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Non-individualized setting

I To simplify presentation, we will primarily focus on the setting
that there are two treatments available, namely A = 0 and
A = 1.

I Before beginning our discussion of individualized treatments,
we will start with the simple case where the same treatment
will be given to all individuals in the population of interest.

I Question: Which treatment leads to a better outcome D in a
given population?

I We will assume that smaller values of D are preferred.

I To fix ideas, we will focus on the case that the goal is to
optimize the mean outcome within the population.

I Examples of outcomes D: Survival time, CD4 count, indicator
of no myocardial infarction within 30 days, . . .
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Non-individualized setting: intervening to set A to 1

I Suppose that you were given access to the whole population
of interest and were allowed to intervene on treatment A.

I Say you wanted to learn what the outcome would have been if
everyone were to receive treatment 1.

I A natural intervention to perform in this case would be to
implement treatment A = 1 on the whole population.

I For each individual, you see an outcome D(1), corresponding
to the outcome that they have under treatment 1.

I You could then evaluate the population mean outcome when
everyone receives treatment 1, namely E [D(1)].
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Non-individualized setting: intervening to set A to 0

I Suppose now that, instead of deciding to intervene to set
treatment to 1, you had decided to intervene to set treatment
to 0 for the whole population.

I In this case, for each individual, you would instead observe
their outcome D(0) under treatment 0.

I You could then evaluate the population mean outcome when
everyone receives treatment 0, namely E [D(0)].
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Non-individualized setting: finding the optimal treatment

I Recall that we wish to administer the treatment in the
population with a better (lower) mean outcome.

I If we knew both E [D(1)] and E [D(0)], then

I treatment 1 would be preferable if E [D(1)] < E [D(0)];

I treatment 0 would be preferable if E [D(1)] > E [D(0)];

I the treatments perform equally well1 otherwise.

I Problem: there’s no way to run an experiment in which
everyone in the population receives treatment 1, and to also
run an experiment in which everyone receives treatment 0!

1In terms of mean outcome – there may be other considerations, such as
cost, that make one treatment preferable to the other.
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Non-individualized setting: a realizable experiment

I There is already a well known solution to this problem from
the clinical trials literature: run a randomized experiment!

I For example, could randomly assign 60% of the population to
treatment 1 and the remaining 40% to treatment 0.

I For each person, we observe an outcome D.
I For a person who receives treatment 1, D = D(1).∗

I For a person who receives treatment 0, D = D(0).∗

I Note: the outcomes D(1) and D(0) are referred to as
potential outcomes because they are the outcomes that you
would have seen if, possibly contrary to fact, you had
implemented treatment 1 or treatment 0 in the population.

∗ Formally, this is an assumption. This assumption is known as the stable unit

treatment value assumption in causal inference.
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Simple example

Id D(0) D(1)

1 1 0
2 0 0
3 0 0
4 1 1
5 0 1
6 1 0
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Simple example

Id D(0) D(1) A D

1 1 0 1 0
2 0 0 0 0
3 0 0 0 0
4 1 1 1 1
5 0 1 0 0
6 1 0 1 0
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Non-individualized setting: a realizable experiment

I At the end of a trial, we compare the mean outcome among
those who received A = 1 to the mean outcome among those
who received A = 0, that is, we compare E [D|A = 1] to
E [D|A = 0].

I It’s tempting to claim that E [D|A = 1] = E [D(1)], that is,
that the mean outcome among those who received treatment
1 is the same as the mean outcome that would have been
observed if everyone had received treatment 1 (and similarly
for treatment 0).

I How can we justify that E [D|A = a] = E [D(a)] for each
treatment a? This can be shown by combining the following
two observations:

1. If an individual received treatment a, then D = D(a). So,
E [D|A = a] = E [D(a)|A = a].

2. Treatment assignment is random and, in particular,
independent of D(a). Therefore, E [D(a)|A = a] = E [D(a)].
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Treatment decision rules
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Treatment decision rules

I Suppose that we observe covariates X on all individuals taking
values in X .

I The goal will be to make a treatment decision based on these
observed covariates.

I Formally, a treatment decision rule is a function
d : X → {0, 1}.

I Reasonable to expect that the best rules will depend on
characteristics (variables , covariates ), i.e., X , that exhibit a
qualitative interaction with treatment.
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Simple example
A decision rule example:

12 E. B. LABER AND Y.Q. ZHAO

The data we use in this analysis comprises 215 subjects randomized to nefazodone, 212 ran-380

domized to cognitive behavioral therapy, and 220 randomized to both. The primary outcome
for the study was the Hamilton Rating Scale for Depression, which we use as our response. To
match our development which assumes higher values are better, we subtract this score from 50.
We consider 22 potential covariates for tailoring treatment, listed in the Supplementary Material.
Figure 3 shows the decision rule estimated by minimum impurity decision assignment. The esti-385

mated decision rule assigns nefazodone and cognitive behavioral therapy to patients with a high
mood disturbance, high sleep disturbance, or high baseline depression score. Thus, the estimated
decision rule recommends intensive treatment, nefazodone and cognitive behavioral therapy, to
patients presenting with more severe symptoms.

