ltmle_fit1fitg[[1]] is the same as in ltmle_fit1fitg[[2]]
ltmle_fit1fitg[[1]]

$A0
Risk Coef
SL.earth_All 0.2503784 0.0000000
SL.glm_All 0.2463051 0.8354287
SL.mean_All 0.2504346 0.1645713
##
$A1
Risk Coef
SL.earth_All 0.1705573 0.07001174
SL.glm_All 0.1661950 0.88354936
SL.mean_All 0.2041659 0.04643890
##
$A2
Risk Coef
SL.earth_All 0.1701692 0.491707245
SL.glm_All 0.1697660 0.501847091
SL.mean_All 0.2453319 0.006445664

28 / 42

Example write-up of LTMLE analysis

Methods

We estimated the average counterfactual outcome if patients received treatment at all three
time points versus if patients received control at all three time points using super learning
and longitudinal targeted minimum loss-based estimation (van der Laan and Gruber, 2010).
This requires estimation of an iterated outcome regression and the probability for treatment
at each time point. At each time point, these regressions adjusted for measured patient
characteristics prior to that timepoint. At baseline, these characteristics included [. . .]; at
the second time point these included [. . .]; at the third time point these included [. . .].
Each regression was estimated using super learning. For the outcome regressions, we
estimated the linear combination of candidate regression estimators that minimizes ten-fold
cross-validated mean squared-error. We included three candidate regression estimators in
the super learner: polynomial multivariate regression splines, main terms quasi-logistic
regression, and intercept-only regression. The same set of candidate estimators was used for
estimating the probability of treatment at each time point. However, in this case we
estimated the logistic-linear combination of regression estimators that minimizes ten-fold
cross-validated negative log-likelihood loss. We tested the null hypothesis that the average
outcomes were the same under treatment versus control using a two-sided, level 0.05 Wald
test with influence function-based standard errors estimates. Analyses were performed using
the SuperLearner and ltmle R packages (Polley et al, 2018; Lendle et al 2017).

29 / 42

Example write-up of LTMLE analysis

Results

Depending on the number of time points, it may be overwhelming to describe the super
learners fit for each regression. It may suffice to provide general statements.

Overall, the super learners for the iterated outcome regressions tended to give the most
weight to polynomial multivariate adaptive regression splines, while for the treatment
probability the main-terms logistic regression tended to have the most weight (Table 1,
Appendix A).

The estimated average counterfactual outcome if patients received treatment at all three
time points was -1.63 (95% CI: -2.12, -1.15). On the other hand the estimated average
counterfactual outcome if patients received control at all three time points was 0.17 (95%
CI: -0.39, 0.73). Our test of the null hypothesis that these two quantities are equal rejected
the null hypothesis (p-value ă 0.001).

Sensitivity analyses examining super learner performance are more difficult to conduct in
these settings, particularly for the iterated outcome regressions.

30 / 42

Example write-up of LTMLE analysis

Appendix

Iterated outcome regressions and super learner weights

Function name Description Time 1 Time 2 Time 3

SL.glm_All main-terms linear regression 0.59 0.46 0.05
using all previous variables

SL.mean_All intercept-only regression 0.01 0.01 0.09
SL.earth_All polynomial multivariate 0.40 0.53 0.85

adaptive regression splines
using all previous variables and
“default” tuning parameters

31 / 42

Missing data
Often, participants are lost-to-follow-up during the course of the study. Here, we add some
right-censoring to our data.

set.seed(12)
censoring prior to time 1 (1 = censored)
gC1 <- plogis(-2 + 0.05 * L0$L01)
C1 <- rbinom(n = n, size = 1, prob = gC1)
censoring prior to time 2 (1 = censored)
gC2 <- plogis(-3 + 0.05 * A0 + 0.025 * L1 - 0.025 * L0$L02)
C2 <- rbinom(n = n, size = 1, prob = gC2)
censoring prior to time 3 (1 = censored)
gC3 <- plogis(-3.5 + 0.05*A0*A1 - 0.025*L2 + 0.025 * L1)
C3 <- rbinom(n = n, size = 1, prob = gC3)
make a cumulative indicator of censoring
anyC1 <- C1 == 1; anyC2 <- C1 == 1 | C2 == 1
anyC3 <- C1 == 1 | C2 == 1 | C3 == 1
censored data set
cens_data <- data.frame(L0, A0 = A0,

