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Introduction

▶ Randomized trials are often designed to collect outcomes at certain
pre-specified times after randomization.

▶ In practice, there can be substantial variability in the times at which
participants are actually assessed (i.e., irregular).

▶ In addition, the timing of assessments may be associated with the outcome
of interest (i.e., informative).
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Asthma Research for the Community (ARC) Study

▶ Randomized trial of 301 low-income participants with uncontrolled asthma.

▶ Control group: usual care plus access to and training in a web-based portal
designed to improve communication with healthcare providers.

▶ Intervention group: home visits by community health workers, in addition to
usual care and portal training.

▶ Primary outcome was Asthma Control score, reflecting symptoms over the
week prior to assessment on a scale from 0 (completely controlled) to 6
(extremely uncontrolled).

▶ Study protocol called for outcome data to be collected at 3, 6, 9, and 12
months after randomization.

▶ Research coordinators were often unable to schedule data collection
appointments until substantially later than these targeted times.
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Asthma Research for the Community Study
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Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Trial

▶ Designed to evaluate the efficacy of treatments for major depressive disorder.

▶ Trial involved four stages, with randomization to an appropriate set of
treatments among participants entering each stage.

▶ Each stage had a target treatment period of 12 weeks, however participants
could exit early or remain longer based on their response to treatment.

▶ Within each stage, clinical visits were scheduled to occur at weeks 0, 2, 4, 6,
9, and 12; extra visits were allowed if clinically indicated.

▶ At each visit, the Quick Inventory of Depressive Symptomology (QIDS), was
scheduled to be administered, both self-reported (QIDS-SR) and clinician
rated (QIDS-CR).
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Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Trial

We focus on:

▶ 661 patients who entered phase 2 and were randomized to Bupriopion,
Sertraline or Venlafaxine;

▶ longitudinal data through day 69 (all patients could stay through this day
before exiting),

▶ change from baseline in the QIDS-SR.
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Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Trial
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Distinction Between Irregular and Missing Data
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Problem

▶ When analyzing trials with irregular assessment times, researchers often focus
on the outcome at the (random) time of assessment in each treatment arm.

▶ However, differences in this endpoint between treatment arms can be driven
by the timing of assessments, rather than by an effect of treatment on
participants’ underlying outcome trajectories.

▶ Basing inference on the means of the observed outcomes can be problematic
(even in trials without missing data).

▶ Examples include trials where the treatment effect changes with time, or
where the times of assessments are different between treatment arms.
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Differences in Distribution of Assessment Times
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Two Studies
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Timing of Assessments Related to Outcomes
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Fixed Assessment Times

▶ One way to deal with this problem is to target the treatment effect at each of
the (fixed) targeted assessment times stipulated in the protocol.

▶ What would be the treatment effect had everyone been assessed at these
times?
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Windows

▶ A common approach to handling irregular longitudinal data is to convert
them into repeated measures data subject to missingness.

▶ This might be done by specifying windows around the protocolized
assessment times and, for each participant in each window, selecting the
closest observation to the time point of interest, setting the outcome value to
be missing for those participants with no assessments in a given window.
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Windows

Why not?

▶ The width of the assessment windows is usually arbitrary.

▶ Using at most one observation per window means discarding information.

▶ Two individuals who are assessed only one day apart could be treated
differently, one yielding an observed value and one yielding a missing value.

▶ Creating windows is unnecessary: longitudinal data subject to irregular
assessment times is a generalization of repeated measures subject to
missingness.
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Windows
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Course Outline and Objectives

Part I. Characterizing the Assessment Process (Eleanor)
▶ Quantifying the extent of irregularity
▶ Characterize the assessment process

Part II. Analysis (Eleanor)
▶ IIW-GEE
▶ Multiple outputation
▶ Semi-parametric joint models
▶ Fully parametric joint models
▶ Application to STAR*D

Part III. Sensitivity Analysis (Dan)
▶ Augmented IIW-GEE
▶ Application to ARC
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Part 1. Characterizing the Assessment Process



Learning Objectives

By the end of this module, you should be able to

▶ quantify the extent of irregularity in a dataset

▶ explain why assumed relationships among outcomes, covariates, and
assessment times are important

▶ use DAGs to describe hypothesized relationships

▶ describe models for the assessment intensity process



Extent of Irregularity

More irregularity→ greater scope for bias
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Measures of Irregularity

▶ Abacus plot

▶ Descriptives on number of visits

▶ Descriptives on gaps between visits



Abacus Plot & Descriptives
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▶ R library IrregLong

▶ abacus.plot function

Group No. of visits Mean gap
(SD) in days (SD)

Bupropion 3.8 (1.8) 19 (9)
Sertraline 4.0 (1.7) 19 (9)
Venlafaxine 4.2 (1.8) 20 (10)

▶ Gaps may be helpful when there is
loss to follow-up

▶ No. of visits helpful when protocol
has varying visit frequencies
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Why Does Type of Dependence Matter?

