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OVERVIEW
• Session 1 

– Introductory examples
– The survival function
– Survival Distributions
– Mean and Median survival time 

• Session 2 
– Censored data
– Risk sets
– Censoring Assumptions
– Kaplan-Meier Estimator and CI
– Median and CI

• Session 3 
– Two-group comparisons: logrank test
– Trend and heterogeneity tests for more than two groups

• Session 4 
– Introduction to Cox regression
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OUTLINE

• Motivation: 
– Confounding in observational studies
– Stratified randomization designs

• Cox Regression model
– Coefficient interpretation
– Estimation and testing
– Relationship to 2- and K-sample tests
– Examining non-proportionality

• Examples throughout
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CONFOUNDING

• Observational data: sometimes observed 
associations between an explanatory variable and 
outcome can be due to their joint association with 
another variable.

– Age related to both sex and risk of death.

– Other examples?
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PRECISION IN RCTS

• Because of randomization, confounding/imbalance 

usually not an issue except in small trials.

• As in linear regression, regression models for 

censored survival data allow group comparisons 

among subjects with similar values of adjustment or 

“precision” variables (more later).

• Fairer and possibly more powerful comparison as 

long as adjustment variables are not the result of 

treatment.
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STRATIFIED RANDOMIZATION

• For strong predictors: concern about possible 

randomization imbalance

– Clinic or center

– Stage of disease

– Sex

– Age

• Adjust for stratification variables in analysis

–More powerful if predictors are strong

– Same conditioning as the sampling
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COX REGRESSION MODEL
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• Usually written in terms of the hazard function

• As a function of independent variables �1,�2, . . . �k,

�(t) = �0(t)e�1�1+···+�k�k
"

relative risk / hazard ratio

log�(t) = log�0(t) + �1�1 + · · · + �k�k
"

intercept
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RELATIVE RISK / HAZARD RATIO

�(t|�1, . . . ,�k) = �0(t)e�1�1+···+�k�k

�(t|�1,...,�k)
�(t|0,...,0) = e�1�1+···+�k�k
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REGRESSION MODELS

LS Linear Regression: Y = �0 + �1�1 + · · · + �k�k + �

Linear: Y ⇠ N(�,�2) � = EY = �0 + �1�1 + · · · + �k�k

Cox: T ⇠ S(t) �(t) = �0(t)e�1�1+···+�k�k

" "
Distribution of Dependence of distribution

outcome variable on �1, . . . �k
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PROPORTIONAL HAZARDS MODEL
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EXAMPLE
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Single binary �:

� =
⇢
1 Test treatment
0 Standard treatment

�(t) = �0(t)e��

Interpretation of e�:

"Relative risk (or hazard ratio) comparing test treatment to stan-
dard".

�(t) for � = 1: �0(t)e�·1 = �0(t)e�

�(t) for � = 0: �0(t)e�·0 = �0(t)

ratio: e�(1�0) = e�

4 - 13



EXAMPLE
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Proportional Hazards
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RELATIONSHIP TO SURVIVAL FUNCTION
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PICTURE
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ESTIMATES AND CONFIDENCE INTERVALS
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• We estimate � by maximizing the "partial likelihood function"

• Requires iteration on computer

• �̂ is a MPLE (Maximum Partial Likelihood Estimator)

• We do not need to estimate �0(t) to do this

• Most packages will estimate se(�̂) using the information matrix
from this PL.

• 95% CI for �: (�̂� 1.96se(�̂), �̂+ 1.96se(�̂))

• 95% CI for RR = e� : (e�̂�1.96se(�̂), e�̂+1.96se(�̂))
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PARTIAL LIKELIHOOD

Data for the �th subject: (t�, ��,�1�, . . .�k�)

For subject with the jth ordered failure time : (t(j),1,�1(j), . . . ,�k(j))

PL(�1, . . . ,�k) =
JY

j=1

e�1�1(j)+···+�k�k(j)
P

�:t��t(j) e
�1�1�+···+�k�k�

• (�̂1, . . . , �̂k) are the values of (�1, . . . ,�k) that maximize
PL(�1, . . . ,�k). (MPLEs)

• Compares � values for the subject who failed at time t(j) to
those of all subjects at risk at time t(j).

• Does not depend on the values of the t�, only on their order.

