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Controlled direct effects

Recall the definition of controlled direct effects, which compare:

E rY p1,m˚qs = avg. outcome if given A “ 1 and M “ m˚ vs.

E rY p0,m˚qs = avg. outcome if given A “ 0 and M “ m˚.

For example, we could define a controlled direct effect as

CDEpm˚q “ E rY p1,m˚qs ´ E rY p0,m˚qs .

Notice that this effect parameter, depends on a reference level m˚.

Example: If we enforced that all everyone had no antibodies for the flu (say,
m˚ “ 0), what is the difference in flu infection rates comparing vaccination
(A “ 1) vs no vaccination (A “ 0).
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Review: identification of controlled direct effects

We required two randomization assumptions to identify CDEpm˚q.

The first is the typical randomization assumption, for a “ 0, 1, Y pa,m˚q K A | W .

No unmeasured confounders of Y and A.

Enforced by randomizing A (possibly stratified on W ).

The second is the often more dubious assumption that M K Y pa,m˚q | A “ a,W .

No unmeasured confounders of M and Y .

Enforced by randomizing M (possibly stratified on W ).
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Review: identification of controlled direct effects

Depending on the context, the second randomization condition may not be enforceable
by design.

How to randomly assign neutralizing antibody responses to a vaccine?

Under the above assumptions, we can identify controlled direct effects using a
G-computation formula,

CDEpm˚q “ E rEpY | A “ 1,M “ m˚,W q ´ EpY | A “ 0,M “ m˚,W qs
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Time-varying mediator-outcome confounders

So far, our DAG does not contain confounders of the mediator-outcome relationship
that are influenced by past treatment.

In other words, we have been assuming no such variable Z in the DAG below.

ZW A M Y

Fundamental question: Can we still estimate CDE(m˚) when such a Z is present?
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Failure of naive approach

ZA M Y

Y | M “ m,Z “ z,A “ a „ Normalp1 ` m ` 2z, 1q

M | Z “ z,A “ a „ Bernoullipexpitp´1 ` zqq

Z | A “ a „ Normalp1 ` a, 1q

A „ Bernoullip0.5q
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Failure of naive approach

Y | M “ m,Z “ z,A “ a „ Normalp1 ` m ` 2z, 1q

M | Z “ z,A “ a „ Bernoullipexpitp´1 ` zqq

Z | A “ a „ Normalp1 ` a, 1q

A „ Bernoullip0.5q

Using the G-computation formula, we can compute mean counterfactual outcomes
corresponding to different treatment profiles:

ErY p1, 1qs “ ErErY | M “ 1, Z , A “ 1s | A “ 1s “ Er2 ` 2Z | A “ 1s “ 6
ErY p1, 0qs “ ErErY | M “ 0, Z , A “ 1s | A “ 1s “ Er1 ` 2Z | A “ 1s “ 5
ErY p0, 1qs “ ErErY | M “ 1, Z , A “ 0s | A “ 1s “ Er2 ` 2Z | A “ 0s “ 4
ErY p0, 0qs “ ErErY | M “ 0, Z , A “ 0s | A “ 1s “ Er1 ` 2Z | A “ 0s “ 3
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Failure of naive approach

Can controlled direct effects be read off the regression of Y on pM,Z ,Aq?

Controlled direct effects
ErY p1, 1q ´ Y p0, 1qs “ 2 ‰ 0 “ ErY | M “ 1, Z , A “ 1s ´ ErY | M “ 1, Z , A “ 0s

ErY p1, 0q ´ Y p0, 0qs “ 2 ‰ 0 “ ErY | M “ 0, Z , A “ 1s ´ ErY | M “ 0, Z , A “ 0s
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Failure of the method of product of coefficients

Y | M “ m,Z “ z,A “ a „ Normalp1 ` m ` 2z, 1q

M | Z “ z,A “ a „ Normalp´1 ` z, 1q

Z | A “ a „ Normalp1 ` a, 1q

A „ Bernoullip0.5q

Method of product of coefficients:

1 Run a linear regression of Y on all variables

2 Run a linear regression of M on all variables

3 The indirect effect is the product of the coefficient in step 1 associated to M and
the coefficient in step 2 associated to A

Failure:

The product of coefficients is 0

Yet, there is an indirect effect A Ñ Z Ñ M Ñ Y
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Failure of naive approaches to mediation analysis

Why does this happen?