For the same reason that missingness mechanism (MCAR/MAR/MNAR) matters

▶ no bias if assessment times are unrelated to outcomes

▶ potential for bias if assessment times are related to outcomes
▶ choose analysis carefully

▶ Sensitivity analysis will be required for some types of dependence
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Types of Dependence

▶ For parametric inference
▶ ignorability

▶ For non- or semi-parametric inference
▶ ACAR
▶ AAR
▶ ANAR
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Ignorability

Suppose we have an outcome Y (t) which, by time τ , is observed N(τ) times at
time points T1, . . . , TN(τ), where Tj are random variables

Assessment times are ignorable if

▶ f (Y1, . . . , YN(τ), T1, . . . , TN(τ)) = f (Y1, . . . , YN(τ))f (T1, . . . , TN(τ))

▶ i.e., if the joint likelihood for assessment times and outcomes factorizes

If you have ignorabiity, you can fit a mixed model to the outcomes alone
If you have simple stability, then you have ignorability
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Simple Stability via DAGs

Y1 Y2 Y3

Y o
1 Y o

2 Y o
3

A1 A2 A3 . . .

. . .

. . .XU

UY

UA

▶ Y1, Y2, Y3: outcomes at
times 1, 2, 3 . . .

▶ A1, A2, A3: indicators for
whether the outcome was
assessed

▶ Y o
j = Yj if Aj = 1, missing

o/w

▶ X : baseline covariates

▶ U, UA, UY : random effects

▶ white boxes: observed

▶ grey boxes: unobserved

23/114



Simple Stability via DAGs
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▶ Y1, Y2, Y3: outcomes at
times 1, 2, 3 . . .

▶ A1, A2, A3: indicators for
whether the outcome was
assessed

▶ Y o
j = Yj if Aj = 1, missing

o/w

▶ X : baseline covariates

▶ U, UA, UY : random effects

▶ white boxes: observed

▶ grey boxes: unobserved

Simple stability holds if there is no backdoor path from Y o
j to Aj that does not

pass through previously observed data (Ak , Y o
k (k < j) or X).
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Simple Stability via DAGs: Random Effect/Baseline Covariate
Dependence
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▶ Not Ignorable

▶ Need a joint model
for outcomes &
assessment times
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Assessment Mechanisms for Non- and Semi-Parametric Inference

Type of Irregularity Assessment & outcome. . .

Assessment Completely at Random (ACAR) independent Yj ⊥⊥ Aj
Assessment Completely at Random
with baseline covariates (ACAR-X) conditionally independent

given baseline covariates Yj ⊥⊥ Aj | X

Assessment at Random (AAR) conditionally independent
given past observed data Yj ⊥⊥ Aj | Ōj

Assessment Not at Random (ANAR) conditionally dependent
given past observed data Yj ⊥̸⊥ Aj | Ōj

Table: Past observed data at time j includes previous assessment indicators, outcome
assessments, baseline covariates, and, if available, auxiliary time-dependent covariates.
Thus in the absence of time-dependent auxilaries Ōj = {Y o

k , Ak , X for k < j};
when time-dependent auxiliaries are included, Ōj = {Y o

k , Ak , W o
k , X for k < j}
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Assessment Mechanism: Independence
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Assessment Mechanism: Past Outcome Dependence
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Time-dependent Auxiliary Covariates

▶ So far our DAGs have had no time-dependent covariates

▶ Any time-dependent covariates assumed to be auxiliary
▶ outcome model does not condition on them
▶ b/c they are post-randomization covariates

▶ Simple stability extends to time-dependent covariates
▶ no backdoor paths that are not blocked by previously observed outcomes,

previously observed auxiliary covariates, observation times, or baseline
covariates

▶ ACAR, ACAR-X, AAR, ANAR continue to apply with observed auxiliries
incorporated in the histories Ōj
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DAGs with Auxiliary Covariates: Independence
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Past Observed Outcome/Covariate (Auxiliary and Baseline)
Dependence
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A Note on Testing

▶ In general, cannot determine which DAG is appropriate through testing

▶ Some of the assumptions in our DAGs are testable subject to modelling
assumptions

▶ For example, suppose we are willing to assume
▶ DAG C) (past outcome dependence) holds
▶ a proportional intensity model holds

▶ Then we can test whether a simpler DAG (A or B) holds

▶ Even so, remember “absence of evidence is not evidence of absence”
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Modelling the Assessment Intensity

Modelling the assessment process can assist in deciding which DAG(s) are plausible
for our data.

