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CENSORED DATA
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CENSORED DATA
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“Censored” observations give some information about their survival time.
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ESTIMATION

• Can we use the partial information in the censored 
observations?

• Two off-the-top-of-the-head answers:
– Full sample:  Yes.   Count them as observations 

that did not experience the event ever and 
estimate S(t) as if there were not censored 
observations.

– Reduced sample: No. Omit them from the sample 
and estimate S(t) from the reduced data as if they 
were the full data.
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CENSORED DATA
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CENSORED DATA

Based on the data and estimates on the previous page,

Q: Are the Full Sample estimates biased? Why or why not?

A:

Q: Are the Reduced Sample estimates biased? Why or why not?

A:
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RISK SETS
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RISK SETS
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CENSORED DATA ASSUMPTION

• Important assumption: subjects who are censored at 
time t are at the same risk of dying at t as those at 
risk but not censored at time t.
–When would you expect this to be true (or false) 

for subjects lost to follow-up?

–When would you expect this to be true (or false) 
still alive at the time of the analysis?
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CENSORED DATA ASSUMPTION

• Important assumption: subjects who are censored at 
time t are at the same risk of dying at t as those at 
risk but not censored at time t.

• This means the risk set at time t is  an unbiased 
sample of the population still alive at time t.

• Can use information from the unbiased risk sets to 
estimate S(t) using the method of Kaplan and Meier 
(Product-Limit Estimator).
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USING RISK SETS INFO TO ESTIMATE S(t)

• Repeatedly use the fact that for t2 > t1, 

Pr[T > t2] = Pr[T > t2 and T > t1] = Pr[T > t2|T > t1]Pr[T > t1]

• An observation censored between t1 and t2 can contribute to 
the estimation of Pr[T > t2]  by its unbiased contribution to 
estimation of  Pr[T > t1].

0 t2t1
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PRODUCT-LIMIT (KAPLAN-MEIER) ESTIMATE

Notation: Let t(1), t(2) . . . , t(J) be the ordered failure times in the
sample in ascending order.

t(1) = smallest Y� for which �� = 1 (t(1) = 1 )

t(2) = 2nd smallest Y� for which �� = 1 (t(2) = 3 )
...
t(J) = largest Y� for which �� = 1 (t(4) = 5 )

Q: Does J = the number of observed deaths in the sample?

A:

Q:When does J = n?
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MORE NOTATION

For each t(j):

D(j) = number that die at time t(j)
S(j) = number known to have survived beyond t(j)

(by convention: includes those known to have been
censored at t(j))

N(j) = number "at risk" of being observed to die at time t(j)
(ie: number still alive and under observation just before t(j))

S(j) = N(j) �D(j)
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FOR EXAMPLE DATA
● ●● ●
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t(j) N(j) D(j) S(j) Product-limit (Kaplan-Meier) Estimator:

1 6 1 5

3 4 1 3 Ŝ(t) =  j:t(j)t(1�
D(j)
N(j)
) =  j:t(j)t(

S(j)
N(j)
)

4 3 1 2
5 2 1 1

for t in Ŝ(t)

[0, 1) 1 (empty product)

[1,3 ) 1 ⇥ 5
6 = .833

[3,4 ) 1 ⇥ 5
6 ⇥

3
4 = .625

[4,5 ) 1 ⇥ 5
6 ⇥

3
4 ⇥

2
3 = .417

[5,� ) 1 ⇥ 5
6 ⇥

3
4 ⇥

2
3 ⇥

1
2 = .208
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K-M ESTIMATOR

0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Survival Function Estimate

t

S
(t
)

Note: does not descend to zero here (since last observation is censored).

Q: Since the estimate jumps only at observed death times, how does 
information from the censored observations contribute to it?