ZA M Y

The regression of Y on pA,Z ,Mq fixes Z : as such, some causal paths between A and Y
are blocked.

This is a case of treatment-confounder feedback, whose presence often invalidates
naive approaches to causal inference (see Chapter 20 of Hernán & Robins, 2020).
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Time-varying mediator-outcome confounders

The standard identification formula

CDEpm˚q “ E rEpY | A “ 1,M “ m˚,W q ´ EpY | A “ 0,M “ m˚,W qs

will not work: M M Y pa,mq | A “ a,W .

Z is a confounder of M and Y !

Simply adjusting for Z does not work either: Z is on the pathway from A to Y

This DAG may look familiar to some of you...

Define L0 “ W1, A0 “ A, Z “ L1, A1 “ M.

L1L0 A0 A1 Y

The CDE(m˚) is exactly the longitudinal ATE defined by
E rY p1,m˚qs ´ E rY p0,m˚qs!
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Time-varying mediator/outcome confounders

The implication is that identification and estimation of CDE(m˚) is exactly the same
as for a specific ATE in the three time-point longitudinal context.

All estimation techniques for causal inference from longitudinal studies immediately
apply!
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Identification of the CDE in the presence of intermediate confounders

Our goal is to contrast the mean outcome under an intervention that assigns
pA,Mq “ pa,m˚q for a P t0, 1u.

From this we can get the contrast E rY p1,m˚qs ´ E rY p0,m˚qs, which is the CDE(m˚).

As before, we require two randomization assumptions to identify CDEpm˚q.

The first is the typical randomization assumption, for a “ 0, 1, Y pa,m˚q K A | W .

No unmeasured confounders of Y and A.

Enforced by randomizing A (possibly stratified on W ).

The second is the assumption that M K Y pa,m˚q | pA “ a,W ,Zq.

No unmeasured confounders of M and Y .

Enforced by randomizing M (possibly stratified on W and Z).
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Identification of the CDE in the presence of intermediate confounders

Our goal is to infer what the mean outcome would be in the target population under an
intervention that sets the treatment and the mediator deterministically.

We must be able to observe the intervention of interest for each different “type” of
individual (as defined by recorded covariates) from this population:

PpA “ a | W “ wq ą 0 for each possible pw , aq and a P t0, 1u;

PpM “ m˚ | W “ w ,A “ a,Z “ zq ą 0 for each possible pw , a, zq;

As before, this is referred to as the positivity condition.
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Identification of the CDE in the presence of intermediate confounders

E
“

Y | M “ m˚,Z ,A “ a,W
‰

“ E
“

Y pa,m˚q | M “ m˚,Z ,A “ a,W
‰

“ E
“

Y pa,m˚q | Z ,A “ a,W
‰

“ mean counterfactual outcome among patients in treatment group A “ a, with
covariate values Z and W

E r E
“

Y | M “ m˚,Z ,A “ a,W
‰

| A “ a,W s

“ E
“

Y pa,m˚q | A “ a,W
‰

“ E
“

Y pa,m˚q | W
‰

“ mean counterfactual outcome among patients with covariate value W

E r E r E
“

Y | M “ m˚,Z ,A “ a,W
‰

| A “ a,W s s

“ E
“

Y pa,m˚q
‰

“ mean counterfactual outcome

16 / 45



Identification of the CDE in the presence of intermediate confounders

The idea of inverse probability weighting naturally suggests a simple identification
formula, as in the case of no intermediate confounders.

Individuals who received the entire regime of interest are not representative of the target
population because of (time-varying) confounding.

What about upweighting their contribution to recover representativeness?

The generalized “propensity scores” are defined as

gApa | wq “ PpA “ a | W “ wq

gMpm˚ | w , a, zq “ PpM “ m˚ | W “ w ,A “ a,Z “ zq

For a patient with variables pW ,Zq “ pw , zq, the composite probability of receiving
intervention of interest is simply given by

ḡpw , zq :“ gApa | wqgMpm˚ | w , a, zq
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Identification of the CDE in the presence of intermediate confounders

If ḡpw , zq is small, a patient with values pw , zq and treatment-mediator profile pa,m‹q

is an unlikely occurrence in the sampling population.

This patient needs to serve as stand-in for the many such patients not seen.