The marginal mean outcome of the learned decision rule, estimated using ten-fold cross-390

validation, is 38.8, which turns out to be the marginal mean outcome of assigning all subjects
to the more intensive nefazodone and cognitive behavioral therapy. A linear decision rule fit us-
ing ridge regression tuned using generalized cross-validation assigns all subjects to nefazodone
and cognitive behavioral therapy. Thus, the difference between the learned decision rule using
minimum impurity decision assignments and assigning all patients to nefazodone and cognitive395

behavioral therapy is not significant. Hence, for reasons of cost and patient burden, one should
prefer the rule learned by minimum impurity decision assignments which assigns the drug alone
to 18% of patients. Assigning all patients to nefazodone has an estimated marginal mean out-
come of only 33.9, suggesting that the minimum impurity decision assignments estimator has
effectively identified individuals in the population who are unlikely to benefit from augmenting400

nefazodone with cognitive behavioral therapy.

MOOD � 22

SLEEPD2 � 5

No

Drug + CBT (36%)

Yes

HAMD � 26

No

Drug + CBT (30%)

Yes

Drug + CBT (16%)

Yes

Drug (18%)

No

Fig. 3. Learned decision rule for nafazodone study.
Patients with high mood disturbance (MOOD), poor
sleep (SLEEPD2), or more severe depression symptoms
(HAMD) are assigned nefazodone and cognitive behav-
ioral therapy (Drug + CBT), others are assigned nefa-

zodone.
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Simple example

I Even simpler example: If MOOD ≥ 22 ⇒ Drug + CBT;
otherwise ⇒ Drug

I Mathematically: The formal rule is

d(MOOD) = I (MOOD > 22)
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Evaluating the performance of a rule in an ideal setting

I Suppose that, as on slide 4, you are given access to the entire
population and wish to evaluate the performance of the
treatment rule d .

I In this case, you can assign each individual treatment d(X ),
where X is their covariate value.
I If d(X ) = 1, then you observe the potential outcome D(1).

I If d(X ) = 0, then you observe the potential outcome D(0).

I To simplify notation, we let D(d) denote the potential
outcome D(d(X )) that you observe.

I Can average observed outcomes resulting from this
hypothetical experiment to evaluate the mean outcome
E [D(d)].
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Evaluating the performance of a rule in a trial setting

I Earlier, we showed that, in the absence of covariates, data
from a trial can be used to estimate E [D|A = a], which is in
turn equal to the causal quantity E [D(a)] of interest.
I The key to showing this was that the treatment A is

randomized, and is therefore independent of D(a).

I We will see that E [D(d)] can be similarly learned from a
randomized trial.
I The key additional observation is that we can write

E [D(d)] =
∑
x

E [D(d)|X = x ]p(x)

I The marginal distribution of covariates (in the trial
population) is easily learned, so the question is whether we
can learn E [D(d)|X = x ].
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Evaluating the performance of a rule in a trial setting

I Learning E [D(d)|X = x ] is a matter of applying the same
arguments from slide 10, but within the stratum of individuals
for whom X = x .

I In particular, we can show that
E [D|A = d(x),X = x ] = E [D(d)|X = x ] as follows:

1. If an individual received treatment d(x), then D = D(d). So,
E [D|A = d(x),X = x ] = E [D(d)|A = d(x),X = x ].

2. Treatment assignment is random and, in particular,
independent of D(d) conditionally on X = x . Therefore,
E [D(d)|A = d(x),X = x ] = E [D(d)|X = x ].
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Important condition for evaluating a rule d

I We have seen that, to evaluate a rule d , we can evaluate
E [D|A = d(x),X = x ] and then average over realizations of
the covariates x .

I This conditional expectation is only well-defined if
P(A = d(x)|X = x) > 0.

I To ensure that all rules d can be evaluated, it suffices to have
positivity:

P(A = 1|X = x) > 0, and

P(A = 0|X = x) > 0.
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Optimal treatment decision rules
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Considerations

I Identify the subset that are good tailoring variables

I Rule d(X ): a function of X

I There are many possible rules d :

D: class of all possible treatment decision rules

I Can we find the optimal treatment decision rule in D?

