Introduction to the Design and Evaluation of Group Sequential Clinical Trials

Session 3 - Evaluation of Group Sequential Designs

Presented July 26, 2017

Daniel L. Gillen Department of Statistics University of California, Irvine

John M. Kittelson Department of Biostatistics & Informatics University of Colorado Denver SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Statistical basis for stopping criteria

Recall: reasons to monitor trial endpoints

- To maintain the validity of the informed consent for:
 - Subjects currently enrolled in the study.
 - New subjects entering the study.
- To ensure the ethics of randomization.
 - Randomization is only ethical under equipoise.
 - If there is not equipoise, then the trial should stop.
- To identify the best treatment as quickly as possible:
 - For the benefit of all patients (i.e., so that the best treatment becomes standard practice).
 - For the benefit of study participants (i.e., so that participants are not given inferior therapies for any longer than necessary).

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Statistical basis for stopping criteria

Statistical basis for stopping

When do we have enough information to make a decision?

Sepsis trial example:

- Statistical standards for evidence in the fixed-sample trial
- How might we implement those same standards at an interim analysis?

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Statistical basis for stopping criteria

Primary outcome (28-day mortality):

- $Y_{ki} \sim \mathcal{B}(1, \theta_k)$ for *ith* patient in treatment group k = 0, 1
- Within-group summary measure: θ_k
- ▶ Between-group contrast: $\theta = \theta_1 \theta_0$
- Design hypotheses (1-sided superiority test):

Null: $\theta \ge 0$ Alternative: $\theta \le -0.07$

- Sample size: 1700 patients (850 per group) gives:
 - $\beta = 0.907$ for $\theta = -0.07$ if $\theta_0 = 0.3$.

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical

classes

Case Study: Design of Hodgkin's Trial

Scientific/clinical structuring of parameter space

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical

classes

Case Study: Design of Hodgkin's Trial

- E, $F \Rightarrow$ Use new antibody
- $D \Rightarrow$ Is it worthwhile if benefits are unimportant?
- A, B, C \Rightarrow Do not use new antibody

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

- E, $F \Rightarrow$ Use new antibody
- A, B, C, D \Rightarrow Do not use new antibody

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Possible conclusions at interim analysis

- $F \Rightarrow$ Stop?: use new antibody
- D, E \Rightarrow Continue trial
- A, B, C \Rightarrow Stop?: do not use new antibody

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

classes

Group sequential sampling density

Design evaluation criteria Properties of canonical

Case Study: Design of Hodgkin's Trial

Fixed-sample design in RCTdesign

```
Sepsis design from session 2 (but using \theta_+ = -0.07 instead of -0.05):
```

```
Group sequential design for
> SepsisFixed <- seqDesign( prob.model = "proportions", arms = 2,</pre>
                                                                                             sepsis trial
                                                                                              *Statistical basis for
           null.hypothesis = .3, alt.hypothesis = 0.23, alpha = 0.025,
+
                                                                                              stopping criteria
             ratio = c(1., 1.), nbr.analyses = 1, test.type = "less",
+
                                                                                              *Sepsis trial: add interim
                       sample.size=1700, power = "calculate",)
+
                                                                                              analyses
                                                                                              *Sepsis trial: number of
                                                                                              boundaries
> SepsisFixed
                                                                                              *Sepsis trial: early
                                                                                              conservatism
                                                                                              *Sepsis trial: power vs
Call:
                                                                                              maximal sample size
seqDesign(prob.model = "proportions", arms = 2, null.hypothesis = 0.3,
                                                                                             General characteristics
     alt.hypothesis = 0.23, ratio = c(1, 1), nbr.analyses = 1,
                                                                                             group sequential designs
                                                                                              *Boundary structure
     sample.size = 1700, test.type = "less", power = "calculate",
                                                                                              *Boundary scales
     alpha = 0.025)
                                                                                              *Boundary shape
                                                                                              *Four canonical classes
PROBABILITY MODEL and HYPOTHESES:
                                                                                             Design evaluation
    Theta is difference in probabilities (Treatment - Comparison)
                                                                                             Group sequential sampling
   One-sided hypothesis test of a lesser alternative:
                                                                                             density
              Null hypothesis : Theta >= 0.00
                                                              (size
                                                                       = 0.0250)
                                                                                             Design evaluation criteria
                                                                                             Properties of canonical
                                                              (power = 0.9066)
     Alternative hypothesis : Theta <= -0.07
                                                                                             classes
    (Fixed sample test)
                                                                                             Case Study: Design of
                                                                                             Hodgkin's Trial
STOPPING BOUNDARIES: Sample Mean scale
                                                                                             Background
                           Efficacy Futility
                                                                                             Fixed sample design
     Time 1 (N= 1700) -0.0418 -0.0418
                                                                                             Group sequential design
                                                                                             evaluations
```

SISCR

UW - 2017

Design of Group Sequential Trials

Adding interim analyses in RCTdesign

Sepsis trial: adding interim analyses

- RCTdesgn will automatically add interim analyses
- Defaults:
 - Equally-spaced analyses
 - Emerson-Fleming symmetric designs
 - O'Brien-Fleming boundary shape
- > symmOBF.2 <- update(binomFixed, nbr.analyses=2)</pre>
- > symmOBF.3 <- update(binomFixed, nbr.analyses=3)</pre>
- > symmOBF.4 <- update(binomFixed,nbr.analyses=4)</pre>

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

SISCR - GSCT - 3 : 11

Sepsis trial: adding interim analyses

Stopping bounds for symmOBF.2, symmOBF.3, symmOBF.4:

Interim	Stop for	Stop for
Analysis	Efficacy	Futility
symmOBF.2:		
N= 850	-0.0842	0.0000
N=1700	-0.0421	-0.0421
symmOBF.3:		
N= 567	-0.1274	0.0425
N= 850	-0.0637	-0.0212
N=1700	-0.0425	-0.0425
symmOBF.4:		
N= 425	-0.1710	0.0855
N= 567	-0.0855	0.0000
N= 850	-0.0570	-0.0285
N=1700	-0.0427	-0.0427

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Sepsis trial: adding interim analyses

Effect of adding interim analyses

- Power decreases (unless sample size is increased)
- Expected sample size gets smaller

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

classes

Group sequential sampling density

Design evaluation criteria Properties of canonical

Case Study: Design of Hodgkin's Trial

Effect of interim analyses on trial power

Does the number of interim analyses affect trial power?