▶ Assessment times form a recurrent event process

▶ Can use an Andersen-Gill model

▶ May need to add time to censoring

To depict dependencies using DAGs we discretized time and had assessment
indicators Aj

For the purposes of modelling we shall work in continuous time and use standard
counting process notation
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Assessment Times as Recurrent Events

Let N(t) denote the number of assessments by time t, i.e.

N(t) =
∞∑
j=1

I(Tj ≤ t)

Standard approaches to recurrent event analyses can then be used.

It is also helpful to define

▶ A(t): indicator of assessment at time t; A(0) = 1

▶ A[t, t + ϵ):indicator of assessment in the time window [t, t + ϵ)
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For an arbitrary set of random variables S(t), let

λ(t;S(t)) = lim
ϵ↓0

P
(
A[t, t + ϵ) = 1 | S(t)

)
ϵ

Suppose we are willing to assume a specific form of AAR:

λ(t; X , Z(t)) = λ0(t) exp(Xγ1 + Z(t)γ2)

where Z(t) is known at all times t and is predictable, i.e. known prior to time t.

▶ If γ2 = 0 then ACAR-X holds

▶ If γ2 = 0 & γ1 = 0 then ACAR holds

We can use the Andersen-Gill estimates of γ1 & γ2 with robust standard errors:

▶ coxph in R

▶ use cluster(id) to get robust standard errors
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Frailty Models

We may also wish to consider random-effect-dependent assessment schemes.

▶ Let UA be a latent (unobserved) variable.

▶ We consider models of the form

λ(t; X , Z(t), UA) = UAλ0(t) exp(Xγ1 + Z(t)γ2),

where for identifiability we assume E(UA | X , Z(s) : s ∈ {0, τ}) = 1.
You can fit frailty models in R:

▶ coxph with frailty(id) assumes Gamma frailties

▶ coxme assumes log-Normal frailties
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Practical Note: Include Time-to-Censoring in your Data

▶ Timeline for a single patient

▶ Filled dots: assessment times

▶ Open dot: censoring time

▶ Likelihood must capture
▶ Assessment times
▶ Periods where there was no assessment

→ Add censoring time to your dataset
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Assessment Process in STAR*D

Begin by assuming assessment intensity

▶ may depend on past observed outcomes & baseline covariates

▶ does not depend on current value of the outcome given the observed history

▶ follows a proportional intensity model

▶ may depend on a multiplicative time-invariant frailty
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Assessment Process in STAR*D: Intensity Model

Covariate Bupropion Sertraline Venlafaxine

Male 1.08 (0.91-1.27) 1.16 (0.99-1.36) 1.02 (0.88-1.20)
Age (years) 1.04 (0.96-1.12) 1.03 (0.96-1.11) 1.07 (0.99-1.15)
Medical/Psychiatric Leave 1.20 (0.92-1.56) 0.86 (0.63-1.17) 1.08 (0.82-1.44)
QIDS-SR at baseline 1.00 (0.98-1.01) 1.01 (0.99-1.02) 0.99 (0.97-1.01)
∆ QIDS-SR 1.01 (0.98-1.03) 1.04 (1.01-1.06) 1.01 (0.98-1.03)
∆ QIDS-SR ×( (days−15)

7 )2/100 0.93 (0.84-1.02) 0.83 (0.76-0.92) 0.89 (0.83-0.96)

Table: Intensity rate ratios (95% Confidence Intervals) for predictors of assessment
intensity in Level 2 of the STAR*D data.
∆ QIDS-SR = QIDS-SR at last visit − QIDS-SR at baseline.

Intensity models fitted with coxph in R
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Assessment Process in STAR*D: Time-varying HRs
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Assessment Process in STAR*D
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Frailty Models in STAR*D

▶ Re-fit the model with a log-Normal frailty

▶ Estimated frailty SDs: 0.009 Bupropion & Sertraline groups; 0.004 for
Venlafaxine

▶ Variance of frailty is tiny

▶ We do not need to worry about random-effect dependent assessment times

Frailty models fitted with coxme in R.
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Assessment Process in STAR*D
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Why Does Assessment Mechanism Matter?

