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What are stochastic interventions?

Consider a simple data structure O “ pW ,A,Y q

Recall the counterfactual definitions Y p1q and Y p0q

Obtained by considering hypothetical worlds where A is set to A “ 1 and A “ 0
with probability one.

We will alternatively consider interventions where A is set to some random variable Aδ

with probability one.
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Examples of useful stochastic interventions

Modified treatment policies (MTP)

We focus MTPs, which are one type of intervention where the post-intervention
exposure is a modification of the actual exposure Aδ “ dpA,W q. Examples:

Let A denote a measure of air quality given by particulate matter PM2.5. One
could be interested in an intervention that would reduce PM2.5 by 10%:

dpA,W q “ p1 ´ δqA,

where δ “ 0.1.

Let A denote self-reported physical activity as measured by weekly minutes. One
could be interested in an intervention that increases physical activity for people for
whom it is feasible:

dpA,W q “

#

A ` δ if A ` δ ă upW q

A if A ` δ ě upW q
,

where upW q is the upper bound of physical activity for someone with covariates W
(age, health status, etc.).
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Examples of useful stochastic interventions

Incremental propensity score interventions (IPSI):

Let ϵ dewnote a draw from Up0, 1q. The MTP is given by

dpA,W q “

#

A if ϵ ă δ

0 otherwise,

where 0 ă δ ă 1 is a user given value.

Note that:
gA,δp1 | wq “ δgAp1 | wq

Note: Kennedy, 2019 proposed interventions where instead δ is an odds ratio.
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Definition of counterfactuals and causal effects

Define the counterfactual variable Y pAδq as the variable that would have been
observed in a hypothetical world where A “ Aδ.

We can contrast the expectation of Y pAδq with the expectation of Y to obtain a
causal effect:

E rY pAδq ´ Y s or E rY pAδqs { E rY s

We know how to estimate EpY q well (using the empirical mean)

In what follows we focus on identifying and estimating E rY pAδqs
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Identification of the mean outcome under a stochastic intervention

We need the usual two assumptions:

Positivity: if gApa | wq “ 0 then gA,δpa | wq “ 0.

Randomization: A K Y paq | W for all a

We have that
E rY pAδqs “ E rQ̄Y pAδ,W qs,

where, as before, Q̄Y pa,wq :“ EpY | A “ a,W “ wq.
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Positivity assumption

Positivity assumption for IPSIs:

Recall that
gA,δp1 | wq “ δgAp1 | wq

gAp1 | wq “ 0 implies gA,δp1 | wq “ 0.

Positivity assumption for MTPs:

Let’s look at one of the examples:

dpA,W q “

#

A ` δ if A ` δ ă upW q

A if A ` δ ě upW q
,

Assume PpA ă upW q | W q “ 1

Then gApa | wq “ 0 implies ga,δpa | wq “ 0
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When are stochastic interventions useful?

To define meaningful effects for non-binary exposures:
In some applications (e.g., physical activity) it may make little sense to work with
counterfactuals that set A “ a

Even if defining Ya is sensible conceptually, estimating EpYaq non-parametrically is hard
for continuous exposures

To define and estimate causal effects in the presence of violations of the positivity
assumption:

IPSIs satisfy positivity by design

MTPs can also be aranged to satisfy positivity by definition (but require some knowledge
about the support of A)
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Identification using reweighting

The idea of inverse probability weighting also applies to estimation of these parameters.

Each individual needs to be reweighted to account for the number of individuals it
would represent in a hypothetical population where the intervention has been
performed

Specifically, define the density ratio

rpA,W q “
gA,δpA | W q

gApA | W q

The reweighting identification formula is given by

E rY pAδqs “ E rrpA,W q ˆ Y s
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Simple estimation procedures

The reweighted identification formula suggests a simple estimation strategy.

First, we construct an estimate of the density ration rpA,W q.

Then, we can compute an IPTW estimator of E rY pAδqs as

ψn,IPTW :“
1
n

n
ÿ

i“1
rnpAi ,Wi qYi .
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Simple estimation procedures

There are at least two possible strategies to estimate the density ratio

rpA,W q “
gA,δpA | W q

gApA | W q

1 Construct estimates of the densities gApA,W q and gA,δpA,W q, and plug them into
the above definition of rpA,W q.

This may not be easy to do with data-adaptive estimators: the machine and statistical
learning literatures have only few methods for conditional density estimation

2 Estimate the density ratio directly by recasting the problem as a classification
problem (Details in Díaz et al. 2020 and in the lab for this chapter)
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Simple estimation procedures

The G-computation formula suggests another natural estimation strategy

E rY pAδqs “ E rQ̄Y pAδ,W qs,

1 STEP 1: Regress Y on A and W ÝÑ Q̄Y ,n

2 STEP 2: Predict under the intervention ÝÑ Q̄Y ,npAδ,W q

3 STEP 3: Average the predictions across the sample

ψn,gcomp :“
1
n

n
ÿ

i“1
Q̄Y ,npAδ,i ,Wi q
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Improved estimation procedures

As before, a hybrid between the G-computation and IPTW estimator can be
constructed, and it enjoys improved properties

The one-step estimator (akin to AIPTW) is given by

ψn,os :“ ψn,gcomp `
1
n

n
ÿ

i“1
rnpAi ,Wi qrY ´ Q̄Y ,npAi ,Wi qs
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One-step estimator in R

The one-step estimator enjoys the following improved properties:

It hits the right target if either r or Q̄Y is estimated well

Valid confidence intervals (even when flexible regression is used) can be
constructed if both r and Q̄Y are estimated well
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Improved estimation procedures

A targeted minimum loss based estimator can be constructed in the following additional
steps