> seqPlotPower(symmOBF.2,symmOBF.3,symmOBF.4)

Difference in Proportions

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Effect of interim analyses on trial power

Power difference from fixed-sample design

> seqPlotPower(symmOBF.2,symmOBF.3,symmOBF.4,reference=T)

Difference in Proportions

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Effect of interim analyses on sample size

Does the number of interim analyses affect the sample size?

- Number of patients is a random variable summaries:
 - Average sample number (ASN)
 - 75th percentile of sample size distribution
- > seqPlotASN(symmOBF.2,symmOBF.3,symmOBF.4)

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design Group sequential design

evaluations

SISCR - GSCT - 3 : 16

Selecting reasons for early termination

Stop for either efficacy or futility (e.g., symmOBF.4).

Stop only for futility:
> futOnlyOBF.4 <- update(binomFixed,nbr.analyses=4,</pre>

early.stopping="null")

Stop only for efficacy:

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Stopping bounds for

symmOBF.4, futOnlyOBF.3, effOnlyOBF.4:

> seqPlotBoundary(symmOBF.4,futOnlyOBF.4,effOnlyOBF.4)

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Stopping bounds for

symmOBF.4, futOnlyOBF.3, effOnlyOBF.4:

Interim	Stop for	Stop for
Analysis	Efficacy	Futility
symmOBF.4:		
N= 425	-0.1710	0.0855
N= 567	-0.0855	0.0000
N= 850	-0.0570	-0.0285
N=1700	-0.0427	-0.0427
futOnlyOBF.4:		
N= 425	-Inf	0.0883
N= 567	-Inf	0.0019
N= 850	-Inf	-0.0269
N=1700	-0.0413	-0.0413
effOnlyOBF.4:		
N= 425	-0.1728	Inf
N= 567	-0.0864	Inf
N= 850	-0.0576	Inf
N=1700	-0.0432	-0.0432

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Effect of stopping for one or more hypothesis

- Stopping for both null and alternative hypothesis:
 - Symmetric power for futility and efficacy decisions
 - Symmetric ASN for futility and efficacy decisions
- Stopping for futility (null hypothesis):
 - Power for efficacy may decrease
 - ASN reduced for futility, but not for efficacy
- Stopping for efficacy (alternative hypothesis):
 - Power for efficacy may decrease
 - ASN reduced for efficacy, but not for futility

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

classes

Group sequential sampling density

Design evaluation criteria Properties of canonical

Case Study: Design of Hodgkin's Trial

Effect of number of boundaries on trial power

Does the number of boundaries affect trial power?

> seqPlotPower(symmOBF.4,futOnlyOBF.4, effOnlyOBF.4)

Difference in Proportions

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Effect of number of boundaries on trial power

Power difference from fixed-sample design

> seqPlotPower(symmOBF.4,futOnlyOBF.4, effOnlyOBF.4,reference=T)

Difference in Proportions

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Effect of number of boundaries on sample size

Does the number of boundaries affect the sample size?

- Number of patients is a random variable summaries:
 - Average sample number (ASN)
 - 75th percentile of sample size distribution
- > seqPlotASN(symmOBF.4,futOnlyOBF.4, effOnlyOBF.4)

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design

Group sequential design evaluations

SISCR - GSCT - 3 : 23

Difference in Proportions

Selecting degree of early conservatism

- An important design consideration is whether it should be relatively easy or hard to stop at an early interim analysis:
 - O'Brien-Fleming design shows early conservatism: (i.e., relatively difficult to stop at early interim analyses).

The following give identical designs (due to default settings):

```
> symmOBF.4 <- update(binomFixed,nbr.analyses=4)</pre>
```

Pocock design is not conservative in early decisions. (i.e., relatively easy to stop at early interim analyses).

> symmPOC.4 <- update(binomFixed,nbr.analyses=4, P=c(0.5,0.5))

Degree of conservatism does not have to be symmetric.

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

```
*Sepsis trial: early conservatism
```

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Stopping bounds for

symmOBF.4, symmPOC.4, asym.4:

> seqPlotBoundary(symmOBF.4,symmPOC.4,asym.4)

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Sample Size

Stopping bounds for

symmOBF.4, symmPOC.4,asym.4:

Interim	Stop for	Stop for
Analysis	Efficacy	Futility
symmOBF.4:		
N= 425	-0.1710	0.0855
N= 567	-0.0855	0.0000
N= 850	-0.0570	-0.0285
N=1700	-0.0427	-0.0427
symmPOC.4:		
N= 425	-0.0991	0.0000
N= 567	-0.0701	-0.0290
N= 850	-0.0572	-0.0419
N=1700	-0.0496	-0.0496
asym.4:		
N= 425	-0.1697	0.0473
N= 567	-0.0848	-0.0097
N= 850	-0.0566	-0.0310
N=1700	-0.0424	-0.0424

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

classes

Group sequential sampling density

Design evaluation criteria Properties of canonical

Case Study: Design of Hodgkin's Trial

Effect of early conservatism

- More conservatism (harder to stop at early analyses:
 - Tends to give higher power
 - Tends to give larger ASN
- Less conservatism (easier to stop):
 - Tends to decrease power
 - Tends to reduce ASN
- Asymmetric conservatism:
 - Often need early sensitivity for harm, but conservatism for efficacy

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Effect of early conservatism on trial power

Does the degree of early conservatism affect trial power?

> seqPlotPowerseqPlotPower(symmOBF.4,symmPOC.4,asym.4)

Difference in Proportions

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Effect of early conservatism on trial power

Power difference from fixed-sample design

> seqPlotPower(symmOBF.4,symmPOC.4,asym.4,reference=T)

Difference in Proportions

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Effect of early conservatism on sample size

Does early conservatism affect the sample size?