▶ GEEs are valid under ACAR and ACAR-X

▶ Inverse intensity weighted GEEs are valid under AAR

▶ Sensitivity analysis is required for ANAR
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Part 1: Appendix
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DAGs (no auxiliaries): (A) Independence
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DAGs (no auxiliaries): (B) Baseline covariate dependence
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DAGs (no auxiliaries): (C) Past outcome dependence
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DAGs (no auxiliaries): (D) Random effect/baseline covariate
dependence
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DAGs (no auxiliaries): (E) Correlated random effect & baseline
covariate dependence
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DAGs (no auxiliaries): (F) Correlated Random Effects/Baseline
Covariate/Previous Outcome Dependence
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DAGs (no auxiliaries): (G) Unobserved Outcome Dependence

Y1 Y2 Y3

Y o
1 Y o

2 Y o
3

A1 A2 A3 . . .

. . .

. . .XU

UY

UA

54/114



DAGs (with auxiliaries): (A) Independence
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DAGs (with auxiliaries): (B) Baseline Covariate Dependence
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DAGs (with auxiliaries): (C) Past Observed Outcome/Baseline
Covariate Dependence
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DAGs (with auxiliaries): (D) Past Observed Outcome/Covariate
(Auxiliary and Baseline) Dependence
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DAGs (with auxiliaries): (E) Shared Random Effects/Baseline
Covariate Dependence
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DAGs (with auxiliaries): (F) Dependent Random Effects/Baseline
Covariate Dependence
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DAGs (with auxiliaries): (G) Dependent Random Effects/Past
observed outcome/Covariate (Baseline and Auxiliary) Dependence

Y1 W1 Y2 W2 Y3 W3

Y o
1 Y o

2 Y o
3W o

1 W o
2 W o

3

A1 A2 A3

η1 η2 η3

. . .

. . .

. . .

. . .

XU

UYW

UA

61/114



DAGs (with auxiliaries): (H) Unobserved Outcome Dependence
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Part 2. Analysis



Analyses: Learning Objectives

By the end of this module, you should be able to

▶ Articulate the circumstances under which GEEs can be used for irregular
assessment times

▶ Explain how and when IIW-GEEs work

▶ Identify some semi-parametric joint models

▶ Formulate a fully parametric joint model
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Recap: First Determine Your Assessment Process
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Then Choose an Analytic Approach

▶ GEEs

▶ (Generalized) linear mixed models

▶ IIW-GEEs

▶ Multple Outputation

▶ Semi-parametric joint models

▶ Fully parametric joint models

To choose a model, we need to understand what assumptions they make about the
assessment process

65/114



Recap: Why do GEEs Work for Regular Visits?

Suppose we have regular visits & want to fit

µ(X ; β) = E(Yj | X) = s(Xβ)

for some function s.

GEEs are asymptotically unbiased because the pseudo-score function is mean zero.

E
(

∂µ(X ; β)
∂β

V −1(Y − µ(X ; β))
)

= E
(

E(∂µ(X ; β)
∂β

V −1(Y − µ(X ; β)) | X)
)

= E
(

∂µ(X ; β)
∂β

V −1E((Y − µ(X ; β)) | X)
)

= 0,

where Y = (Y1, . . . , YN)′ and V is the assumed working variance matrix.
Is the pseudo-score function still mean zero when assessment times are irregular?
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GEEs for Irregular Visits

When assessment times are irregular, it is helpful to re-express the standard GEE
pseudo-score function, where each subject contributes∑

j

∂µ(X ; β)
∂β

(
Y (Tj)− µ(X ; β)) = 0

in continuous time ∫ τ

0

∂µ(X ; β)
∂β

(
Y (t)− µ(X ; β)

)
dN(t) = 0,

where for simplicity we have used an independent working correlation
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When Can You Use a GEE for Irregular Assessment Times?

Is this pseudo-score function zero mean?

