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What are they and when are they identified?

Mediation can be quantified parsimoniously via natural effects, in which the
intervened mediator value is stochastic (defined relative to the same individual) rather
than set deterministically.

We first note that the average treatment effect of A on Y in a given population can
be expressed as

ATE = E [Y (1)]− E [Y (0)] = E [Y (1,M(1))]− E [Y (0,M(0))] ,

where Y (a) is the counterfactual outcome under an intervention that sets A = a (but
does not directly set M).

Here, we are relying on a consistency condition that ensures that Y (a) = Y (a,M(a)):

if we set A = a and M = M(a), we see Y (a,M(a));

if we set A = a and do not intervene on M, we see Y (a).
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What are they and when are they identified?

We can decompose the total effect as

ATE = E [Y (1,M(1))]− E [Y (1,M(0))]︸ ︷︷ ︸
natural indirect effect

+ E [Y (1,M(0))]− E [Y (0,M(0))]︸ ︷︷ ︸
natural direct effect

.

The natural indirect effect (NIE) of A on Y through M compares interventions:

1 set A = 1 and set M to its natural value under A = 1;

2 set A = 1 and set M to its natural value under A = 0.

Example: risk of influenza infection under different scenarios

1 administer flu vaccine;

2 administer flu vaccine but set neutralizing antibody (NAb) levels to the natural
level the patient would have had without the vaccine.

This quantifies the effect of the vaccine mediated through NAb titers.
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What are they and when are they identified?

We can decompose the total effect as

ATE = E [Y (1,M(1))]− E [Y (1,M(0))]︸ ︷︷ ︸
natural indirect effect

+ E [Y (1,M(0))]− E [Y (0,M(0))]︸ ︷︷ ︸
natural direct effect

.

The natural direct effect (NDE) of A on Y relative to M compares interventions:

1 set A = 1 and set M to its natural value under A = 0;

2 set A = 0 and set M to its natural value under A = 0.

Example: risk of influenza infection under different scenarios

1 administer flu vaccine but set neutralizing antibody (NAb) levels to the natural
level the patient would have had without the vaccine;

2 administer placebo vaccine.

This quantifies the effect of the vaccine not mediated through NAb titers.
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What are they and when are they identified?

We can alternatively decompose the total effect as

ATE = E [Y (1,M(1))]− E [Y (0,M(1))]︸ ︷︷ ︸
natural direct effect

+ E [Y (0,M(1))]− E [Y (0,M(0))]︸ ︷︷ ︸
natural indirect effect

.

Alternative definitions of NIE

contrast mean outcome under differing mediator values while
administering treatment (total) or control (pure)?

Alternative definitions of NDE

contrast mean outcome under different exposure levels while
enforcing natural mediator values arising under treatment (total) or control (pure)?

Sometimes, only one version of the NDE or NIE can plausibly be identified (if any).

Report (transparently and explicitly) on the version(s) of scientific interest.
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What are they and when are they identified?

Identification of the NDE and NIE typically requires stronger causal conditions.

Sufficient rich covariate information must be collected to allow deconfounding of key
relationships — this leads to a collection of randomization conditions.

To identify ψ(a, a∗) := E [Y (a,M(a∗))], we require:

1 M(a∗) ⊥ A | W ;

for each value m that M(a∗) can possibly take:

2 Y (a,m) ⊥ A | W ;

3 Y (a,m) ⊥ M | A = a,W ;

4 Y (a,m) ⊥ M(a∗) | W .

(As a consequence, there cannot exist a confounder of the M − Y relationship in the
causal pathway from A to Y . However, this can be relaxed — more on this later.)
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What are they and when are they identified?

A M Y
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Z
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What are they and when are they identified?

Randomization conditions 1–3 should be familiar.

What is the interpretation of randomization condition 4?

Within subpopulations of patients with common W value, a patient’s mediator value
under A = a∗ gives no info about their outcome under A = a and M = m.

This is an example of a cross-world condition since it involves counterfactual variables
tied to incompatible interventions (i.e., defined in different hypothetical worlds).

Critical point: There is no plausible experimental design that can circumvent it.

Some question how usefulness natural mediation effects are in view of this condition.
(Naimi et al., 2014; Andrews & Didelez, 2020)
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What are they and when are they identified?

Certain positivity conditions are also required.

1 (exposure positivity) P(A = a | W = w) > 0 for every possible w ;

2 (mediator overlap) for every possible w and each value m,

P(M = m | A = a∗,W = w) > 0 ⇒ P(M = m | A = a,W = w) > 0

Example: neutralizing antibody response to a vaccine
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The G-computation identification formula

Under the randomization and positivity conditions stated so far, the following
G-computation formula holds:

E [Y (a,M(a∗)) | W = w ] = E [E (Y | M,A = a,W = w) | A = a∗,W = w ]

=
∑
m

E (Y | M = m,A = a,W = w)P (M = m | A = a∗,W = w) .

Within the subpopulation of patients with W = w , we must average over the
distribution of M among patients following A = a∗ the mean outcome among patients
following A = a and with mediator value M.

This readily implies an identification for ψ(a, a∗) as

ψ(a, a∗) = E [Y (a,M(a∗))] = E [E [Y (a,M(a∗)) | W ]]

= E [E [E (Y | M,A = a,W ) | A = a∗,W ]] .
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The G-computation identification formula

How is this result formally established?