A:
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MEDIAN SURVIVAL CENSORED DATA
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KM STANDARD ERRORS

Greenwood’s Formula:

•’V�r(Ŝ(t)) = Ŝ2(t)
P

j:t(j)t
D(j)

N(j)S(j)

• se(Ŝ(t)) =
∆
’V�r(Ŝ(t))

• Pointwise CI: (Ŝ(t)� z �
2
se(Ŝ(t)), Ŝ(t) + z �

2
se(Ŝ(t)))

– Can include values < 0 or > 1.
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LOG –LOG KM STANDARD ERRORS

Use complementary log log transformation to keep CI within (0,1):

•’V�r(log(� log(Ŝ(t)))) =
P

j:t(j)t
D(j)

N(j)S(j)

[log(Ŝ(t))]2

• se =
∆
’V�r(log(� log(Ŝ(t))))

• CI for log(� log(S(t))) :
(log(� log(Ŝ(t)))� z �

2
se, log(� log(Ŝ(t))) + z �

2
se)

• CI for Ŝ(t) : ([Ŝ(t)]e
z�/2se , [Ŝ(t)]e

�z�/2se)

– CI remains within (0,1).
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GREENWOOD’S FORMULA
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COMPLEMENTARY LOG-LOG
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MEDIAN CONFIDENCE INTERVAL
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Confidence interval for the median is obtained by inverting the sign
test of H0 : median = M (Brookmeyer and Crowley, 1982).

• With complete data T1, T2, . . . , Tn, the sign test of
H0 : median = M is performed by seeing if the observed
proportion, P̂[Y > M] is too big or too small (Binomial
Distribution or Normal Approximation).

• With censored data (Y1, �1), (Y2, �2), . . . , (Yn, �n) giving
incomplete data about T1, T2, . . . , Tn, we cannot always tell
whether T� > M:

When Y�  M, �� = 1 observed death before M we know T�  M
When Y� > M observed death after M we know T� > M
When Y�  M, �� = 0 censored before M we don’t know if

T�  M or T� > M



MEDIAN CONFIDENCE INTERVAL

Solution: Following Efron (self-consistency of KM), we estimate
Pr[T > M] when Y�  M, �� = 0 using Ŝ(M)

Ŝ(Y�)
.

• For complete data, we let U� =
⇢
1 T� > M
0 T�  M

and our test is based on
Pn

�=1U�.

• For censored data, we let U� =

8
<
:

1 Y� > M
Ŝ(M)
Ŝ(Y�)

Y�  M; �� = 0
0 Y�  M; �� = 1

and our test is based on
Pn

�=1U�.
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MEDIAN CONFIDENCE INTERVAL

• It turns out, this is the same as basing our test of
H0 :median = M on a test of H0 : S(M) = 1

2 .

• So a 95% CI for the median contains all potential M for which
the test of H0 : S(M) = 1

2 cannot reject at � = .05 (2 sided).

• Since Ŝ(M) only changes value at observed event times, the
test need only be checked at M = t(1), t(2), . . . , t(J).

• Originally proposed for Greenwood’s formula CIs for Ŝ(M), but
any good CIs are OK.

• Implemented in many software packages.
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MEDIAN CONFIDENCE INTERVAL

Median Confidence Interval, Censored Data
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COLON CANCER EXAMPLE

• Clinical trial at Mayo Clinic (Moertel et al. (1990) NEJM)

• Stage B2 and C colon cancer patients; adjuvant 
therapy

• Three arms
– Observation only
– Levamisole
– 5-FU + Levamisole

• Stage C patients only
• Two treatment arms only
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COLON CANCER EXAMPLE
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COLON CANCER EXAMPLE
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PRESENTATION

N Events Median
(days)

95% CI

Levamisole
Only

310 161 2152 (1509, ∞)

5FU + 
Levamisole

304 123 -- (2725, ∞)
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COLON CANCER EXAMPLE

0 500 1000 1500 2000 2500 3000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days from Diagnosis

Su
rv

iva
l P

ro
ba

bi
lit

y

Lev
Lev+5FU

Complementary log−log Transformation

SISCR 2019: Module 6: Intro Survival             
Elizabeth Brown 2 - 42



ESTIMATION

• Estimate S(t) using KM curve (nonparametric).
– Pointwise standard errors and CIs
– Almost always presented
– Not appropriate when the event of interest 

happens only to some (more on this Friday)
• Median: based on KM curve: often presented (too 

often?)
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TO WATCH OUT FOR

• Mean survival time hard to estimate without parametric 
assumptions
– Censoring means incomplete information about 

largest times
– Mean over restricted time interval may be useful in 

some settings (some on this tomorrow)
• Median estimate more complicated than median of 

times
• Even with CIs, evaluating differences between curves 

visually is subjective
• Interpretation of survival function estimates depends on 

validity of censoring assumptions
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