E

(∫ τ

0

∂µ(X ; β)
∂β

(Y (t)− µ(X ; β))dN(t)

)

= E

(∫ τ

0
E
(

∂µ(X ; β)
∂β

(Y (t)− µ(X ; β))dN(t) | X
))

= E

(∫ τ

0

∂µ(X ; β)
∂β

E
(
(Y (t)− µ(X ; β))dN(t) | X

))
= 0 if Y (t) ⊥⊥ dN(t) | X
̸= 0 if Y (t)⊥̸⊥ dN(t) | X(t)

That is, GEEs remain unbiased under ACAR and ACAR-X, but will in general be
biased under AAR or ANAR
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Inverse Intensity Weighted GEEs (IIW-GEEs)

▶ Under AAR, we can weight the GEE equations

▶ Suppose ∃ Z(t) ∈ Ō(t) such that Y (t) ⊥⊥ dN(t) | Z(t)

▶ Weight the integrand in the GEE equations by 1
λ(t;Z(t))

▶ Similar concept to survey weighting

▶ Observations that have low chance of occurring are under-represented in the
data and receive greater weight

▶ Each subject now contributes

∫ τ

0

∂µ(X ; β)
∂β

(Y (t)− µ(X ; β))
λ(t; Z(t)) dN(t)
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Why are IIW-GEEs Asymptotically Unbiased Under AAR?

E

(∫ τ

0

∂µ(X ; β)
∂β

(Y (t)− µ(X ; β))
λ(t; Z(t)) dN(t)

)

= E

(∫ τ

0
E
(

∂µ(X ; β)
∂β

(Y (t)− µ(X(t); β))
λ(t; Z(t)) dN(t) | X , Z(t), Y (t)

))

= E

(∫ τ

0

∂µ(X ; β)
∂β

(Y (t)− µ(X(t); β))
λ(t; Z(t)) E

(
dN(t) | X , Z(t), Y (t)

))
We have conditional independence of dN(t) and Y (t) given Z(t) and so

E(dN(t) | X , Z(t), Y (t)) = λ(t; Z(t))dt
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Why are IIW-GEEs Asymptotically Unbiased under AAR?

E

(∫ τ

0

∂µ(X ; β)
∂β

(Y (t)− µ(X ; β))
λ(t; Z(t)) dN(t)

)

= E

(∫ τ

0
E
(

∂µ(X ; β)
∂β

(Y (t)− µ(X(t); β))
λ(t; Z(t)) dN(t) | X , Z(t), Y (t)

))

= E

(∫ τ

0

∂µ(X ; β)
∂β

(Y (t)− µ(X ; β))
�����
λ(t; Z(t)) (((((((((((

E
(
dN(t) | X , Z(t), Y (t)

))
= 0
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IIW-GEEs: Practical Notes (1)

We can stabilize the weights by any non-stochastic function s(t) and maintain the
zero-mean property

E

(∫ τ

0

∂µ(X ; β)
∂β

(Y (t)− µ(X ; β))
λ(t; Z(t)) s(t)dN(t)

)

▶ Suppose λ(t; Z(t)) = λ0(t) exp(Z(t)γ)

▶ Set s(t) = λ0(t) → weight observation at time t by exp(−Z(t)γ)

▶ No need to estimate the baseline hazard
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IIW-GEEs: Practical Notes (2)

▶ Fit the proportional intensity model (e.g. coxph )

▶ Derive the linear predictors Z(t)γ (e.g. predict(model,type="lp")

▶ Add the weights exp(−Z(t)γ) to your dataset

▶ Fit the weighted GEE (e.g. geeglm(...,weights=...))

▶ Important: You must using working independence if you are using geeglm
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Heteroscedasticity vs. Sampling Weights in GEEs

▶ D is a diagonal matrix of weights with jj entry exp(−Z(Tj)γ)

▶ Let V be the working variance matrix

▶ Heteroscedasticity weights: Replace V with D−1/2VD−1/2

▶ Sampling weights: Replace V with VD−1 ← these are the weights we want

▶ The two are the same when V is the identity matrix.
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Fitting IIW-GEEs in Practice

SAS: PHREG and PROC GENMOD

R:

▶ coxph and geeglm, or

▶ iiwgee in the IrregLong package will
▶ Create lagged versions of time-dependent covariates
▶ Add rows for the interval between the last assessment time and censoring
▶ Fit the IIW-GEE
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Multiple Outputation

▶ Designed to study cases where cluster size is informative
▶ Pups in a litter
▶ Maternal predictors of pup outcomes
▶ Size of the litter is itself predictive of pup outcomes

▶ Proposal: Randomly select one pup from each litter
▶ Equal representation across litters
▶ Can analyse using standard methods

▶ Repeat the random selection so as to use all the data

▶ Take means across outputations
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Multiple Outputation: Adaptation to Irregular Observation

▶ Select observations with probability inversely proportional to visit intensity

▶ Resulting thinned dataset has independent visit and outcome processes

▶ Asymptotically equivalent to inverse-weighted GEE
→ useful when you cannot weight