I Optimal treatment decision rule : If followed by all patients in
the population, would lead to smallest expected outcome
among all rules in D
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Optimal decision rule

I The optimal treatment decision rule d∗ ∈ D minimizes the
expected outcome

d∗ = argmin
d∈D

E{D(d)}

I That is, E{D(d∗)} ≤ E{D(d)} for all d ∈ D

I Also, E{D(d∗)|X = x} ≤ E{D(d)|X = x} for all d ∈ D and
for all patient subgroups defined by x .

I d∗(X ) = I [E{D(1)|X} < E{D(0)|X}].

I From our earlier arguments, we can also write this as:

d∗(X ) = I [E{D|A = 1,X} < E{D|A = 0,X}].
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Example

I X ∼Uniform[−1, 1],A is binary {-1, 1} with probability
1/2,D ∼ N(1− (X − 1/3)2A, 1)

I Consider the rule d(x) = I (x − 1/3 ≥ 0). What is the
expected outcome of this rule?

E{D(d)} = E [E (D|A = 1,X )I (X − 1/3 ≥ 0)

+E (D|A = 0,X )I (X − 1/3 < 0)]

=

∫ 1

1/3

{
1− (x − 1/3)2

2

}
dx +

∫ 1/3

−1

1

2
dx = 73/81

I What is the optimal treatment rule?
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Example

I d∗(x) = 1

I What is the expected outcome of the optimal rule?

E{D(d)} = E [E (D|A = 1,X )I{d(X ) = 1}

=

∫ 1

−1

1− (x − 1/3)2

2
dx = 45/81
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Optimal Rule

I Optimal Rule:

E (D|X ,A = 1) ≤ E (D|X ,A = 0)⇒ d∗(X ) = 1

E (D|X ,A = 1) > E (D|X ,A = 0)⇒ d∗(X ) = 0

I d∗ provides a treatment recommendation to every individual
given their X

I If E (D|X ,A) were known, we could find d∗.

I Problem: E (D|X ,A) is unknown.
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Estimating optimal treatment decision rule
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I Q-learning (Regression modeling)

I Direct optimization

I Super Learning
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Q-learning (Regression modeling)

I If we had an iid sample of data (Xi ,Ai ,Di ), i = 1, . . . , n, we
can posit a regression model

E (D|A,X ) = µ(A,X ;β)

and estimate β̂ using e.g. least squares/logistic regression.

I The estimate of the optimal treatment decision rule is:

d̂n(x) =

{
1, if µ(1, x ; β̂n) ≤ µ(0, x ; β̂n)

0, otherwise.
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Alternatives

I Use flexible models for the outcome.

I Other methods, e.g., modeling contrast
I A more robust method for estimating the optimal treatment

decision rule

I One does not need to know the entire function E (D|A,X ).

I It suffices to only consider the contrast function

∆(X ) = E (D|A = 0,X )− E (D|A = 1,X )

I d∗(x) = I{∆(x) ≥ 0}.
Murphy (JRSSB, 2003); Tian et al (JASA, 2014)
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Contrast function specifies optimal resource-constrained
allocation

I Suppose treatment is beneficial to everyone...

I But resources are limited so can only treat 40% of population

T?T?T?T?T?

Luedtke & van der Laan (Int J Biostat, 2016); vanderWeele et al. (arXiv 1802.09642, 2018)
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Contrast function specifies optimal resource-constrained
allocation

I Suppose treatment is beneficial to everyone...

I But resources are limited so can only treat 40% of population
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Contrast function specifies optimal resource-constrained
allocation
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Contrast function specifies optimal resource-constrained
allocation

I Suppose treatment is beneficial to everyone...

I But resources are limited so can only treat 40% of population

T?T?T?T?T?

Smallest
Treatment E�ect

Largest
Treatment E�ect

Luedtke & van der Laan (Int J Biostat, 2016); vanderWeele et al. (arXiv 1802.09642, 2018)
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Contrast function specifies optimal resource-constrained
allocation

I Suppose treatment is beneficial to everyone...

I But resources are limited so can only treat 40% of population

TTTTT

Smallest
Treatment E�ect

Largest
Treatment E�ect

Luedtke & van der Laan (Int J Biostat, 2016); vanderWeele et al. (arXiv 1802.09642, 2018)
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If our regression model is misspecified, is our rule
reasonable?

Suppose we use the model µ(a, x ; β̂) = β0 + β1X + β2A + β3XA,
so that our rule takes the form

d̂n(x) =

{
1, if µ(0, x ; β̂)− µ(1, x ; β̂) = −β̂2 − β̂3X ≥ 0

0, otherwise.

−0.1

0.0

0.1

0.2

0.3

−2 0 2
X

E[
D
(0
)-D

(1
)|X

]
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If our regression model is misspecified, is our rule
reasonable?