The IPW identification formula is given by

E rY pa,m‹qs “ E
„"

IpA “ a,M “ m˚q

ḡpW ,Zq

*

Y
ȷ

for treatment-mediator profile pa,m˚q for a P t0, 1u.

How does the risk of positivity violations compare to the single time-point setting?
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Identification of the CDE in the presence of intermediate confounders

The equivalence between the IPW and G-computation identification formulas can be
established through repeated uses of the law of total expectation.

E
«#

IpA “ a, M “ m˚
q

ḡpW , Zq

+

Y
ff

“ E
«

E
«#

IpA “ a, M “ m˚
q

ḡpW , Zq

+

Y

ˇ

ˇ

ˇ

ˇ

ˇ

W , A, Z , M
ffff

“ E
«#

IpA “ a, M “ m˚
q

ḡpW , Zq

+

E
”

Y
ˇ

ˇ

ˇ
W , A “ a, Z , M “ m˚

ı

ff

“ E
«#

IpA “ aq

gApa | W q(((((((
gM pm˚

| W , a, Zq

+

E
”

Y
ˇ

ˇ

ˇ
W , A “ a, Z , M “ m˚

ı

(((((((((
E

”

IpM “ m˚
q | W , A, Z

ı

ff

“ E
„" IpA “ aq

gApa | W q

*

E r E
”

Y
ˇ

ˇ

ˇ
W , A “ a, Z , M “ m˚

ı

|A “ a, W s

ȷ

“ E r E r E
”

Y | M “ m˚
, Z , A “ a, W

ı

| A “ a, W s s
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Simple estimation procedures

The IPW identification formula suggests a simple estimation strategy.

First, we may construct estimates gA,n and gM,n of propensity scores gA and gM using
our favorite regression estimator for binary outcomes:

gApa | wq: probability of A “ a given W “ ℓ0;

gMpm˚ | w , a, zq: probability of M “ m˚ given pW ,Zq “ pw , zq and A “ a;

Then, we can compute the corresponding IPW estimator of E rY p1, 1, . . . , 1qs as

ψn,IPW :“
1
n

n
ÿ

i“1

"

IpAi “ a,Mi “ m˚q

gA,npa | Wi qgM,npm˚ | Wi , a,Zi q

*

Yi .
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Illustrating IPW in R

Below we simulate data as described in the previous slides.

Y | M “ m,Z “ z,A “ a „ Normalp1 ` m ` 2z, 1q

M | Z “ z,A “ a „ Bernoullipexpitp´1 ` z ` aqq

Z | A “ a „ Normalp1 ` a, 1q

A „ Bernoullip0.5q

# set a seed for reproducibility
set.seed(212)
n <- 5000
A <- rbinom(n, size = 1, p = 0.5)
Z <- rnorm(n, mean = A + 1, sd = 1)
M <- rbinom(n, size = 1, p = plogis(-1 + Z + A))
Y <- rnorm(n, mean = 1 + M + 2 * Z, 1)
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Illustrating IPW in R

We can see that IPW yields approximately correct answers in each case.

# correct ps model for A
ps0 <- glm(A ~ 1)
g_0 <- predict(ps0, type = "response")
# correct ps model for M
ps1 <- glm(M ~ Z + A, family = binomial())
# estimates of P(M = 1 | A = 1, Z = Zi)
df_A_1 <- data.frame(A = 1, Z = Z)
g_1_A_1 <- predict(ps1, newdata = df_A_1, type = "response")
# estimates of P(M = 1 | A = 0, Z = Zi)
df_A_0 <- data.frame(A = 0, Z = Z)
g_1_A_0 <- predict(ps1, newdata = df_A_0, type = "response")
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Illustrating IPW in R

# IPW estimate of E[Y(1,1)] ~ 6
mean( (A == 1 & M == 1) / (g_0 * g_1_A_1) * Y )

## [1] 5.96643

# IPW estimate of E[Y(1,0)] ~ 5
mean( (A == 1 & M == 0) / (g_0 * (1 - g_1_A_1)) * Y )

## [1] 5.186773

# IPW estimate of E[Y(0,1)] ~ 4
mean( (A == 0 & M == 1) / ((1 - g_0) * g_1_A_0) * Y )

## [1] 4.016724

# IPW estimate of E[Y(0,0)] ~ 3
mean( (A == 0 & M == 0) / ((1 - g_0) * (1 - g_1_A_0)) * Y )

## [1] 3.001915
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Simple estimation procedures

The G-computation formula suggests another natural estimation strategy.