▶ Implementation: Manually, or using mo in R package IrregLong
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Random Effect-Induced ANAR: Semi-Parametric Joint Models

Method Outcome mean model Intensity model conditional
conditional on random effects on outcomes and random effects

Liang (2009) β0(t) + Xβ + XRUY UAλ0(t) exp(XNγ)
Sun (2012) β0(t; UY ) + Xβ λ0(t; UA) exp(Xγ)
Sun (2011) Uβ0(t) exp(Xβ) Uλ0(t) exp(Xγ)
Song (2012) β0(t) + Xβ + UY UAλ0(t) exp(Xγ)

Table: Comparison of semi-parametric joint modelling approaches: outcome and visit
intensity models. XF , XR , and XN are subvectors of the vector of baseline covariates X
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Semi-Parametric Joint Models

The Liang model:

E(Y (t) | XF , XR , UY ) = β0(t) + XF β + XR(t)UY

λ(t) = UAλ0(t) exp(XNγ),

β0(t) non-parametric intercept
EUY | UA) = θ(UA − 1) for some θ

▶ Can set up zero-mean estimating equations (Liang, 2009)

▶ Implementation: Liang in IrregLong package
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Fully Parametric Joint Models

Random effects capture dependence between outcomes & assessment times

Ryu et al (2007) use

Y (t) = µ0(t) + Xβ + U + ϵ(t)
λ(t; Ō(t), U) = λ0(t) exp(Uα + Xγ1 + Y (TN(t−))γ2)

where ϵi (t) ⊥⊥ ϵ(s)∀t ̸= s & ϵ(t) ∼ N(0, σ2)
U ∼ N(0, σ2

u)
µ0(t) & λ0(t) are parametric functions of time

Gasparini et al (2020) use

Y (t) = µ0(t) + Xβ + U + ϵ(t)
λgap(s; X , U) = λgap

0 (s) exp(Uα + Xγ)
where λgap is the intensity for the gaps Sj = Tj − Tj−1
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When to use which method?
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When to Use Which Method? (No Auxiliaries)
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When to Use Which Method? (No Auxiliaries)
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When to Use Which Method? (With Auxiliaries)
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When to Use Which Method? (With Auxiliaries)
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STAR*D Analysis: Which Model?
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STAR*D Analysis

Method Buproprion Sertraline Venlafaxine S-B V-B V-S

Intercepts
Binned GEE -3.22 (1.47) -3.34 (1.48) -2.10 (1.37) -0.12 (2.08) -1.12 (2.01) -1.24 (2.02)
GEE -0.65 (1.08) -1.82 (0.96) -0.82 (0.89) -1.17 (1.44) -0.17 (1.40) -1.00 (1.31)
IIW-GEE -0.00 (1.13) -0.96 (0.97) -0.23 (0.96) -0.96 (1.49) -0.23 (1.48) -1.19 (1.37)
MO -0.02 (1.11) -0.97 (0.97) -0.24 (1.00) -0.99 (1.48) -0.22 (1.50) -1.21 (1.39)
Mixed model -1.07 (0.85) -1.65 (0.83) -0.13 (0.86) -0.58 (1.19) -0.94 (1.21) -1.53 (1.19)

Slopes for logarithm of days in level
Binned GEE -1.63 (0.43) -1.71 (0.42) -1.39 (0.39) -0.08 (0.61) -0.24 (0.59) -0.32 (0.58)
GEE -0.98 (0.34) -1.37 (0.29) -1.10 (0.27) -0.39 (0.44) -0.12 (0.44) -0.27 (0.39)
IIW-GEE -0.75 (0.36) -1.09 (0.29) -0.78 (0.29) -0.34 (0.46) -0.03 (0.46) -0.31 (0.41)
MO -0.74( 0.36) -1.10 (0.29) -0.78( 0.30) -0.35 (0.46) -0.03 (0.47) -0.32 (0.42)
Mixed model -1.07 (0.26) -1.28 (0.25) -0.84 (0.25) -0.21 (0.36) -0.24 (0.36) -0.45 (0.35)

Table: Estimated regression coefficients (standard error) for change in QIDS-SR.
S-B = Sertraline-Bupropion,
V-B = Venlafaxine-Bupropion,
V-S = Venlafaxine-Sertraline
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Methods for Sensitivity Analysis are Needed
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Part 2 Appendix: Reference Material
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Andersen-Gill Code Example

For your reference: code for fitting the Andersen-Gill model
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Frailty Code Example
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IIW-GEE Code Example
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Part 3. Sensitivity Analysis



Introduction

▶ As with trials with missing data, untestable assumptions are needed.