- Number of patients is a random variable summaries:
 - Average sample number (ASN)
 - 75th percentile of sample size distribution
- > seqPlotASN(symmOBF.4,symmPOC.4,asym.4)

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Boundary shape

- Above designs use N = 1700:
 - Different group sequential designs have different power
- N can be chosen to give equal power
- For example, compare symmOBF.4, symmPOC.4, symmPOCpower.4:
 - > symmPOCpower.4 <- update(symmPOC.4,power=0.8945)</pre>

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

- Group sequential sampling density
- Design evaluation criteria
- Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Stopping bounds for

symmOBF.4, symmPOC.4, symmPOCpower.4:

> seqPlotBoundary(symmOBF.4,symmPOC.4,symmPOCpower.4)

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Power for

symmOBF.4, symmPOC.4, symmPOCpower.4:

> seqPlotPower(symmOBF.4,symmPOC.4,symmPOCpower.4)

Difference in Proportions

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Power difference from fixed-sample design

:

> seqPlotPower(symmOBF.4,symmPOC.4,symmPOCpower.4,reference=T)

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Difference in Proportions

General characteristics of group sequential designs

Specifying interim decision criteria

- Key considerations (illustrated in sepsis example):
 - Boundary structure
 - Boundary scale
 - Number and timing of interim analyses
 - Boundary shape
 - Number of boundaries: reasons for early termination
 - Statistical operating characteristics
 - Design properties (ASN, stopping probabilities)

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Boundary structure

General structure for stopping rules

- Number and timing of analyses
 - N counts the sampling units accrued to the study (with outcome measurements)
 - Up to N analyses of the data to be performed
 - Analyses performed after accruing sample sizes of N₁ < N₂ < · · · N_J
 - (More generally, N measures statistical information)
- Boundaries (decision criteria) at the analyses
 - $a_j \le b_j \le c_j \le d_j$ where the a, b, c and d are boundaries at the *i*-the analysis (when N_j observations)
 - At the final (*J*-th) analysis $a_J = b_J$ and $c_J = d_J$ to guarantee stopping

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial
Boundary structure

General structure for stopping rules

Illustration of general structure:

General form for stopping boundaries

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

General structure: boundary scales

Boundary scales

- Stopping boundaries can be defined on a variety of scales
 - Sum of observations
 - Point estimate of treatment effect
 - Normalized (Z) statistic
 - Fixed-sample P value
 - Error spending function
 - Conditional probability
 - Predictive probability
 - Bayesian posterior probability

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

General structure: boundary scales

Utility of scales when evaluating designs

- Several of the boundary scales have interpretations that are useful in evaluating the operating characteristics of a design
 - Sample mean scale
 - Conditional probability futility scales
 - Predictive probability futility scale
 - Bayesian posterior probability scale
 - (Error spending scale)

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Boundary shape functions

- Π_j measures the proportion of total information accrued at the *j*th analysis
 - Often $\Pi_j = \frac{N_j}{N_J}$
- Boundary shape function f(Π_j) is a monotonic function used to relate the dependence of boundaries at successive analyses on the information accrued to the study at that analysis

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical

classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design Group sequential design

evaluations

General structure of decision boundaries

- Stopping boundaries for the sample mean statistic:
 - $\bullet \ a_j = \theta_a f_a(\Pi_j)$
 - $\flat \ b_j = \theta_b + f_b(\Pi_j)$
 - $c_j = \theta_c f_c(\Pi_j)$
 - $\bullet \ d_j = \theta_d + f_d(\Pi_j)$

where θ_* represents the hypothesis rejected by the corresponding boundary:

$$\hat{\theta}_{j} \leq a_{j} \quad \text{rejects} \quad \theta \geq \theta_{a} \\ \hat{\theta}_{j} \geq b_{j} \quad \text{rejects} \quad \theta \leq \theta_{b} \\ \hat{\theta}_{j} \leq c_{j} \quad \text{rejects} \quad \theta \geq \theta_{c} \\ \hat{\theta}_{j} \geq d_{j} \quad \text{rejects} \quad \theta \leq \theta_{d}$$

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

- Group sequential sampling density
- Design evaluation criteria Properties of canonical

classes

Case Study: Design of Hodgkin's Trial

Boundary shape function (unified family)

Parameterization of boundary shape (unified family):

$$f_*(\Pi_j) = \left[A_* + \Pi_j^{-P_*} (1 - \Pi_j)^{-R_*}
ight] imes G_* \, .$$

- Distinct parameters possible for each boundary
- Parameters A_* , P_* , and R_* are typically specified by trialist
- Critical value G_{*} usually calculated by computer search using sequential sampling density

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

- Group sequential sampling density
- Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Unified design family

- Choice of *P* parameter ($P \ge 0$):
 - Larger values of P make early stopping more difficult (impossible when P infinite)
 - ▶ When *A* = *R* = 0:

$$f_*(\Pi_j) = G_* \Pi_j^{-P_*}$$

- P = 0.5 gives Pocock (1977) type boundary shapes (constant on Z scale)
- P = 1.0 gives O'Brien-Fleming (1979) type boundary shapes (constant on partial sum scale)
- 0.5 < P < 1 corresponds to power family (Δ) in Wang and Tsiatis (1987): P = 1 - Δ
- Reasonable range of values: 0 < P < 2.5</p>
- P = 0 with A = R = 0 possible for some (not all) boundaries, but not particularly useful
- Illustrations to follow...

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

General structure: finite termination constraint

Constraints to assure termination at the *J*th interim analysis and appropriate operating characteristics:

Finite termination constraint:

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical

classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design

General structure: finite termination constraint

Constraints to assure termination at the *J*th interim analysis and appropriate operating characteristics:

We then select G_a, G_b, G_c, G_d in a 4-parameter search to satisfy the following operating characteristics:

$$P[\hat{\theta}_{M} \leq a_{M} | \theta = \theta_{a}] = \beta_{\ell}$$

$$P[\hat{\theta}_{M} \geq b_{M} | \theta = \theta_{b}] = 1 - \alpha_{\ell}$$

$$P[\hat{\theta}_{M} \leq c_{M} | \theta = \theta_{c}] = 1 - \alpha_{u}$$

$$P[\hat{\theta}_{M} \geq d_{M} | \theta = \theta_{d}] = \beta_{u}$$

where:

- M denotes the random time at which the trial stopped
- $\alpha_{\ell}, \beta_{\ell}$ denote the size and power for the lower test
- α_u, β_u denote the size and power for the upper test

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design Group sequential design

evaluations

Stopping rules: Unified family

Example: symmetric tests (Emerson & Fleming (1989)

Symmetric tests are an important class of designs with

Symmetric operating characteristics:

 $\alpha_{\ell} = \alpha_{u} = (1 - \beta_{\ell}) = (1 - \beta_{u})$

 Symmetric boundary shapes (less important, but useful for illustration)

$$f_a(\Pi_j) = f_b(\Pi_j) = f_c(\Pi_j) = f_d(\Pi_j) = f(\Pi_j)$$

* It then follows that

 $G_a = G_b = G_c = G_d = G$

* So that symmetric designs have the form:

$$egin{array}{rcl} a_j&=&-f(\Pi_j)\ b_j&=&- heta_*+f(\Pi_j)\ c_j&=& heta_*-f(\Pi_j)\ d_j&=&f(\Pi_j)\ where\ heta_*=2G \end{array}$$