Set m˚ “ 1. The estimand is simply

E r E r E pY | M “ 1,Z ,A “ 1,W q | A “ 1,W s s .

Y M Z A W
0 1 0.7 1 2.1
1 1 -0.2 0 -1.6
1 1 2.0 1 0.3
0 0 6.9 1 1.4
1 0 3.1 0 0.9
0 1 -5.2 1 -3.1
1 0 5.2 1 2.5
0 1 -1.1 1 -0.1
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Simple estimation procedures

The G-computation formula suggests another natural estimation strategy.

Set m˚ “ 1. The estimand is simply

E r E r E pY | M “ 1,Z ,A “ 1,W q | A “ 1,W s s .

Y M Z A W
0 1 0.7 1 2.1
1 1 -0.2 0 -1.6
1 1 2.0 1 0.3
0 0 6.9 1 1.4
1 0 3.1 0 0.9
0 1 -5.2 1 -3.1
1 0 5.2 1 2.5
0 1 -1.1 1 -0.1

STEP 1: Regress Y on Z and W among those with M “ 1, A “ 1. ÝÑ Q̄Y ,n
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Simple estimation procedures

The G-computation formula suggests another natural estimation strategy.

Set m˚ “ 1. The estimand is simply

E r E r E pY | M “ 1,Z ,A “ 1,W q | A “ 1,W s s .

Y M Z A W
0 1 0.7 1 2.1
1 1 -0.2 0 -1.6
1 1 2.0 1 0.3
0 0 6.9 1 1.4
1 0 3.1 0 0.9
0 1 -5.2 1 -3.1
1 0 5.2 1 2.5
0 1 -1.1 1 -0.1

Q̄Y ,npZ ,W q

0.34
0.19
0.26
0.31
0.29
0.15
0.36
0.25

STEP 1: Regress Y on Z and W among those with M “ A “ 1. ÝÑ Q̄Y ,n

Compute Q̄Y ,npZ ,W q for every patient.
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Simple estimation procedures

The G-computation formula suggests another natural estimation strategy.

Set m˚ “ 1. The estimand is simply

E r E r E pY | M “ 1,Z ,A “ 1,W q | A “ 1,W s s .

Y M Z A W
0 1 0.7 1 2.1
1 1 -0.2 0 -1.6
1 1 2.0 1 0.3
0 0 6.9 1 1.4
1 0 3.1 0 0.9
0 1 -5.2 1 -3.1
1 0 5.2 1 2.5
0 1 -1.1 1 -0.1

Q̄Y ,npZ ,W q

0.34
0.19
0.26
0.31
0.29
0.15
0.36
0.25

STEP 2: Regress Q̄Y ,npZ ,W q on W among those with A “ 1. ÝÑ Q̄Z ,n
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Simple estimation procedures

The G-computation formula suggests another natural estimation strategy.

Set m˚ “ 1. The estimand is simply

E r E r E pY | M “ 1,Z ,A “ 1,W q | A “ 1,W s s .

Y M Z A W
0 1 0.7 1 2.1
1 1 -0.2 0 -1.6
1 1 2.0 1 0.3
0 0 6.9 1 1.4
1 0 3.1 0 0.9
0 1 -5.2 1 -3.1
1 0 5.2 1 2.5
0 1 -1.1 1 -0.1

Q̄Y ,npZ ,W q

0.34
0.19
0.26
0.31
0.29
0.15
0.36
0.25

Q̄Z ,npW q

0.40
0.22
0.20
0.36
0.21
0.34
0.20
0.29

STEP 2: Regress Q̄Y ,npZ ,W q on W among those with A “ 1. ÝÑ Q̄Z ,n

Compute Q̄Z ,npW q for every patient.
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Simple estimation procedures

The G-computation formula suggests another natural estimation strategy.

Set m˚ “ 1. The estimand is simply

E r E r E pY | M “ 1,Z ,A “ 1,W q | A “ 1,W s s .