• Does not depend on �0(t).
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RISK SET PICTURE
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FULL LIKELIHOOD
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L(�,�0(t)) =
Y

Failures

Pr[T = t�]
Y

Censorings

Pr[T > t�]

=
Y

Failures

�(t�|��)S(t�|��)
Y

Censorings

S(t�|��)

=
nY

�=1
[�(t�|��)]��S(t�|��)

=
nY

�=1
[�0(t�)e���]��e�

R t�
0 �0(s)e��ds
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PARTIAL LIKELIHOOD
Let Ht represent the entire history of failure, censoring and � in the
sample before time t.

Then the likelihood can be rewritten as follows:

L(�,�0(t)) =
JY

j=1
Pr[�th subject fails at t(j)|Ht(j) , some subject fails at t(j)] ·

Pr[Ht(j) , some subject fails at t(j)]

=
JY

j=1

�(t(j)|�(j))P
�:t��t(j) �(t(j)|��)

·
JY

j=1
Pr[Ht(j) , some subject fails at t(j)]

=
JY

j=1

�0(t(j))e��(j)P
�:t��t(j) �0(t(j))e

���
·

JY

j=1
Pr[Ht(j) , some subject fails at t(j)]

=
JY

j=1

e��(j)
P

�:t��t(j) e
���
·

JY

j=1
Pr[Ht(j) , some subject fails at t(j)]

= | {z } | {z }
Partial Likelihood Depends on �0(·) and �
Depends only on �
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HYPOTHESIS TESTS
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Three tests of H0 : � = 0 are possible:

1. Wald test: �̂
se(�̂)

2. (Partial) Likelihood ratio test

3. Score test: (⇡ logrank test)

Likelihood ratio test is best, but requires
fitting full (� = �̂) and reduced (� = 0) models.
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LIKELIHOODS AND TESTS

Four Hypothesis Tests

β

lo
g 

lik
el

ih
oo

d

β̂ 0

} Likelihood Ratio Test

Slope = Score

  Wald test

Log Likelihood Function
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COLON CANCER EXAMPLE

• Clinical trial at Mayo Clinic

• Stage B2 and C colon cancer patients; adjuvant 

therapy

• Three arms

– Observation only

– Levamisole (stage C only)

– 5-FU + Levamisole at Mayo Clinic

• Stage C patients only

• Two treatment arms only
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COLON CANCER EXAMPLE
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COLON CANCER EXAMPLE

Variable n Deaths
Hazard

ratio CI P-value
Levamisole Only 310 161 1.0 (reference) -- --

Levamisole + 5FU 304 123 0.71 (0.56, 0.90) .004
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Q:  Which group has better survival?

A:
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TEST COMPARISON

Test Statistic P-value
Wald’s 8.13 .004
Score 8.21 .004

Likelihood Ratio 8.21 .004
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Two-sided tests
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ANOTHER EXAMPLE
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Three groups: use indicators for two

�1 =
⇢
1 Levamisole Only
0 otherwise �2 =

⇢
1 Levamisole + 5FU
0 otherwise

Model: �(t) = �0(t)e�1�1+�2�2

RRs: Levamisole Only vs. Observation e�1
Levamisole + 5FU vs. Observation e�2
Levamisole + 5FU vs. Levamisole Only e�2��1
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HEURISTIC HAZARDS 
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COLON CANCER

Variable n Deaths Hazard Ratio 95% CI P-value

Observation Only 315 168 1.0 (reference) -- --

Levamisole Only 310 161 0.97 (0.78, 1.21) 0.81

Levamisole + 5FU 204 123 0.69 (0.55, 0.87) 0.002
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Q: Which group has best survival? 

A:
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TEST COMPARISON

Test Statistic P-value
Wald’s 11.56 .003

Score 11.68 .003

Likelihood Ratio 12.15 .002
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Same hypothesis as 3-group heterogeneity test.  Score test is same in large samples.
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COLON CANCER TRIAL DATA
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TREND

• When there are several groups, it is sometimes of interest to
test whether risk increases from one group to the next:

– Several dose groups
– Other ordered variable
– Example: tumor differentiation

• For � =

8
<
:

1 well differentiated
2 moderately differentiated
3 poorly differentiated

Model: �(t) = �0(t)e��

• Score test is the same as the trend test

• Could use other values for � (actual dose levels)
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TREND

For � =

8
<
:

1 well differentiated
2 moderately differentiated
3 poorly differentiated

Model: �(t) = �0(t)e��

Interpretation of e�: HR associated with the comparison of one
worse differentiation group to one better:

• poorly differentiated to moderately differentiated, or

• moderately differentiated to well differentiated

Q: What is HR comparing poorly differentiated to well
differentiated?