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical

classes

Case Study: Design of Hodgkin's Trial

Common designs: JK's canonical classes

- There are an infinite number of group sequential designs for any particular trial
- Unified family provides general framework
- There are some natural classes that help to organize the possibilities
 - Why stop early (revisited):
 - * Superiority study
 - Approximate equivalence study
 - * Non-inferiority study
 - * Equivalence (2-sided hypothesis) study
 - Standardized design scale
 - Common boundary forms:
 - * Superiority study
 - * Approximate equivalence study
 - * Non-inferiority study
 - * Equivalence (2-sided hypothesis) study

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design

Reasons for early termination

- Setting (parameterization of the problem)
 - Treatment effect measure: θ
 - Suppose:
 - Larger θ means that active treatment is superior.
 - θ = 0 denotes no difference between active and control treatment.
 - θ ≥ θ₊ denotes clinically important superiority of active treatment.
 - θ ≤ θ₋ denotes clinically important inferiority of active treatment.

[Where $\theta_- < 0 < \theta_+$]

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Reasons for early termination

- Why would you want to stop a study early?
 - Superiority study:
 - For superiority (reject $H_0: \theta \leq 0$)
 - For lack of superiority (reject $H_A : \theta \ge \theta_+$)
 - Approximate equivalence study:
 - For lack of inferiority (reject $H_0: \theta \leq \theta_-$)
 - For lack of superiority (reject $H_A : \theta \ge \theta_+$)
 - Non-inferiority study:
 - For lack of inferiority (reject $H_0: \theta \leq \theta_-$)
 - For inferiority (reject $H_A : \theta \ge 0$)
 - Equivalence (2-sided) study:
 - For superiority (reject $\theta \leq 0$)
 - For inferiority (reject $\theta \ge 0$)
 - For both non-inferiority and non-superiority (reject both $\theta \le \theta_-$ and $\theta \ge \theta_+$)

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Standardized scale

In what follows I present a standardized design. It can be mapped to any specific design.

- Standardization:
 - Without interim stopping, but with sample sizes N₁ < N₂, ..., < N_J):

$$\hat{ heta}_{j} \dot{\sim} \mathcal{N}\left(heta, rac{V}{N_{j}}
ight)$$

where V is the variance (follows from probability model)

Let:

$$\widehat{\delta}_{j} = rac{\widehat{ heta}_{j} - heta_{\emptyset}}{\sqrt{m{V}/m{N}_{j}}}$$

Thus:

$$\hat{\delta}_j \sim \mathcal{N}\left(\delta, \frac{1}{\Pi_j}\right)$$

where
$$\Pi_j = \frac{N_j}{N_J}$$

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical

classes

Case Study: Design of Hodgkin's Trial

Boundary form in standardized scale

In general there are 4 potential boundaries in a group sequential design which I denote by a_j ≤ b_j ≤ c_j ≤ d_j (j = 1, ..., J):

$$\begin{array}{ll} \hat{\delta}_{j} \geq d_{j} & \rightarrow & \text{Reject } \delta \leq \delta_{d} & (\text{usually } \delta_{d} = 0) \\ \hat{\delta}_{j} \leq c_{j} & \rightarrow & \text{Reject } \delta \geq \delta_{c} & (\text{usually } \delta_{c} = \delta_{+}) \\ \hat{\delta}_{j} \geq b_{j} & \rightarrow & \text{Reject } \delta \leq \delta_{b} & (\text{usually } \delta_{b} = \delta_{-}) \\ \hat{\delta}_{j} \leq a_{j} & \rightarrow & \text{Reject } \delta \geq \delta_{a} & (\text{usually } \delta_{a} = 0) \end{array}$$

with $\delta_{-} < 0 < \delta_{+}$ (often $\delta_{-} = -\delta_{+}$).

Set d_J = c_J and a_J = b_J so that the trial has to terminate by analysis J.

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Common design classes Boundary form (number and location)

General form for stopping boundaries

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

- Group sequential sampling density
- Design evaluation criteria Properties of canonical

Case Study: Design of Hodgkin's Trial

Background

classes

- Fixed sample design
- Group sequential design evaluations

Superiority study

Stop for superiority:

$$\hat{\delta}_j \geq d_j \rightarrow \text{ Reject } \delta \leq 0$$

Stop for non-superiority:

$$\hat{\delta}_j \leq a_j \rightarrow \text{ Reject } \delta \geq \delta_+$$

Stop for either superiority or non-superiority:

$$\hat{\delta}_j \ge d_j \quad o \quad \text{Reject } \delta \le 0$$

 $\hat{\delta}_j \le a_j \quad o \quad \text{Reject } \delta \ge \delta_+$

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

- Group sequential sampling density
- Design evaluation criteria Properties of canonical

classes

evaluations

Case Study: Design of Hodgkin's Trial

A superiority design is obtained by an upward shift of the *a*- and *b*-boundaries.

General form for superiority boundaries

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical

classes

Case Study: Design of Hodgkin's Trial

Background

evaluations

Fixed sample design Group sequential design

Superiority study

RCTdesign:

```
> sup.D <- seqDesign(prob.model = "normal", arms = 1,
+ null.hypothesis = 0., alt.hypothesis = 3.92,
+ variance = 1., sample.size = 1, test.type = "greater",
+ nbr.analyses = 5, power = "calculate", alpha = 0.025,
+ epsilon = c(0., 1.), early.stopping = "alternative",
+ display.scale = seqScale(scaleType = "X"))
> sup.A <- update(sup.D, early.stopping="null")
> sup.DA <- update(sup.D, early.stopping="both")</pre>
```

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Boundary form (number and location) Superiority study designs

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

- Background
- Fixed sample design
- Group sequential design evaluations

SISCR - GSCT - 3 : 56

Sample Size

Stop for either decision

Sample Size

0.4

Mean Effect

0.0

0.2

Stop for non-superiority

0.6

0.8

1.0

Sample Size

Non-inferiority study

Stop for non-inferiority:

$$\hat{\delta}_j \geq d_j \rightarrow \text{Reject } \delta \leq \delta_-$$

Stop for inferiority:

$$\hat{\delta}_j \leq a_j \rightarrow \text{ Reject } \delta \geq 0$$

Stop for either inferiority or non-inferiority:

$$egin{array}{lll} \widehat{\delta}_j \geq d_j &
ightarrow & {\sf Reject} \ \delta \leq \delta_- \ \widehat{\delta}_j \leq a_j &
ightarrow & {\sf Reject} \ \delta \geq 0 \end{array}$$

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

- Group sequential sampling density
- Design evaluation criteria
- Properties of canonical classes

Case Study: Design of Hodgkin's Trial

A non-inferiority design is obtained by a downward shift of the *c*- and *d*-boundaries.