Suppose we use the model µ(a, x ; β̂) = β0 + β1X + β2A + β3XA,
so that our rule takes the form

d̂n(x) =

{
1, if µ(0, x ; β̂)− µ(1, x ; β̂) = −β̂2 − β̂3X ≥ 0

0, otherwise.
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Is there a better linear rule?
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Is there a better linear rule?
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Is there a better linear rule?
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Yes - but how do we learn this rule from the data?

2.42



Estimating optimal treatment decision rule
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I Q-learning (Regression modeling)

I Direct optimization

I Super Learning
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Direct Optimization: Classification Perspective

Intuition: Classification
Given a new observation Xnew, predict the class label d∗,new.

I No direct information on the true class labels, d∗.

I Can we assign the right treatment based on the observed
information?

Patients,
X

Small Outcomes

Large Outcomes

The
same

treatment

The
opposite
treatment

Xnew Similar to X

Xnew Similar to X

1
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Directly Estimating the Optimal Rule

Thought: Minimize a “good ” estimator for E [D(d)]

I π(X ) = P(A = 1|X ) is the propensity score for treatment

I π(X ) known in a randomized study; Can also be estimated
using the data (Ai ,Xi ), i = 1, . . . , n, e.g., logistic regression
π(X ; γ) and estimate γ by γ̂.

I The propensity of receiving treatment consistent with d(X )

P{d(X )|X} =

{
π(X ), if d(X ) = 1

1− π(X ), if d(X ) = 0.
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Direct Optimization: Optimal Restricted Rule
I Optimize the objective within a restricted class of rules, e.g.

I Linear rules

dη(x) =

{
1, if η0 + η1X1 + η2X2 > 0

0, otherwise.

I Binary decision trees of depth at most 3, each decision
parameterized by a linear rule

12 E. B. LABER AND Y.Q. ZHAO

The data we use in this analysis comprises 215 subjects randomized to nefazodone, 212 ran-380

domized to cognitive behavioral therapy, and 220 randomized to both. The primary outcome
for the study was the Hamilton Rating Scale for Depression, which we use as our response. To
match our development which assumes higher values are better, we subtract this score from 50.
We consider 22 potential covariates for tailoring treatment, listed in the Supplementary Material.
Figure 3 shows the decision rule estimated by minimum impurity decision assignment. The esti-385

mated decision rule assigns nefazodone and cognitive behavioral therapy to patients with a high
mood disturbance, high sleep disturbance, or high baseline depression score. Thus, the estimated
decision rule recommends intensive treatment, nefazodone and cognitive behavioral therapy, to
patients presenting with more severe symptoms.

The marginal mean outcome of the learned decision rule, estimated using ten-fold cross-390

validation, is 38.8, which turns out to be the marginal mean outcome of assigning all subjects
to the more intensive nefazodone and cognitive behavioral therapy. A linear decision rule fit us-
ing ridge regression tuned using generalized cross-validation assigns all subjects to nefazodone
and cognitive behavioral therapy. Thus, the difference between the learned decision rule using
minimum impurity decision assignments and assigning all patients to nefazodone and cognitive395

behavioral therapy is not significant. Hence, for reasons of cost and patient burden, one should
prefer the rule learned by minimum impurity decision assignments which assigns the drug alone
to 18% of patients. Assigning all patients to nefazodone has an estimated marginal mean out-
come of only 33.9, suggesting that the minimum impurity decision assignments estimator has
effectively identified individuals in the population who are unlikely to benefit from augmenting400

nefazodone with cognitive behavioral therapy.

MOOD � 22

SLEEPD2 � 5

No

Drug + CBT (36%)

Yes

HAMD � 26

No

Drug + CBT (30%)

Yes

Drug + CBT (16%)

Yes

Drug (18%)

No

Fig. 3. Learned decision rule for nafazodone study.
Patients with high mood disturbance (MOOD), poor
sleep (SLEEPD2), or more severe depression symptoms
(HAMD) are assigned nefazodone and cognitive behav-
ioral therapy (Drug + CBT), others are assigned nefa-

zodone.

Zhang et al. (Biometrics 2012)
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Inverse Probability Weighted Estimator for Mean Outcome
of Rule

Identify estimators for E [D(d)]:

I Using that

E [E{D(d)|A = d(X ),X = x}] = E

[
I{A = d(X )}
P{d(X )|X} D

]
,

we arrive at the inverse probability weighted estimator

IPWE (d) = n−1
n∑

i=1

I{Ai = d(Xi )}Di

P{d(Xi )|X , γ̂}
. (1)

I Consistent for E [D(d)] if π(X ; γ), and hence P{d(Xi )|X , γ̂},
is correctly specified
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Outcome Weighted Learning (OWL)

I Minimize IPWE (d) (1)

I For any rule d , 2d(X )− 1 = sign{f (X )} for some function f .