Y M Z A W
0 1 0.7 1 2.1
1 1 -0.2 0 -1.6
1 1 2.0 1 0.3
0 0 6.9 1 1.4
1 0 3.1 0 0.9
0 1 -5.2 1 -3.1
1 0 5.2 1 2.5
0 1 -1.1 1 -0.1

Q̄Y ,npZ ,W q

0.34
0.19
0.26
0.31
0.29
0.15
0.36
0.25

Q̄Z ,npW q

0.40
0.22
0.20
0.36
0.21
0.34
0.20
0.29

STEP 3: Average out values of Q̄Z ,npW q over all patients to get Ê rY p1, 1qs “ Q̄W ,n.
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Illustration of G-computation

We will now demonstrate that the G-computation formula gives correct answers for our
simulated data.

Goal: compute E rE rY | M “ m˚,Z ,A “ as| A “ as for different values of pa,m˚q.

A helpful way to think about regression quantities

E r Z
loomoon

outcome

| S “ s
loomoon

stratification

, C
loomoon

covariates

s

Considering the inner expectation, we have

E r Y
loomoon

outcome

| M “ m˚,A “ a
looooooooomooooooooon

stratification

, Z
loomoon

covariate

s .
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Illustration of G-computation

For example, if a “ 1,m˚ “ 1,

# full data.frame
full_data <- data.frame(A = A, Z = Z, M = M, Y = Y)
# subset data to observations with A = 1 & M = 1
data_11 <- subset(full_data, A == 1 & M == 1)
# fit regression of Y ~ Z
fit_11 <- glm(Y ~ Z, data = data_11)
fit_11

##
## Call: glm(formula = Y ~ Z, data = data_11)
##
## Coefficients:
## (Intercept) Z
## 1.899 2.031
##
## Degrees of Freedom: 2140 Total (i.e. Null); 2139 Residual
## Null Deviance: 9740
## Residual Deviance: 1959 AIC: 5892
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Illustration of G-computation

The fitted regression gives us the estimate

pE rY | M “ 1,Z ,A “ 1s “ 1.9 ` 2.03Z .

Now, we need to estimate the outer expectation,

E rE r Y | M “ 1,Z ,A “ 1s
looooooooooooooomooooooooooooooon

outcome

| A “ 1
loomoon

stratification

s

I.e., regression with outcome 1.9 ` 2.03Z in observations with A “ 1 and no covariates.
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Illustration of G-computation

# get predicted value for everyone
full_data$Q2n_11 <- predict(fit_11, newdata = full_data)
# subset data to observations with A = 1
data_1 <- subset(full_data, A == 1)
# fit regression
fit_1 <- glm(Q2n_11 ~ 1, data = data_1)
# intercept is estimate of E[Y(1,1)]
(gcomp_1 <- fit_1$coefficients[1])

## (Intercept)
## 5.96347

33 / 45



Improved estimation procedures

Much like in the single time-point case, a hybrid between the G-computation and IPW
estimators can be constructed, and enjoys improved properties.

The augmented IPW (AIPW) estimator is given by

Ê rY p1, 1qs :“ Q̄W ,n`
1
n

n
ÿ

i“1

"

IpAi “ 1,Mi “ 1q

ḡnpWi ,Zi q

*

“

Yi ´ Q̄Y ,npZi ,Wi q
‰

`
1
n

n
ÿ

i“1

"

IpAi “ 1q

gA,np1 | Wi q

*

“

Q̄Y ,npZi ,Wi q ´ Q̄Z ,npWi q
‰

where Q̄W ,n is simply the G-computation estimator.

Since it builds upon estimates of all outcome regressions and propensity scores, the
construction of this estimator requires more effort than for estimators seen so far.

However, this estimator enjoys double-robustness, and can be used to construct valid
confidence intervals, even when flexible learning strategies (e.g., Super Learner) are used
to estimate the outcome regressions and propensity scores.
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AIPW in R

gcomp_1 +
mean(

(A == 1 & M == 1) / (g_0 * g_1_A_1) * (Y - full_data$Q2n_11) +
(A == 1) / g_0 * (full_data$Q2n_11 - gcomp_1)

)

## (Intercept)
## 5.964714
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Improved estimation procedures

What does double robustness refer to in the context of multi time-point interventions?

The estimator Ê rY p1, 1qs built upon estimators

Q̄n :“ pQ̄Z ,n, Q̄Y ,nq and gn :“ pgA,n, gM,nq

is doubly-robust, in the sense that it is consistent (i.e., hits the target) provided either
Q̄n hits the target Q̄0 or gn hits the target g0.