General form for non-inferiority boundaries

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical

classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Non-inferiority study

RCTdesign:

- > nonInf.D <- update(sup.D,null.hypothesis=-3.92,</pre>
- + alt.hypothesis=0)
- > nonInf.A <- update(nonInf.D,early.stopping="null")</pre>
- > nonInf.DA <- update(nonInf.D,early.stopping="both")</pre>

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical

classes

Case Study: Design of Hodgkin's Trial

Boundary form (number and location) Non-inferiority study designs

Stop for non-inferiority Mean Effect Mean Effect S 0 9 0.0 0.2 0.6 0.8 1.0 0.4 Sample Size Stop for either decision Mean Effect Mean Effect S 0 0 7 0.0 0.2 0.6 0.8 1.0 0.4

Sample Size

Stop for inferiority

Sample Size

Compare with sup design

Sample Size

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design

Equivalence study

Stop for superiority (of A over B or B over A):

$$\hat{\delta}_j \ge d_j \quad o \quad \text{Reject } \delta \le 0$$

 $\hat{\delta}_j \le a_j \quad o \quad \text{Reject } \delta \ge 0$

Stop for equivalence:

$$b_j \leq \hat{\delta}_j \leq c_j \rightarrow \text{Reject } \delta \leq \delta_- \text{ and } \delta \geq \delta_+$$

Stop for either superiority or equivalence:

 $egin{aligned} & \hat{\delta}_j \geq d_j & o & ext{Reject } \delta \leq 0 \ b_j \leq \hat{\delta}_j \leq c_j & o & ext{Reject } \delta \leq \delta_- ext{ and } \delta \geq \delta_+ \ & \hat{\delta}_j \leq a_j & o & ext{Reject } \delta \geq 0 \end{aligned}$

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical

classes

Case Study: Design of Hodgkin's Trial

(Illustrated earlier).

General form for stopping boundaries

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical

classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design

Equivalence study

RCTdesign:

eq.Both <- update(eq.Alt,early.stopping="both")</pre>

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical

classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design Group sequential design

evaluations

Boundary form (number and location) Equivalence study designs

Stop for superiority/inferiority

Stop for any decision

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Design evaluation

Design evaluation

- Interim analyses are used to address ethical and efficiency considerations
 - Scientific objectives are developed in the fixed-sample design
 - The monitoring plan (sequential design) should not alter the science
 - * Maintain design hypotheses
 - Maintain design operating characteristics (PPV)
- Sequential sampling density

Required to evaluate/maintain statistical properties

- Design characteristics and evaluation
- Examples

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Sampling density for sequentially-sampled statistic

Historic context

- Wald (1947?): Sequential probability ratio test. Continuous monitoring; non-finite sample size.
- Armitage, McPherson, and Rao (1969): Recursive form for a sequentially sampled statistic
- Pocock (1977): Application in clinical trials; small sample consistency (*t*-statistic); decision criteria that are constant on *Z*-scale.
- O'Brien-Fleming (1979): Consistency for χ² statistic; decision criteria that are constant on partial sum scale; (early conservatism).
- Wang and Tsiatis (1987): Group sequential designs for 1-sided versus 2-sided hypothesis tests; parameterization of early conservatism.
- Emerson and Fleming (1989): Symmetric group sequential test designs.
- Kittelson and Emerson (1999): Unified family of group sequential test designs.

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Sampling density for sequentially-sampled statistic

Uses/need for sampling density

- Same applications as sampling density for non-sequential statistic
 - Inference: point, interval estimation, p-value
 - Search for boundaries that satisfy operating characteristics
 - Sample size/power of sequential test
 - Bias-adjustment for sequentially-sampled statistic
- We seek the bivariate sampling density (M, S) where
 - *M* denotes the stopping time $(1 \le M \le J)$, and
 - S = S_M denotes the value of the partial sum statistic at the stopping time
 - This density is determined by:
 - Nature of the outcome: probability model, functional, and contrast
 - Nature of the stopping rules (boundary shape)
 - Number of stopping boundaries
 - Timing of the interim analyses (in information time)

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background Fixed sample design

Sampling density for sequentially-sampled statistic

Group sequential sampling density

• Let S_j and $C_j = S_j^c$ denote, respectively, the stopping and continuation sets at the *j*th interim analysis.

The sampling density for the observation (M = m, S = s) is:

$$p(m, s; heta) = egin{cases} f(m, s; heta) & s
ot\in \mathcal{C}_m \ 0 & else \end{cases}$$

where the (sub)density function $f(j, s; \theta)$ is recursively defined as

$$f(1, s; \theta) = \frac{1}{\sqrt{n_1 V}} \phi\left(\frac{s - n_1 \theta}{\sqrt{n_1 V}}\right)$$

$$f(j, s; \theta) = \int_{\mathcal{C}_{(j-1)}} \frac{1}{\sqrt{n_j V}} \phi\left(\frac{s - u - n_j \theta}{\sqrt{n_j V}}\right) f(j - 1, u; \theta) du,$$

$$j = 2, \dots, m$$

with $\phi(x) = e^{-x^2/2}/\sqrt{2\pi}$ denoting the density for the standard normal distribution.

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Design Evaluation: properties

Design properties

- There is no uniformly most powerful group sequential test; thus,
 - The unified family (RCTdesign) contains the full complement of possibilities
 - General classes (JK canonical classes) help structure the possibilities
 - There are continuua between classes that enables design iterations to begin in one class and move to a more suitable design
 - But, what properties should we be considering as we iterate?

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Design Evaluation: properties

Design properties

- Elements that are established in the fixed-sample design:
 - Endpoint, prob model, functional, contrast
 - Maximal information (sample size, N_J; design alternative hypothesis)
 - Statistical standard for evidence (α level)
- Evaluation of group sequential design:
 - Sample size is a random variable; characteristics of interest:
 - Mean (Average Sample Number ASN)
 - Quantiles (median, 25th, 75th percentiles)
 - power curve
 - Power for fixed N_J
 - N_J for fixed power
 - Stopping probability at each interim analysis
 - Inference at the boundary: What is the statistical inference (point estimate, interval estimate, and p-value) that would be reported if the trial is stopped?