I Hence, minimize:

n−1
n∑

i=1

−Di

P{d(Xi )|X , γ̂}
I{(2Ai − 1) 6= sign(f (Xi )}.

I Can be treated as recoding A = {−1, 1}
Zhao et al. (JASA 2012)
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Computational challenges: non-convexity and discontinuity
of 0-1 loss

I Solution: replace the indicator that (2Ai − 1) 6= sign(f (Xi )}
by a smoother function φ

-2 -1 0 1 2

0
1

2
3

4

t

0-1
Hinge
Squared hinge
Exponential
Logistic
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Directly estimating the optimal rule is prone to overfitting
Consider the simple case that D is a binary event indicator and
treatment probability is always 1/2 so that we minimize

−1

n

n∑
i=1

Di I{(2Ai − 1) 6= sign(f (Xi ))}

X is a patient who was untreated and event-free or treated and had the event

O is a patient who was treated and event-free or untreated and had the event

Image source: http://mlwiki.org/index.php/Overfitting
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Avoid overfitting by adding penalties

min
f

1

n

n∑
i=1

−Di

P{d(Xi )|X , γ̂}
φ{(2Ai − 1)f (Xi ))}+ λn‖f ‖2. (2)

I ‖f ‖ is some norm for f , and λn controls the severity of the
penalty on the functions.

I A linear decision rule: f (X ) = XTβ + β0, with ‖f ‖ as the
Euclidean norm of β.

I Estimated treatment rule:

d̂n(X ) = sign(f̂n(X )),

where f̂n is the solution to (2).

2.52



More Efficient form of Outcome Weighted Learning

I Residual weighted learning: use residuals (after subtracting
main effects) instead of the original outcomes as the weights.

I Efficient augmentation and relaxation learning: use an
improved estimator of E [D(d)]

I Doubly robust augmented inverse probability weighted
estimator: model both the propensity score and the outcome

I Consistent if either the propensity score or the expected
outcome conditional on treatment and covariates is
consistently estimated

I Outcome weighted learning is a special case.

Zhou et al. (JASA 2017)
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Summary on Direct Optimization Approach

I Direct optimization: conceptual appeal / robustness

I How to implement, e.g. surrogate loss function, form of
penalties for variable selection, depends on the context

I Disadvantage of direct optimization relative to Q-learning:
more difficult to interpret the final output

I Does not give magnitude of treatment effect

I Need to add additional constraints if want to derive
resource-constrained rule

I Rule is a “black box”: does not characterize contributions of
variables to treatment effect or treatment rule
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Estimating optimal treatment decision rule
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I Q-learning (Regression modeling)

I Direct optimization

I Super Learning
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What is Super-Learning?
I Suppose want to estimate the regression E [D|A,X ] “as well

as possible”
I e.g., minimize mean-squared error (MSE)
I MSE performance can be related to the performance of the

estimated optimal treatment rule that treats if and only if
E [D|A = 1,X ] < E [D|A = 0,X ]

I How could we do this?
1. Linear regression

2. Maybe add some interactions

3. Maybe add a Lasso penalty on the coefficients

4. Or some other penalty

5. If X lower dimensional, maybe run kernel regression or nearest
neighbors

6. What about Random Forests?

7. Or neural networks?
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Given all of these options, what should we do?

I One option is to just pick one a priori

I This strategy can never do better than the oracle selector, i.e.
the best choice of any one algorithm

I Unlikely you will perform as well as the oracle selector

Objective 1

Perform as well as the oracle selector.

I You’ve probably seen an algorithm attaining Objective 1
before, though you may not have been aware of its optimality
properties

Objective 2

Outperform the oracle selector.
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Objective 1: Matching the Oracle

I Could use V -fold cross-validation to select the rule minimizing
MSE:

I In what sense?(
CV-MSE of Selector

)
≤ 1.1×

(
CV-MSE of Oracle

)
+ C

log(# Alg)

n

image source: https://sebastianraschka.com
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Objective 1: An Illustration

image source: Polley & van der Laan (2010)
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Objective 2: A Better Oracle

I So far, we’ve argued that we can do as well as the best
candidate in our library

I Can we do better?

In statistics and machine
learning, ensemble meth-
ods use multiple learning
algorithms to obtain better
predictive performance than
could be obtained from any
of the constituent learning
algorithms alone.

– Wikipedia (2018)
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Objective 2: A Better Oracle

I How can we hope to outperform the best candidate?