C1 = BinaryToCensoring(is.censored = C1),
L1 = ifelse(anyC1, NA, L1), A1 = ifelse(anyC1, NA, A1),
C2 = BinaryToCensoring(is.censored = ifelse(anyC1, NA, C2)),
L2 = ifelse(anyC2, NA, L2), A2 = ifelse(anyC2, NA, A2),
C3 = BinaryToCensoring(is.censored = ifelse(anyC2, NA, C3)),
Y = ifelse(anyC3, NA, Y))

32 / 42

Missing data

head(cens_data, 9)

L01 L02 A0 C1 L1 A1 C2
1 -0.2391731 0 1 uncensored -2.0936558 1 uncensored
2 0.6769356 0 1 uncensored 1.1531256 0 uncensored
3 -2.4403360 0 0 censored NA NA <NA>
4 1.2408845 0 0 uncensored -0.2899494 1 uncensored
5 -0.3265144 1 1 uncensored -3.7865679 1 uncensored
6 0.1544909 1 1 uncensored -1.2827057 1 uncensored
7 1.0368712 1 1 uncensored 0.6649321 1 uncensored
8 -0.7796077 1 0 uncensored -1.3935843 1 uncensored
9 0.6212641 1 1 uncensored -1.5369416 1 uncensored
L2 A2 C3 Y
1 -0.4755031 1 uncensored -1.5500339
2 1.3390966 1 uncensored -4.4178134
3 NA NA <NA> NA
4 1.2289257 0 uncensored 0.7606519
5 -2.5503459 1 uncensored 1.1983679
6 3.7191556 1 uncensored -3.5444271
7 -1.6484044 1 uncensored -2.9017656
8 0.1423414 0 uncensored -3.8194847
9 -4.1821615 1 uncensored 1.2824355

33 / 42

Missing data

We now make a call to ltmle using the censored data set.

Get counterfactual mean for all treatment and all control.
The super learner library for propensity scores (which now includes censoring!) and
outcome regressions uses polynomial multivariate adaptive regression splines, logistic
regression, and intercept-only regression.
The specific formatting of Cnodes is important. The helper function
BinaryToCensoring can help properly format these variables.
We fit regressions pooled over all treatments using uncensored observations.

set.seed(123)
ltmle_fit2 <- ltmle(

data = cens_data,
Anodes = c("A0", "A1", "A2"),
Lnodes = c("L01","L02","L1","L2"),
Cnodes = c("C1","C2","C3"),
Ynodes = "Y",
SL.library = list(Q = c("SL.earth", "SL.glm", "SL.mean"),

g = c("SL.earth", "SL.glm", "SL.mean")),
stratify = FALSE, abar = list(treatment = c(1,1,1),

control = c(0,0,0))
)

34 / 42

Missing data

summary(ltmle_fit2)

Estimator: tmle
Call:
ltmle(data = cens_data, Anodes = c("A0", "A1", "A2"), Cnodes = c("C1",
"C2", "C3"), Lnodes = c("L01", "L02", "L1", "L2"), Ynodes = "Y",
abar = list(treatment = c(1, 1, 1), control = c(0, 0, 0)),
stratify = FALSE, SL.library = list(Q = c("SL.earth", "SL.glm",
"SL.mean"), g = c("SL.earth", "SL.glm", "SL.mean")))
##
Treatment Estimate:
Parameter Estimate: -1.6413
Estimated Std Err: 0.2687
p-value: <2e-16
95% Conf Interval: (-2.168, -1.1147)
##
Control Estimate:
Parameter Estimate: 0.22323
Estimated Std Err: 0.34766
p-value: <2e-16
95% Conf Interval: (-0.45817, 0.90462)
##

35 / 42

Missing data

Additive Treatment Effect:
Parameter Estimate: -1.8645
Estimated Std Err: 0.43971
p-value: 2.2314e-05
95% Conf Interval: (-2.7264, -1.0027)

earth glm Y: did not converge after 25 iterations

glm.fit: algorithm did not converge

For some regressions, there are few observations with the outcome.
E.g., C3 ~ L01 + L02 + A0 + L1 + A1 + L2 + A2 has only 9 censored observations.
By default, ltmle tries use V = 10 fold cross-validation, which leads to instability.
Corrections for this are in the works.