Iterate: modify the stopping rules until an acceptable mix of properties is found.

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Design Evaluation: properties

Design properties

- RCTdesign (Suppose you have two designs: dsgnA, dsgnB):
 - Plot designs:
 - plot(dsgnA, dsgnB, superpose=T)
 - Plot ASN:
 - seqPlotASN(dsgnA, dsgnB)
 - Plot power:
 - seqPlotPower(dsgnA,dsgnB)
 - seqPlotPower(dsgnA, dsgnB,
 - reference=dsgnA)
 - Plot inference:
 - seqPlotInference(dsgnA, dsgnB)
 - Plot Stopping Probabilities
 - seqPlotStopProb(dsgnA)

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Illustration of general design properties

Four classes of designs

One-sided test; One-sided stopping

 (allow stopping for efficacy *or* futility, but not both)

 One-sided test; Two-sided stopping

 (allow stopping for either efficacy or futility)

 Two-sided test; One-sided stopping

 (allow stopping only for the alternative(s))

 Two-sided test; Two-sided stopping

 (allow stopping only for the alternative(s))

 Two-sided test; Two-sided stopping

 (allow stopping for either the null or the alternative)

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design
Illustration of general design properties Four design classes

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

- Group sequential sampling density
- Design evaluation criteria
- Properties of canonical classes

Case Study: Design of Hodgkin's Trial

- Background
- Fixed sample design
- Group sequential design evaluations

Power of one-sided tests

> seqPlotPower(sup.DA, sup.A)

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling

Design evaluation criteria

Properties of canonical

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Power of one-sided tests relative to fixed-sample test

> seqPlotPower(sup.DA, sup.A)

SISCR UW - 2017

Design of Group

ASN for one-sided tests

> seqPlotASN(sup.DA, sup.A)

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Stopping probabilities for one-sided tests

> seqPlotStopProb(sup.DA, sup.A)

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Inference at the boundary for sup.DA

> seqPlotInference(sup.DA)

4

Inference corresponding to efficacy boundary

Sample Size

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Inference at the boundary for sup.A

> seqPlotInference(sup.A)

Sample Size

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Power of two-sided tests relative to fixed-sample test

> seqPlotPower(eq.Both,eq.Alt,reference=T)

Fixed eq.A eq.Both 0.000 0.000 -0.005 -0.005 Relative Power (Upper) Relative Power (Lower) -0.010 -0.010 -0.015 -0.015 -0.020 -0.020 -2 -2 2 2 -4 0 4 -4 0 4 Mean Mean

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

ASN for two-sided tests

> seqPlotASN(eq.Both,eq.Alt)

SISCR **UW - 2017**

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Stopping probabilities for eq.Both

> seqPlotStopProb(eq.Both)

Mean

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Stopping probabilities for ${\tt eq.Alt}$

> seqPlotStopProb(eq.Alt)

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Inference at the boundary for eq.Both

> seqPlotInference(eq.Both)

ference corresponding to efficacy bouence corresponding to upper futility b

rence corresponding to lower futility bnference corresponding to harm boun

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Inference at the boundary for eq.Alt

> seqPlotInference(eq.Alt)

ference corresponding to efficacy bou

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Illustration of general design properties

So what is the general behavior?

- For any given sample size, adding interim analyses reduces power.
- For any given power, adding interim analyses increases the sample size.
- Having fewer interim analyses:
 - Leads to properties (maximal sample size, power, etc) that are closer to those of a fixed sample study.
 - However, ASN may be larger and stopping probabilities lower.
- Having more early conservatism:
 - Leads to properties (maximal sample size, power, etc) that are closer to those of a fixed sample study.
 - However, ASN may be larger and stopping probabilities lower.

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Background

- Hodgkin's lymphoma represents a class of neoplasms that start in lymphatic tissue
- Approximately 7,350 new cases of Hodgkin's are diagnosed in the US each year (nearly equally split between males and females)
- 5-year survival rate among stage IV (most severe) cases is approximately 60-70%

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical

Case Study: Design of Hodgkin's Trial

Background

classes

Background (cont.)

- Common treatments include the use of chemotherapy, radiation therapy, immunotherapy, and possible bone marrow transplantation
- Treatment typically characterized by high rate of initial response followed by relapse
- Hypothesize that experimental monoclonal antibody in addition to standard of care will increase time to relapse among patients remission

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Definition of Treatment

- Administered via IV once a week for 4 weeks
- Patients randomized to receive standard of care plus active treatment or placebo (administered similarly)
- Treatment discontinued in the event of grade 3 or 4 AEs
- Primary analysis based upon intention-to-treat

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical

Case Study: Design of Hodgkin's Trial

Background

classes

Refinement of the primary endpoint

Primary endpoint: Comparison of hazards for event (censored continuous data)

- Duration of followup
 - Wish to compare relapse-free survival over 4 years
 - Patients accrued over 3 years in order to guarantee at least one year of followup for all patients
- Measures of treatment effect (comparison across groups)
 - Hazard ratio (Cox estimate; implicitly weighted over time)
 - No adjustment for covariates
 - Statistical information dictated by number of events (under proportional hazards, statistical information is approximately D/4)

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

- Group sequential sampling density
- Design evaluation criteria Properties of canonical

Case Study: Design of Hodgkin's Trial

Background

classes

Definition of statistical hypotheses

Null hypothesis

- Hazard ratio of 1 (no difference in hazards)
- Estimated baseline survival
 - Median progression-free survival approximately 9 months
 - (needed in this case to estimate variability)

Alternative hypothesis

- One-sided test for decreased hazard
 - Unethical to prove increased mortality relative to comparison group in placebo controlled study (always??)
- 33% decrease in hazard considered clinically meaningful
 - Corresponds to a difference in median survival of 4.4 months assuming exponential survival

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

- Group sequential sampling density
- Design evaluation criteria
- Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Criteria for statistical evidence

- Type I error: Probability of falsely rejecting the null hypothesis Standards:
 - Two-sided hypothesis tests: 0.050
 - One-sided hypothesis test: 0.025
- Power: Probability of correctly rejecting the null hypothesis (1-type II error) Popular choice:
 - 80% power

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

- Group sequential sampling density
- Design evaluation criteria
- Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Determination of sample size

- Sample size chosen to provide desired operating characteristics
 - Type I error : 0.025 when no difference in mortality
 - Power : 0.80 when 33% reduction in hazard
- Expected number of events determined by assuming
 - Exponential survival in placebo group with median survival of 9 months
 - Uniform accrual of patients over 3 years
 - Negligible dropout

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

- Group sequential sampling density
- Design evaluation criteria
- Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Specification of fixed sample design using RCTdesign

Definition of original design

```
PROBABILITY MODEL and HYPOTHESES:
Theta is hazard ratio (Treatment : Comparison)
One-sided hypothesis test of a lesser alternative:
Null hypothesis : Theta >= 1.00 (size = 0.025)
Alternative hypothesis : Theta <= 0.67 (power = 0.800)
(Fixed sample test)
```

STOPPING BOUNDARIES: Sample Mean scale a d Time 1 (N= 195.75) 0.7557 0.7557

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Determination of sample size (cont.)