I Could consider all linear combinations of candidate algorithms:

Ê [D|A,X ] =

# Alg∑
i=1

αi Êi [D|A,X ],

where αi is a real number and Êi [D|A,X ] are candidate
estimates

I Issue with this choice of combination is that it may be
unstable (candidate estimates will be highly correlated)
I To stabilize regression, restrict α to be a convex combination

I General combination approaches called stacking in the
literature

I Weighted sums known as ensemble averaging

I Using convex combination known as super-learning
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Objective 2: A Better Oracle

I In the remainder, we refer to the oracle selector as the selector
that returns the best convex combination of estimators, rather
than the best estimator

I Have the same oracle inequality as before:(
CV-MSE of Selector

)
≤ 1.1×

(
CV-MSE of Oracle

)
+ C

log n

n

I Do at least as well as the best candidate algorithm
I Only exception is if one can a priori correctly specify a

parametric model, in which case perform slightly worse
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Better Oracle: An Illustration

image source: Polley & van der Laan (2010)
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SuperLearner to estimate the contrast function
I Can directly estimate the contrast function

∆(X ) = E [D|A = 0,X ]− E [D|A = 1,X ] using SuperLearner
I Allows us to focus exclusively on estimating how X influences

the treatment effect
I In a linear model, this would correspond to estimating the

interaction term without needing to estimate the main effect
I Can make it much easier to estimate ∆

I The approach involves defining a pseudo-outcome Y :

Y =
1− 2A

P(A|X , γ̂)
D

and regressing this pseudo-outcome against X only (not A)
I A more efficient approach uses pseudo-outcome

1− 2A

P(A|X , γ̂)

(
D − Ê [D|A,X ]

)
+ Ê [D|A = 0,X ]− Ê [D|A = 1,X ],

where Ê [D|A,X ] is an estimate of E [D|A,X ]
Luedtke & van der Laan (Int J Biostat, 2016)
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SuperLearner Summary

I Advantages:

I Can give optimal estimates of E [D|A,X ] by optimally selecting
from a user-specified collection of modeling approaches, which
in turn provides gurantees about the quality of the treatment
rule1

I Estimated magnitude of effect for a stratum X can be
computed

I Also can directly estimate the contrast function or perform
direct optimization using the SuperLearner framework2

I Disadvantage:

I Because SuperLearner allows for very flexible regression
models, the models may be difficult to interpret

1 Qian & Murphy (AoS, 2011)
2 Luedtke & van der Laan (Int J Biostat, 2016)
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I Examples
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Depression Data

I Compare drug therapy (A = 0) with drug + behavioral
therapy (A = 1)

I Five covariates: Age, Gender, HAMABase (pre-treatment
total Hamilton Anxiety Rating Scale score), Sleep (sleep
disturbance score), Mood (mood cognition score)

I Response: 24-item Hamilton Rating Scale for Depression

I Number of patients: 436
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Analyzing Depression Data

I Q-learning: model the depression score using the covariate,
the treatment and their interactions

D ∼ 1 + X + A + XA

I Efficient Augmentation and Relaxation Learning: will model
both the outcome and the propensity score
I Logistic loss: φ(t) = log(1 + e−t)
I Outcome model: D ∼ 1 + X + A + XA
I Propensity model: A ∼ X

2.69



Results

I Q-learning: d̂(X ) = I (−0.83 + 0.01Age − 0.55Gender +
0.06HAMABase + 0.01Sleep − 0.04Mood < 0).

I Efficient Augmentation and Relaxation Learning:
d̂(X ) = I (−0.94 + 0.00Age − 0.33Gender +
0.05HAMABase + 0.02Sleep − 0.01Mood < 0).
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Simulation Example

I X1, . . . ,X5 ∼ Uniform(−1, 1)

I A ∼ {0, 1} w.p. 0.5

I D ∼ 3 + X 2
1 + X 2

2 + (2X1 + X3 − 1)A + N(0, 1)

I The optimal rule: d∗(x) = I (2x1 + x3 < 1)
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Simulation Example

I X1, . . . ,X5 ∼ Uniform(−1, 1)

I A ∼ {0, 1} w.p. 0.5

I D ∼ 3 + X 2
1 + X 2

2 + (2X1 + X3 − 1)A + N(0, 1)

I The optimal rule: d∗(x) = I (2x1 + x3 < 1)
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Simulation Example

set.seed(1111)

n = 300

p = 5

X = matrix(runif(n*p,-1,1),n,p)

A = rbinom(n,1,0.5)

mX = 3 + X[,1]^2 + X[,2]^2

cX = 2*X[,1]+ X[,3] -1

D = mX + A*cX + rnorm(n,1)

## optimal rule

dstar = (cX<0)

> table(dstar)

dstar

FALSE TRUE

85 215
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Simulation Example: Q learning (regression modeling)

library(SuperLearner)

# candidate algorithms: run "listWrappers()" to see more

SL.library = c("SL.glm","SL.glm.interaction","SL.nnet",

"SL.cforest","SL.gam","SL.glmnet")