▶ Assessing how inferences would change under departures from these
assumptions is crucial.

▶ Develop a sensitivity analysis methodology for estimating the
treatment-specific mean outcome at fixed times after randomization.

▶ The methodology is anchored around the assessment at random (AAR)
assumption.
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Notation

▶ τ : end of follow-up,

▶ [a, b]: inferential time period

▶ L := {Y (t) : 0 ≤ t ≤ τ}: outcome process

▶ {N(t) : a ≤ t ≤ τ}: assessment time process
▶ A(t): indicator of assessment at time t; A(0) = 1
▶ A[t, t + ϵ):indicator of assessment in the time window [t, t + ϵ)

▶ O := {N(t) : a ≤ t ≤ τ} ∪ {Y (t) : A(t) = 1, 0 ≤ t ≤ τ}: observed data

▶ Ō(t): observed data up to, but not including, time t; we refer to this as the
observed past.
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Conditional Intensity Functions

Conditional on observed past:

λ(t, Ō(t)) := lim
ϵ→0+

{
P
(
A[t, t + ϵ) = 1|Ō(t)

)
/ϵ
}

Conditional on observed past and L:

ρ(t, Ō(t), L) := lim
ϵ→0+

{
P
(
A[t, t + ϵ) = 1|Ō(t), L

)
/ϵ
}
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Assessment at Random (AAR) Assumption

dF (y(t)|A(t) = 0, Ō(t))︸ ︷︷ ︸
Subgroup 0 Distribution

= dF (y(t)|A(t) = 1, Ō(t))︸ ︷︷ ︸
Subgroup 1 Distribution

▶ Subgroups 0 and 1 share the same observed past up to time t−

▶ Differ with respect to assessment at time t

▶ AAR is not testable
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Assessment Not at Random (ANAR) Assumptions

dF
(
y(t)|A(t) = 0, Ō(t)

)︸ ︷︷ ︸
Subgroup 0 distribution

= dF
(
y(t)|A(t) = 1, Ō(t)

)︸ ︷︷ ︸
Subgroup 1 distribution

exp{αy(t)}
E [exp{αY (t)}|A(t) = 1, Ō(t)]︸ ︷︷ ︸

tilting factor

▶ α = 0 corresponds to AAR

▶ α governs deviations from AAR; not identifiable

▶ α is varied in a sensitivity analysis

▶ Rotnitzky, Scharfstein, Su, and Robins (2001); Birmingham, Rotnitzky, and
Fitzmaurice (2003); Vansteelandt, Rotnitzky, and Robins (2007) ....
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Class of Assessment Not at Random (ANAR) Assumptions
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Additional Assumptions

ρ(t, Ō(t), L) := lim
ϵ→0+

P
(
A[t, t + ϵ) = 1|Ō(t), L

)
ϵ

= lim
ϵ→0+

P
(
A[t, t + ϵ) = 1|Ō(t), Y (t)

)
ϵ

=: ρ(t, Ō(t), Y (t)).

With this additional assumption, we have:

ρ(t, Y (t), Ō(t)) = λ(t, Ō(t))
E
[

exp{αY (t)}|A(t) = 1, Ō(t)
]

exp{αY (t)} .

ρ(t, Y (t) + 1, Ō(t))
ρ(t, Y (t), Ō(t))

= exp{−α}
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Additional Assumptions

E [Y (t)] = s
(
β′B(t)

)
, a ≤ t ≤ b

▶ B(t) be a specified spline basis with dimension p

▶ β ∈ Rp

▶ s( ) be a specified invertible link function.
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Identification

E [Y (t)] =
∫

w

∫
y(t)

y(t) exp{αy(t)}
E [exp{αY (t)}|A(t) = 1, Ō(t) = w ]

dF (y(t)|A(t) = 1, Ō(t) = w)dF (w).