- Interpretation:
 - In order to desire the required number of patients we found in Session 2 that we would need to accrue:
 - N=76 patients per year for 3 years if the null hypothesis were true (Total of 228 patients)
 - N=81 patients per year for 3 years if the alternative hypothesis were true (Total of 243 patients)

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Re-designing the study

- Sponsor felt that attaining 75-80 patients per year would be unrealistic
- Wished to consider design operating characteristics assuming approximately uniform accrual of 50 patients per year while maintaining the same accrual time and follow up
- Problem: Need to determine the expected number of events if 50 subjects were accrued per year
- Solution: Solve backwards using the nEvents argument in seqPHSubjects(), substituting various numbers of events (see Session 2)

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical

Case Study: Design of Hodgkin's Trial

Background

classes

Fixed sample design

Re-designing the study

After a (manual) iterative search, we found that if roughly 50 patients are accrued yearly (under the alternative), 121 events would be expected

	accrualTime	followupTime	rate	hazardRatio	controlMedian	nSubjects	De
1	3	1	46.584	1.00	0.75	139.75	Gr
2	3	1	49.757	0.67	0.75	149.27	de

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density Design evaluation criteria Properties of canonical

Case Study: Design of Hodgkin's Trial

Background

classes

Fixed sample design

Re-designing the study

Use the update() function in RCTdesign to update to the new sample size and compare operating characteristics

```
> survFixed.121 <- update( survFixed, sample.size=121,</pre>
                           power="calculate" )
> survFixed.121
Call:
seqDesign(prob.model = "hazard", arms = 2, null.hypothesis = 1,
    alt.hypothesis = 0.67, ratio = c(1, 1), nbr.analyses = 1,
    sample.size = 121, test.type = "less", power = "calculate",
    alpha = 0.025)
PROBABILITY MODEL and HYPOTHESES:
   Theta is hazard ratio (Treatment : Comparison)
   One-sided hypothesis test of a lesser alternative:
           Null hypothesis : Theta >= 1.00
                                               (size = 0.0250)
    Alternative hypothesis : Theta <= 0.67 (power = 0.5959)
   (Fixed sample test)
STOPPING BOUNDARIES: Sample Mean scale
                         а
                                d
    Time 1 (N= 121) 0.7002 0.7002
```

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Hazard Ratio

SISCR - GSCT - 3 : 99

Statistical power using RCTdesign

- Often more useful to compare differences between power curves
- Use the reference argument in seqPlotPower()

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

- Group sequential sampling density
- Design evaluation criteria
- Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Candidate group sequential designs

- Principles in guiding initial choice of stopping rule
 - Early conservatism
 - Long-term benefit of high importance
 - Early stopping precludes the observation of long-term safety data
 - Ability to stop early for futility
 - Safety concerns
 - Logistical considerations (monetary)
 - Number and timing of interim analyses
 - Trade-off between power and sample size
 - Determined by information accrual (events) but ultimately scheduled on calendar time

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Candidate group sequential designs

- SymmOBF.2, SymmOBF.3, SymmOBF.4
 - One-sided symmetric stopping rules with O'Brien-Fleming boundary relationships having 2, 3, and 4 equally spaced analyses, respectively, and a max sample size of 196 events

SymmOBF.Power

 One-sided symmetric stopping rule with O'Brien-Fleming boundary having 4 equally spaced analyses, and 80% under the alternative hypothesis (HR=0.67)

Futility.5, Futility.8, Futility.9

One-sided stopping rules from the unified family [5] with a total of 4 equally spaced analyses, with a maximal sample size of 196 events, and having O'Brien-Fleming lower (efficacy) boundary relationships and upper (futility) boundary relationships corresponding to boundary shape parameters P = 0.5, 0.8, and 0.9, respectively. P = 0.5 corresponds to Pocock boundary shape functions, and P = 1.0 corresponds to O'Brien-Fleming boundary relationships

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Candidate group sequential designs

Eff11.Fut8, Eff11.Fut9

One-sided stopping rules from the unified family with a total of 4 equally spaced analyses, with a maximal sample size of 196 events, and having lower (efficacy) boundary relationships corresponding to boundary shape parameter P = 1.1 and upper (futility) boundary relationships corresponding to boundary shape parameters P = 0.8, and 0.9, respectively. P = 0.5 corresponds to Pocock boundary shape functions, and P = 1.0 corresponds to O'Brien-Fleming boundary relationships

Fixed.Power

A fixed sample study which provides the same power to detect the alternative (HR=0.67) as the Futility.8 trial design

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical

classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Candidate group sequential designs

Specification of candidate designs using update()

```
> Fixed <- survFixed
>
> SymmOBF.2 <- update( Fixed, nbr.analyses=2, P=c(1,1),</pre>
                           sample.size=196, power="calculate" )
> SymmOBF.3 <- update( SymmOBF.2, nbr.analyses = 3, P=c(1,1) )</pre>
> SymmOBF.4 <- update( SymmOBF.2, nbr.analyses = 4, P=c(1,1) )</pre>
> SymmOBF.Power <- update( SymmOBF.4, power = 0.80 )</pre>
>
> Futility.5 <- update( SymmOBF.4, P=c(1,.5) )</pre>
> Futility.8 <- update( SymmOBF.4, P=c(1,.8) )</pre>
> Futility.9 <- update( SymmOBF.4, P=c(1,.9) )</pre>
>
> Eff11.Fut8 <- update( SymmOBF.4, P=c(1.1,.8) )</pre>
> Eff11.Fut9 <- update( SymmOBF.4, P=c(1.1,.9) )</pre>
>
> Fixed.Power <- update( SymmOBF.2, nbr.analyses=1, power=0.7767 )</pre>
```