A:
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TREND
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TREND WITH DIFFERENTIATION

Hazard 
Ratio

95% CI

One category worse differentiation 
(well, moderately, poor)

1.4 (1.1, 1.8)

P = 0.003 (trend)
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One presentation based entirely on trend (“grouped linear”) model: 

I prefer presenting hazard ratios and CI’s based on dummy variable model, 
and providing P-value for trend.
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TREND WITH DIFFERENTIATION

n Deaths Hazard Ratio 95% CI
Well differentiated 66 26 1.0 (reference) --

Moderately 
differentiated

434 196 1.2 (0.80, 1.8)

Poorly 
differentiated

98 54 1.8 (1.2, 3.0)

P = 0.003 (trend)
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My preferred presentation based on dummy variable mode with trend P-value: 

Alternatively, you could report the likelihood ratio test for the dummy variable
model. P-value (2 df ) is 0.009.
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OUTLINE
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OVARIAN CANCER SCREENING TRIAL
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PROPORTIONAL HAZARDS
• One way to examine evidence against proportional hazards is 

to look at plots of scaled Schoenfeld residuals and perform 
tests based on them.

• For each failing subject  there is a Schoenfeld residual for each 
x variable in the model.

• At the subject’s failure time, the residual measures how the 
value of x for the subject who fails differs from a weighted 
average of x values for those still at risk.   (Weights depend on 
estimated HR for each subject at risk).

• If consistently high or low over an interval of time, this is 
evidence that the hazard at that time is even higher (lower) 
for the subject with that x than the model indicates.
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SCHOENFELD RESIDUALS

Formula for Schoenfeld residuals

Let r�(t) = e�̂��(t) be the estimated hazard ratio for the �th subject
at t compared to �(t) = 0.

Then for �(�̂, t) =
P

at risk at t r�(t)��(t)P
at risk at t r�(t)

,

The Schoenfeld residual for the kth subject failing at time t is
given by �k(t)� �(�̂, t).

The scaled Schoenfeld residual is the Schoenfeld residual divided
by a variance estimate.
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SCHOENFELD RESIDUALS

• Grambsch and Therneau (1994) showed that the scaled Schoen-
feld residual measures the deviation of a time-dependent log
hazard ratio �(t) from time-constant �̂.

• Can use linear regression comparing scaled Schoenfeld residu-
als to functions of time to examine evidence for lack of constant
hazard ratio over time.

• Grambsch PM, Therneau TM. Biometrika. 1994 Sep 1;81(3):515–526.

SISCR 2019: Module 6: Intro Survival             
Elizabeth Brown 4 - 44



COLON CANCER TRIAL DATA

Observation Arm Omitted

�̂ exp(�̂) se(�̂) z Pr(>|z|)
5FU + Lev -0.34 0.71 0.12 -2.83 0.0064

4+ Nodes Pos 0.98 2.67 0.12 8.08 <0.0001

e�R� CI: (0.5629, 0.9008)

LRT: 8.098 on 1 df, P = 0.0044
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FOR NODE 4 POSITIVITY
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FOR TREATMENT
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TEST FOR NON-PROPORTIONALITY

Variable P-value

node4 0.158

txLev+5FU 0.560
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No strong evidence for non-proportionality based on scaled
Schoenfeld residuals correlation with “time” S(t).
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TO WATCH OUT FOR:

• Coefficients in Cox regression are positively associated with risk, not 
survival.

– Positive β means large values of x are associated with shorter
survival.

• Without certain types of time-dependent covariates, Cox regression 
does not depend on the actual times, just their order.

– Can add a constant to all times to remove zeros (some packages 
remove observations with time = 0) without changing inference

• For LRT, nested models must be compared based on same subjects. 

– If some values of variables in larger model are missing, these 
subjects must be removed from fit of smaller model.

• Hazards may not always be proportional
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