β =
∫ b

t=a
V −1B(t)s−1(E [Y (t)]

)
dt,

where V :=
∫ b

t=a B(t)B(t)′dt.
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Influence Function

Theorem
Let V (β) :=

∫ b
t=a

{(
∂

∂β
s
(
β′B(t)

)) (
∂

∂β′ s
(
β′B(t)

))}
dt, and let

W (t; β) := V (β)−1 ∂
∂β

s
(
βtB(t)

)
. Then an influence function for β is given by:

φ(O; P) =∫ b

t=a

W (t; β)

{
Y (t) − E

[
Y (t)|Ō(t)

]
ρ(t, Ō(t), Y (t))

}
dN(t)+∫ b

a

W (t; β)
(

E
[
Y (t)|Ō(t)

]
− s(βtB(t))

)
dt.
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Influence Function

Corollary
When s( ) is the identity link, an influence function for β is
φ(O; P) = m(O; P)− β, where m(O; P) :=∫ b

t=a

{
V −1B(t)

(
Y (t)− E

[
Y (t)|Ō(t)

])
ρ(t, Y (t), Ō(t))

}
dN(t)+∫ b

t=a

{
V −1B(t)E

[
Y (t)|Ō(t)

]}
dt

and V :=
∫ b

t=a B(t)B(t)′dt.
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ρ(t, Ō(t), Y (t)) and E
[
Y (t)|Ō(t)

]

ρ(t, Ō(t), Y (t)) =λ(t, Ō(t)) exp{−αY (t)}×
E
[

exp{αY (t)} |A(t) = 1, Ō(t)
]

E
[
Y (t)|Ō(t)

]
=

E
[
Y (t) exp{αY (t)} |A(t) = 1, Ō(t)

]
E
[

exp{αY (t)} |A(t) = 1, Ō(t)
]

.
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Models

▶ λ(t, Ō(t)) (stratified Andersen-Gill model)

▶ dF (y(t)|A(t) = 1, Ō(t))
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Estimation

β̂ = 1
n

n∑
i=1

{∑
tk ∈Si

V −1B(tk)
(
Yi (tk)− Ê

[
Y (tk)|Ō(tk)i

])
ρ̂(tk , Ō(tk)i , Yi (tk))

+

∫ b

t=a
V −1B(t)Ê

[
Y (t)|Ō(t)i

]
dt

}
,

where Si denotes the set of participant i ’s assessment times that occur in the
interval [a, b].
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Asymptotics

▶ We establish conditions for
√

n-asymptotics for β.

▶ Estimators for λ(t, Ō(t)) and dF (y(t)|A(t) = 1, Ō(t)) can converge at
slower than

√
n-rates, but not slower than n1/4.

Under these conditions,

√
n(β̂ − β) = 1√

n

n∑
i=1

φ(Oi ; P) + oP(1)
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Selection of Sensitivity Analysis Parameters

▶ Domain expertise should decide on a range of α values.

▶ Explored in the context of sensitivity analysis for unmeasured confounding in
observational studies.

▶ Cinelli and Hazlett (2020)
▶ “perhaps [the] most fundamental obstacle to the use of sensitivity analysis

is the difficulty in connecting the formal results to the researcher’s
substantive understanding about the object under study"

▶ “bounding procedure we should use depends on which . . . quantities the
investigator prefers and can most soundly reason about in their own
research."
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Selection of Sensitivity Analysis Parameters

▶ Cinelli and Hazlett (2020), Franks et al. (2020), Veitch and Zaveri (2020)
have proposed ways for using the strength of the impact of a key covariate or
group of covariates Xj given the remaining covariates X−j to obtain a bound
on the strength of unmeasured confounders, and hence obtain bounds for the
sensitivity parameters.

▶ This may not adapt well to our setting: the impact of any group of variables
in the observed past on assessment at time t may actually be weaker than
the impact of Y (t) on assessment at time t (after adjusting for the
remaining variables in the observed past).

110/114



Selection of Sensitivity Analysis Parameters

▶ Instead, we query domain experts for extreme values µmin and µmax such
that, in their judgment, a mean outcome E [Y (t)] outside of the bounds
(µmin, µmax ) at any time t would be implausible.

▶ We then treat any α under which E [Y (t)] falls outside of (µmin, µmax ) for
some t as implausible and exclude such values from our sensitivity analysis.
We do this separately for each treatment arm.

▶ This approach is aligned with Cinelli and Hazlett (2020)’s recommendation,
as it is based on the treatment arm-specific mean outcome, a quantity about
which subject matter experts can provide direct guidance.
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Analysis of ARC study
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Analysis of ARC study
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Discussion

▶ Irregularity of assessment times is largely ignored in applied work.

▶ Visit windows are typically created and data are analyzed using missing data
methods.

▶ There is no need to create artificial visit windows.

▶ Methods have been developed for analyzing trials with irregular and
potentially informative assessment times.

▶ Like missing data methods, they rely on untestable assumptions and therefore
sensitivity analysis is important.
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