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Candidate group sequential designs

```
Stopping boundaries for SymmOBF.4
```

```
> SymmOBF.4
Call:
seqDesign(prob.model = "hazard", arms = 2, null.hypothesis = 1,
    alt.hypothesis = 0.67, ratio = c(1, 1), nbr.analyses = 4,
    sample.size = 196, test.type = "less", power = "calculate",
    alpha = 0.025, P = c(1, 1))
PROBABILITY MODEL and HYPOTHESES:
   Theta is hazard ratio (Treatment : Comparison)
   One-sided hypothesis test of a lesser alternative:
           Null hypothesis : Theta >= 1.00
                                              (size = 0.0250)
    Alternative hypothesis : Theta <= 0.67
                                              (power = 0.7837)
   (Emerson & Fleming (1989) symmetric test)
STOPPING BOUNDARIES: Sample Mean scale
                         а
                                d
    Time 1 (N= 49) 0.3183 1.7724
    Time 2 (N=
                98) 0.5642 1.0000
    Time 3 (N= 147) 0.6828 0.8263
    Time 4 (N= 196) 0.7511 0.7511
```

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

*Statistical basis for stopping criteria

*Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Boundaries on various design scales

Normalized Z statistic:
$$Z_j = z_j = (\hat{\theta}_j - \theta_0) / se(\hat{\theta}_j)$$

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Boundaries on various design scales

```
Fixed sample P value statistic: P_j = \Phi(z_j)
```

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Boundaries on various design scales

Error spending statistic:

$$egin{aligned} E_{aj} &= rac{1}{lpha_L} \left(\mathsf{Pr}\left[S_j \leq s_j, \, igcap_{k=1}^{j-1} S_k \in C_k \mid heta = heta_0
ight] \ &+ \sum_{\ell=1}^{j-1} \mathsf{Pr}\left[S_\ell \leq a_\ell, \, igcap_{k=1}^{\ell-1} S_k \in C_k \mid heta = heta_0
ight]
ight) \end{aligned}$$

where α_L is the lower type I error of the stopping rule defined by

$$\alpha_L = \sum_{\ell=1}^J \Pr\left[S_\ell \le a_\ell, \bigcap_{k=1}^{\ell-1} S_k \in C_k | \theta = \theta_0\right].$$

Time 1 (N= 49) 0.0012 0.0012 Time 2 (N= 98) 0.0927 0.0927 Time 3 (N= 147) 0.4470 0.4470 Time 4 (N= 196) 1.0000 1.0000

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design
Boundaries on various design scales

Error spending statistic:

$$egin{aligned} E_{aj} &= rac{1}{lpha_L} \left(\mathsf{Pr}\left[S_j \leq s_j, \, igcap_{k=1}^{j-1} S_k \in C_k \mid heta = heta_0
ight] \ &+ \sum_{\ell=1}^{j-1} \mathsf{Pr}\left[S_\ell \leq a_\ell, \, igcap_{k=1}^{\ell-1} S_k \in C_k \mid heta = heta_0
ight]
ight) \end{aligned}$$

where α_L is the lower type I error of the stopping rule defined by

$$\alpha_L = \sum_{\ell=1}^J \Pr\left[S_\ell \le a_\ell, \bigcap_{k=1}^{\ell-1} S_k \in C_k | \theta = \theta_0\right].$$

> seqBoundary(SymmOBF.4, scale="E")*.025
STOPPING BOUNDARIES: Error Spending Function scale

a d Time 1 (N= 49) 0.0000 0.0000 Time 2 (N= 98) 0.0023 0.0023 Time 3 (N= 147) 0.0112 0.0112 Time 4 (N= 196) 0.0250 0.0250

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Boundaries on various design scales

- RCTdesign also has the ability to incorporate prior distributions for treatment effects in order to evaluate:
 - Bayesian posterior probabilities
 - Bayesian predictive probabilities
- More to come later...

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Sample Size

Visual comparison of statistical power for selected designs

Power curves (or differences) can be plotted with seqPlotPower()

SISCR UW - 2017

Design of Group Sequential Trials

- Group sequential design for sepsis trial
- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

- Group sequential sampling density
- Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Group sequential design evaluations

Hazard Ratio

Visual comparison of statistical power for selected designs

As before, power curves (or differences) can be plotted with seqPlotPower()

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Comparison of sample size distributions

Mean and quantiles of the sample size distribution can be plotted with seqPlotASN()

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Stopping probabilities at each analysis for design Eff11.Fut8

Plot stopping probabilities using the seqPlotStopProb() function

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses
- *Sepsis trial: number of boundaries
- *Sepsis trial: early conservatism
- *Sepsis trial: power vs maximal sample size
- General characteristics group sequential designs
- *Boundary structure
- *Boundary scales
- *Boundary shape
- *Four canonical classes

Design evaluation

- Group sequential sampling density
- Design evaluation criteria
- Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Inference at each analysis for design Eff11.Fut8

Plot inference on the boundaries using the seqPlotStopProb() function

Sample Size

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

- *Boundary structure
- *Boundary scales
- *Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design

Tabulation of operating characteristics for design Eff11.Fut8

Computed operating characteristics can be obtained with the seqOC() function

```
> seqOC( Eff11.Fut8, theta=seq(.6,1,by=.2) )
Operating characteristics
Theta ASN Power.lower
    0.6 139.24     0.9354
    0.8 151.43     0.3319
    1.0 114.51     0.0250
```

Stopping Probabilities: Theta Time 1 Time 2 Time 3 Time 4 0.6 0.0049 0.3339 0.4757 0.1855 0.8 0.0286 0.2174 0.3891 0.3649 1.0 0.1308 0.4939 0.2830 0.0923

SISCR UW - 2017

Design of Group Sequential Trials

Group sequential design for sepsis trial

- *Statistical basis for stopping criteria
- *Sepsis trial: add interim analyses

*Sepsis trial: number of boundaries

*Sepsis trial: early conservatism

*Sepsis trial: power vs maximal sample size

General characteristics group sequential designs

*Boundary structure

*Boundary scales

*Boundary shape

*Four canonical classes

Design evaluation

Group sequential sampling density

Design evaluation criteria

Properties of canonical classes

Case Study: Design of Hodgkin's Trial

Background

Fixed sample design