# SuperLearner calls for E[D|A=0,X] and E[D|A=1,X]

SL.out0 = SuperLearner(D[A==0],data.frame(X)[A==0,],

newX=data.frame(X),SL.library=SL.library,family=gaussian())

SL.out1 = SuperLearner(D[A==1],data.frame(X)[A==1,],

newX=data.frame(X),SL.library=SL.library,family=gaussian())

# Q estimates

Q0 = SL.out0$SL.predict[,1]

Q1 = SL.out1$SL.predict[,1]

# contrast function as estimated by Q-learning

Q.contrast = Q0-Q1

# Q-learning rule

QTrtRec = as.numeric(Q.contrast>0)

QTrtRec

0 1

80 220
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Simulation Example: Directly modeling the contrast

library(SuperLearner)

# candidate algorithms: run "listWrappers()" to see more

SL.library = c("SL.glm","SL.glm.interaction","SL.nnet",

"SL.cforest","SL.gam","SL.glmnet")

# Defining a data frame of X

Xdf = data.frame(X)

PA1givenX = predict(glm(A~.,data=Xdf,family=binomial),type="response")

# Use AIPW pseudo-outcome

pseudoOutcome = (1-2*A)*(D - A*Q1 - (1-A)*Q0)/(A*PA1givenX + (1-A)*PA1givenX) + Q0-Q1

# Run SL. Specifying "family=gaussian()" because outcome is continuous

# and this will to minimize mean-squared error

SL.out = SuperLearner(pseudoOutcome,Xdf,SL.library=SL.library,family=gaussian())

# Contrast function estimates

direct.contrast = SL.out$SL.predict[,1]

# Contrast estimation rule

contrastTrtRec = as.numeric(direct.contrast>0)

table(ContrastTrtRec)

contrastTrtRec

0 1

70 230
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Comparison of contrast function estimates
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● ●Contrast modeling Q−learning

library(ggplot2)

# Comparison of contrast function estimates at the /observed/ X’s

df = data.frame(X=c(-cX,-cX),val=c(Q.contrast,direct.contrast),

method=rep(c("Q-learning","Contrast modeling"),each=n))

ggplot(data=df,aes(x=X,y=val,colour=method)) + theme_bw() +

geom_point() + geom_abline(a=0,b=1) + xlab("True Contrast") +

ylab("Estimated Contrast") +

theme(legend.title=element_blank(),legend.position="bottom")
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Simulation Example: Restricted Rule

I R package: DynTxRegime, methods for Estimating Optimal
Dynamic Treatment Regimes, including single decision setup

I For restricted regime:

## A doubly robust Augmented Inverse Propensity Weighted Estimator (AIPWE) or Inverse

Propensity Weighted Estimator (IPWE) for population mean outcome is optimized over a

restricted class of regimes. Methods are available for both single-decision-point and multiple-

decision-point regimes. This method requires the rgenoud package.

Usage

optimalSeq(..., moPropen, moMain, moCont, data, response, txName, regimes,

fSet = NULL, refit = FALSE, iter = 0, verbose = TRUE)
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Simulation Example: OWL/EARL

I For OWL/EARL:
##Estimation of optimal treatment regime using efficient augmentation and relaxation

learning (EARL). The method is limited to single-decision-point scenarios with binary

treatment options.

## by setting moMain and moCont to NULL, the function is to estimate the optimal

treatment regime using outcome weighted learning (OWL).

Usage

earl(..., moPropen, moMain, moCont, data, response, txName, regime,

iter = 0L, lambdas = 0.5, cvFolds = 0L, surrogate = "hinge",

guess = NULL, verbose = TRUE)

I There is also a function on OWL implementation with more
features (R function: owl). See help for details.
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Simulation Example: Restricted Rule

library(DynTxRegime)

# implementation to estimate the optimal restricted rule

# Data Preparation

data <- data.frame(X, A, D)

colnames(data) <- c("x1", "x2", "x3", "x4", "x5","a","D")

# Define the propensity for treatment model and methods.

moPropen<- buildModelObj(model = ~ x1 + x2 + x3 + x4 + x5,

solver.method = ’glm’,

solver.args = list(’family’=’binomial’),

predict.method = ’predict.glm’,

predict.args = list(type=’response’))

# Create modelObj object for main effect component

moMain <- buildModelObj(model = ~ x1 + x2 + x3 + x4 + x5,

solver.method = ’lm’)

# Create modelObj object for contrast component

moCont <- buildModelObj(model = ~ x1 + x2 + x3 + x4 + x5,

solver.method = ’lm’)
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Simulation Example: Restricted Rule