Other notes:

ltmle_fit2fitg additionally contains super learner risks/weights for censoring.

36 / 42

Dynamic treatment regimes

Suppose we are interested in comparing two treatment regimes:

Give all patients control until Lk ą ´1, then give treatment.
E.g., monitor patients until back pain worsens, then give treatment.
Give all patients control at every time point.

In ltmle this is achieved by the rule and regime options.

A rule is a function that looks at a patient’s data and outputs a vector of binary
treatment assignments for that patient.
The regimes option will is a list of rules.

37 / 42

Dynamic treatment regimes

Here we define a rule for “give all patients control until Lk ą ´1, then give treatment.”

rule1 <- function(pt_data){
all patients start on control
A0 <- 0
patients get treatment at time 1 if L1 > -1
set patients with missing L1 to NA
if(!is.na(pt_data$L1)){

A1 <- ifelse(pt_data$L1 > -1, 1, 0)
}else{

A1 <- NA
}
patients get treatment at time 2 if L2 > -1
set patients with missing L2 to NA
if(!is.na(pt_data$L1)){

A2 <- ifelse(pt_data$L2 > -1, 1, 0)
}else{

A2 <- NA
}
return(c(A0,A1,A2))

}

38 / 42

Dynamic treatment regimes

Now, we define a rule for give all patients control at every time point.

rule2 <- function(pt_data){
all patients start on control
A0 <- 0
and stay on control unless censored
A1 <- ifelse(is.na(pt_data$L1), NA, 0)
A2 <- ifelse(is.na(pt_data$L2), NA, 0)
return(c(A0,A1,A2))

}

39 / 42

Dynamic treatment regimes

We now make a call to ltmle using the censored data set.

Get counterfactual mean for the two treatment rules
Same super learner and other options as before.

set.seed(123)
ltmle_fit3 <- ltmle(

data = cens_data,
Anodes = c("A0", "A1", "A2"),
Lnodes = c("L01","L02","L1","L2"),
Cnodes = c("C1","C2","C3"),
Ynodes = "Y", stratify = FALSE,
SL.library = list(Q = c("SL.earth", "SL.glm", "SL.mean"),

g = c("SL.earth", "SL.glm", "SL.mean")),
rule = list(treatment = rule1, control = rule2)
)

40 / 42

Dynamic treatment regimes

summary(ltmle_fit3)

Estimator: tmle
Call:
ltmle(data = cens_data, Anodes = c("A0", "A1", "A2"), Cnodes = c("C1",
"C2", "C3"), Lnodes = c("L01", "L02", "L1", "L2"), Ynodes = "Y",
rule = list(treatment = rule1, control = rule2), stratify = FALSE,
SL.library = list(Q = c("SL.earth", "SL.glm", "SL.mean"),
g = c("SL.earth", "SL.glm", "SL.mean")))
##
Treatment Estimate:
Parameter Estimate: -0.25533
Estimated Std Err: 0.29283
p-value: <2e-16
95% Conf Interval: (-0.82926, 0.31861)
##
Control Estimate:
Parameter Estimate: 0.19432
Estimated Std Err: 0.34299
p-value: <2e-16
95% Conf Interval: (-0.47793, 0.86656)
##

41 / 42

Dynamic treatment regimes

Additive Treatment Effect:
Parameter Estimate: -0.44964
Estimated Std Err: 0.41686
p-value: 0.28075
95% Conf Interval: (-1.2667, 0.3674)

The output under Treatment is whatever rule was first in the list.
The output under Control is whatever rule was second in the list.

42 / 42