Scen. 1 Scen. 2 Scen. 3
Q̄Y ,n ✓ ✓
Q̄Z ,n ✓
gM ✓
gA ✓ ✓
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Improved estimation procedures

The targeted maximum likelihood estimation (TMLE) framework provides a recipe
for constructing a G-computation estimator that is also doubly-robust. (Bang &
Robins 2005; van der Laan & Gruber, 2012)

This estimator is constructed like the ‘sequential regression’ form of the G-computation
estimator, but includes a refinement step after each Q̄ estimator is obtained.

Unlike the AIPW, TMLE has the advantage that the estimate is always in the
parameter space.
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Improved estimation procedures

Properties of estimation procedures outlined

Q̄ + ḡ Q̄ + ḡ Q̄ + ḡ
diffi-
culty

tar-
get ci tar-

get ci tar-
get ci

IPW + ✓ ✓
G-COMP ++ ✓ ✓

AIPW +++ ✓ ✓ ✓ ✓
TMLE ++++ ✓ ✓ ✓ ✓ ✓ ✓

Q̄ + g : outcome regressions estimated well but not propensity scores

Q̄ + g : propensity scores estimated well but not outcome regressions

Q̄ + g : outcome regressions and propensity scores estimated well

target : does the estimator hit the right target?
ci : is valid inference possible and readily available, even when flexible learning

strategies (such as Super Leaner) are used?
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Improved estimation procedures

There is substantial work underway to produce novel estimators with even better
properties. All of these innovations are based on the idea of TMLE.

Enhanced robustness

Consistent estimation is possible under a wider range of scenarios than depicted on
previous slides.

For this, more complicated procedures are needed and are being developed.
(Luedtke et al. 2017; Rotnitzky et al., 2017)

Robust inference

Typical double-robustness only refers to consistency.

However, constructing doubly-robust CI and tests is a much more important task. It is
also very difficult in multi time-point settings. (Benkeser et al., 2017)

Targeted estimation of propensity scores

With many confounders, good performance may be difficult to achieve in smaller samples.

Collaborative TMLE allows a smarter, data-driven selection of propensity score estimators
to improve performance in such cases.
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Non-identifiability of the natural direct and indirect effect

Recall the directed acyclic graph:

ZW A M Y

And recall the definition of the natural direct and indirect effects

ATE “ E rY p1,Mp1qqs ´ E rY p1,Mp0qqs
looooooooooooooooooooomooooooooooooooooooooon

natural indirect effect

` E rY p1,Mp0qqs ´ E rY p0,Mp0qqs
looooooooooooooooooooomooooooooooooooooooooon

natural direct effect

.
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Non-identifiability of the natural direct and indirect effect

ZW A M Y

And let us also recall one of the fundamental assumptions required for identification of
the natural direct and indirect effect:

Y p1,mq K Mp0q | W for all m

Fundamental problem: This assumption does not hold in the presence of a variable Z
as in the above DAG
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Non-identifiability of the natural direct and indirect effect

Y p1,mq K Mp0q | W for all m

Fundamental problem: This assumption does not hold in the presence of a variable Z
as in the above DAG

To see why, consider an intervention that sets pA “ 1,M “ mq. This intervention
generates several counterfactuals:

Zp1q The mediator-outcome confounder that would have been observed under
A “ 1

Y p1,mq The outcome that would have been observed under pA “ 1,M “ mq

Consider also an intervention that sets A “ 0. This generates a counterfactual

Zp0q The mediator-outcome confounder that would have been observed under
A “ 0

Mp0q The mediator that would have been observed under A “ 0
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Non-identifiability of the natural direct and indirect effect

Key observation: Zp1q and Zp0q are associated through unmeasured mechanisms U
(e.g., genes).

This implies Y p1,mq and Mp0q are associated (after adjustment for W ) through the
following path:

UZp0qMp0q Zp1q Y p1,mq

This path cannot be blocked by any measured variable.
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Non-identifiability of the natural direct and indirect effect

The assumption Y p1,mq K Mp0q | W for all m is referred to as a cross-world
counterfactual assumption.

This assumption cannot be confirmed or disproved to hold, even in studies that
randomize both the treatment and mediator

The presence of intermediate confounders implies the cross-world assumption is
violated

In other words, the cross-world assumption is stronger than the assumption of no
intermediate confounders

In chapter 6 we will study natural mediation effects that do not require cross-world
assumptions but do require no intermediate confounders (stochastic interventions)
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