# treatment regime rules at each decision point.

regimes <- function(a,b,c,d, e, f, data){

as.numeric( a + b*data$x1 + c*data$x2 + d*data$x3 + e*data$x4 + f*data$x5 > 0)

}

# genoud requires some additional information

c1 <- c(-1,-1,-1,-1,-1,-1)

c2 <- c( 1, 1, 1, 1, 1, 1)

Domains <- cbind(c1,c2)

starts <- c(0,0,0,0,0,0)

#!! A LARGER VALUE FOR POP.SIZE IS RECOMMENDED

#!! THIS VALUE WAS CHOSEN TO MINIMIZE RUN TIME OF EXAMPLES

pop.size <- 50
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Simulation Example: Restricted Rule

estAIPWE <- optimalSeq(moPropen = moPropen,

moMain = moMain,

moCont = moCont,

data = data,

response = -data$D,

txName = "a",

regimes = regimes,

iter=0L,pop.size = pop.size, starting.values = starts,

Domains = Domains, solution.tolerance = 0.0001)

> regimeCoef(estAIPWE)

a b c d e f

4.506975e-01 -7.614161e-01 -5.267877e-05 -5.334575e-01 3.900155e-03 -1.398331e-01

AIPWTrtRec<- optTx(estAIPWE)

> table(AIPWTrtRec)

AIPWTrtRec

0 1

70 230
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Simulation Example: EARL

library(DynTxRegime)

# Data Preparation

data <- data.frame(X, A, D)

colnames(data) <- c("x1", "x2", "x3", "x4", "x5","a","D")

# Define the propensity for treatment model and methods.

moPropen<- buildModelObj(model = ~ x1 + x2 + x3 + x4 + x5,

solver.method = ’glm’,

solver.args = list(’family’=’binomial’),

predict.method = ’predict.glm’,

predict.args = list(type=’response’))

# Create modelObj object for main effect component

moMain <- buildModelObj(model = ~ x1 + x2 + x3 + x4 + x5,

solver.method = ’lm’)

# Create modelObj object for contrast component

moCont <- buildModelObj(model = ~ x1 + x2 + x3 + x4 + x5,

solver.method = ’lm’)
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Simulation Example: EARL

earlRes <- earl(moPropen = moPropen, moMain = moMain,

moCont = moCont,

data = data, response = -data$D, txName = "a", surrogate = ’logit’,

regime = ~ x1 + x2 + x3 + x4 + x5, lambdas=2^seq(-5,5,1), cvFolds = 5)

> regimeCoef(earlRes)

[1] 0.39663271 -0.59853084 -0.14985610 -0.34259186 0.00478191 -0.02726041

EARLTrtRec <- optTx(earlRes)$optimalTx

EARLTrtRec <- (EARLTrtRec + 1)/2 ## change coding from (-1,1) to (0,1)

> table(EARLTrtRec)

EARLTrtRec

0 1

64 236
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Simulation Example: Performance Comparison
I Compare predictions to those of optimal rule

8.0%

8.3%

9.7%

8.0%

C
orrect

Incorrect

−2 0 2 4

Contrast Modeling

EARL

Q−Learning

Restricted

Contrast Modeling

EARL

Q−Learning

Restricted

True Contrast

M
et

ho
d

Percentages indicate percent discrepancy with true optimal rule in our data set.

I Can further validate performance on an independent data set.
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Summary

I Active research area.

I Regression modeling: easy to implement; model may be
misspecified.

I Direct optimization: more robust.

I SuperLearner provides a means to learn from the data which
method best estimates the optimal treatment rule for the
given setting
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Extra slides
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Simulation Example: OWL

library(DynTxRegime)

# Data Preparation

data <- data.frame(X, A, D)

colnames(data) <- c("x1", "x2", "x3", "x4", "x5","a","D")

# Define the propensity for treatment model and methods.

moPropen<- buildModelObj(model = ~ x1 + x2 + x3 + x4 + x5,

solver.method = ’glm’,

solver.args = list(’family’=’binomial’),

predict.method = ’predict.glm’,

predict.args = list(type=’response’))
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Simulation Example: OWL

owlRes <- earl(moPropen = moPropen, moMain = NULL, moCont = NULL,

data = data, response = -data$D, txName = "a", surrogate = ’logit’,

regime = ~ x1 + x2 + x3 + x4 + x5, lambdas=2^seq(-5,5,1), cvFolds = 5)

> regimeCoef(owlRes)

[1] 0.42115454 -0.65789664 -0.25178980 -0.33182440 -0.09571889 -0.03276892

OWLTrtRec <- optTx(owlRes)$optimalTx

OWLTrtRec <- (OWLTrtRec + 1)/2 ## change coding from (-1,1) to (0,1)

> table(OWLTrtRec)

OWLTrtRec

0 1

67 233
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