1 Fit a tilting logistic regression model

logit QY pA,W q “ logit QY ,npA,W q ` ε,

by:
Regressing Y with an intercept-only logistic regression model,

where the variable logit QY ,npa, wq is taken as an offset, and

The regression is fit using weights rnpAi , Wi q

2 Computed the updated outcome predictions under the intervention as the
G-computation estimator

Q̃Y ,npAδ,W q “ expit
␣

logit Q̄Y ,npAδ,W q ` εn
(

3 Compute the TMLE as

ψn,tmle :“
1
n

n
ÿ

i“1
Q̃Y ,npAδ,i ,Wi q

16 / 32



Software

These estimators are implemented in several R packages:

lmtp (on CRAN)
Implements cross-fitting for improved properties

Longitudinal data

txshift

tmle3

Examples in the lab for this chapter
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A simulation study illustrating the properties of the TMLE

We simulate data as follows

Y | A “ a,W “ w „ Bernoullipexpitp1 ´ a ` w2qq

A | W “ w „ Normalp1 ´ 0.5 ˆ logp|w |qq, 1qq

W „ Normalp0, 1q

Sample size n “ 500

Simulate m “ 1000 datasets
Run lmtp using a Super Learner. The library contains:

MARS and logistic regression, or

only logistic regression

Look at the bias and coverage of confidence intervals across the m “ 1000 datasets
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A simulation study illustrating the properties of the TMLE
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A simulation study illustrating the properties of the TMLE
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An effect decomposition for stochastic interventions

Assume we want to decompose the total effect

E rY pAδqs ´ E rY s

into:

A direct effect operating through A Ñ Y

An in direct effect operating through A Ñ M Ñ Y
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An effect decomposition for stochastic interventions

As before, we have the following definitions:

Y paq is the counterfactual obtained by setting A “ a

Y pa,mq is the counterfactual obtained by setting A “ a and M “ m

Notice that an intervention setting A equal to Aδ induces two counterfactual variables:

MpAδq

Y pAδq “ Y pAδ,MpAδqq
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An effect decomposition for MTPs

ψpδq “ E rY pAδq ´ Y s

“ E rY pAδ,MpAδqq ´ Y pAδ,Mqs
loooooooooooooooooooomoooooooooooooooooooon

indirect effect

` E rY pAδ,Mq ´ Y pA,Mqs
loooooooooooooooomoooooooooooooooon

direct effect

.

We have discussed estimation of E rY pAδqs “ E rY pAδ,Mδqs

As before, estimation of EpY q “ E rY pA,Mqs is straightforward

In what follows we focus on identification and estimation of E rY pAδ,Mqs

24 / 32



An effect decomposition for MTPs

Identification and estimation methods developed in Díaz and Hejazi, 2020

The medshift R package (see lab for this chapter) provides an implementation of
the relevant estimators
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Identification of the counterfactual mean E rY pAδ, Mqs

We need a modified version of the usual two assumptions:

Positivity:
If gA,δpa | wq ą 0 then gApa | wq ą 0

If gM pm | wq ą 0 then gM pm | a, wq ą 0

Randomization:
Y pa, mq K A | W

Y pa, mq K M | pA, W q

Under these assumptions we have

E rY pAδ,Mqs “ E
“

Q̄Y pM, dpA,W q,W q
‰
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Identification of the counterfactual mean E rY pAδ, Mqs

Identification if the intervention is defined as Aδ “ dpA,W q

E rY pAδ,Mq | M “ m,A “ a,W “ ws “ E rY pdpa,wq,mq | M “ m,A “ a,W “ ws

“ E rY pdpa,wq,mq | M “ m,A “ dpa,wq,W “ ws

“ E rY | M “ m,A “ dpa,wq,W “ ws

“ Q̄Y pm, dpa,wq,wq,

where we have defined

EpY | M “ m,A “ a,W “ wq :“ Q̄Y pm, a,wq

Averaging with respect to the distribution of pM,A,W q yields

E rY pAδ,Mqs “ E
“

Q̄Y pM, dpA,W q,W q
‰
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Identification of the counterfactual mean E rY pAδ, Mqs for MTPs

Let W̃ “ pW ,Mq

The identification formula becomes

E
“

Q̄Y pdpA, W̃ q, W̃ q
‰

,

where
Q̄Y pa, w̃q “ E rY | A “ a, W̃ “ w̃s

This is identical to the formula that we studied in the first part of this chapter

Thus, for purposes of estimation, we can forget about the nature of M as a
mediator and W as a confounder and proceed using the methods already discussed.
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Identification of mediational effects

The indirect effect is thus identified as

E
“

Q̄Y pdpA,W q,W q ´ Q̄Y pM, dpA,W q,W q
‰

The direct effect is identified as

E
“

Q̄Y pM, dpA,W q,W q ´ Q̄Y pM,A,W q
‰
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A note on identification assumptions

Let us revisit the randomization assumption:

Y pa,mq K A | W

Y pa,mq K M | pA,W q

As before, this assumption precludes intermediates confounders Z

However, unlike the cross-world assumption necessary for identification of the NIE/NDE,
this assumption can be satisfied by design if the study randomizes both the mediator
and the treatment.
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Stochastic effect decomposition in the presence of intermediate confounders

Assume a confounder Z of the relation M Ñ Y is affected by A

The above effects are unidentified in thia case

A solution is to use a randomized mediator, as before

Let G denote a random draw distributed as M | pA,W q

Let Gδ denote a random draw distributed as MpAδq | pAδ,W q

Then we can use the following effect decomposition:

E rY pAδ,Gδq ´ Y pA,Gqs “ E rY pAδ,Gδq ´ Y pAδ,Gqs
loooooooooooooooomoooooooooooooooon

indirect effect

` E rY pAδ,Gq ´ Y pA,Gqs
looooooooooooooomooooooooooooooon

direct effect
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