E [Y (a,M(a∗)) | W = w ]

=
∑
m

E [Y (a,m) | M(a∗) = m,W = w ]P(M(a∗) = m | W = w) (1)

=
∑
m

E [Y (a,m) | W = w ]P(M(a∗) = m | W = w) (2)

=
∑
m

E [Y (a,m) | A = a,W = w ]P(M(a∗) = m | W = w) (3)

=
∑
m

E [Y (a,m) | A = a,M = m,W = w ]P(M(a∗) = m | A = a∗,W = w) (4)

=
∑
m

E(Y | A = a,M = m,W = w)P(M = m | A = a∗,W = w) (5)

(1): by law of total expectation;
(2): by randomization cond. 4;

(3): by randomization cond. 2;
(4): by randomization cond. 1 + 3;

(5): by consistency cond.
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The G-computation identification formula

Special case: partially linear outcome and mediator regression models

If the partially linear models

E(Y | M = m,A = a,W = w) = βMm + βAa+ f1(w)

E(M | A = a,W = w) = αAa+ f2(w)

hold for unspecified functions f1 and f2, then it follows that

NDE = βA and NIE = αAβM .

This is true for both the pure and total versions of these estimands. This is referred to
as the classical product of coefficients method of Baron & Kenney (1986).

What if the regression models above include interaction terms?
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Estimation based on the G-computation formula

We now consider estimation strategies based on the G-computation formula

E [E [E (Y | M,A = a,W ) | A = a∗,W ]] = E

[∑
m

Q̄(m, a,W )gM(m | a∗,W )

]
.

Approach #1: via estimation of the mediator distribution

1 obtain estimates Q̄n of Q̄ and gM,n of gM ;

2 define final estimate 1
n

∑n
i=1

∑
m Q̄n(m, a,Wi )gM,n(m | a∗,Wi ).

If M is binary, this traditional approach is easy to use.

Otherwise, restrictive (i.e., parametric) models for gM are typically used, and even
then, the problem can involve a difficult (numerical) summation/integration step.
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Estimation based on the G-computation formula

We now consider estimation strategies based on the G-computation formula

E [E [E (Y | M,A = a,W ) | A = a∗,W ]] = E

[∑
m

Q̄(m, a,W )gM(m | a∗,W )

]
.

Approach #2: via sequential regression

1 obtain estimate Q̄n of Q̄;

2 regress Q̄n(M, a,W ) on (A,W );

3 for each i = 1, 2, . . . , n, compute the regression prediction Q̄M,n,i for covariate
profile (A,W ) = (a∗,Wi );

4 define final estimate as the average of all predictions = 1
n

∑n
i=1 Q̄M,n,i .

This modern approach works well irrespective of the type of variable M is, and avoids
having to estimate more than is needed.
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Estimation based on the G-computation formula

Using the data simulated previously, we demonstrate how to estimate natural direct
and indirect effects when estimating the (binary) mediator distribution.

# fit outcome regression (include interaction because we can)

or_fit <- glm(Y ~ A + M + W1 + W2 + A*M + M*W1,

family = binomial(), data = full_data)

# need E(Y | A = 0/1, M = 0/1, W1 = W1i, W2 = W2i)

get_EY_a_m_Wi <- function(full_data, or_fit, a, m){
data_Aa_Mm_Wi <- full_data

data_Aa_Mm_Wi$A <- a; data_Aa_Mm_Wi$M <- m

predict(or_fit, newdata = data_Aa_Mm_Wi, type = "response")

}

EY_A0_M0_Wi <- get_EY_a_m_Wi(full_data, or_fit, a = 0, m = 0)

EY_A0_M1_Wi <- get_EY_a_m_Wi(full_data, or_fit, a = 0, m = 1)

EY_A1_M0_Wi <- get_EY_a_m_Wi(full_data, or_fit, a = 1, m = 0)

EY_A1_M1_Wi <- get_EY_a_m_Wi(full_data, or_fit, a = 1, m = 1)
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Estimation based on the G-computation formula

We have computed Q̄n(m, a,Wi ) for a = 0, 1, m = 0, 1 and i = 1, 2, . . . , n, and must
now compute

1∑
m=0

Q̄n(m, a,Wi )gM,n(m | a∗,Wi ) .

We first estimate the mediator distribution gM(m | a∗,w) = P(M = m | A = a∗,W ).

# include interactions -- why not?

med_fit <- glm(M ~ A*W1 + W1*W2, family = binomial(), data = full_data)
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Estimation based on the G-computation formula

Next, for m = 0, 1, we evaluate gM,n(m | a∗,Wi ).

# estimates of P(M = m | A = a, W = W_i)

get_Pm_a_Wi <- function(full_data, med_fit, a, m){
data_Aa_Wi <- full_data; data_Aa_Wi$A <- a

p <- predict(med_fit, newdata = data_Aa_Wi, type = "response")

if(m == 1){
p

}else{
1 - p

}
}
PM0_A0_Wi <- get_Pm_a_Wi(full_data, med_fit, a = 0, m = 0)

PM1_A0_Wi <- get_Pm_a_Wi(full_data, med_fit, a = 0, m = 1)

PM0_A1_Wi <- get_Pm_a_Wi(full_data, med_fit, a = 1, m = 0)

PM1_A1_Wi <- get_Pm_a_Wi(full_data, med_fit, a = 1, m = 1)
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Estimation based on the G-computation formula

We can then compute
∑1

m=0 Q̄n(m, a,Wi )gM,n(m | a∗,Wi ) for i = 1, 2, . . . , n.

# E(E(Y | A = 1, M, W) | A = 1, W)

EY1M1_Wi <- EY_A1_M1_Wi * PM1_A1_Wi + EY_A1_M0_Wi * PM0_A1_Wi

# E(E(Y | A = 0, M, W) | A = 1, W)

EY0M1_Wi <- EY_A0_M1_Wi * PM1_A1_Wi + EY_A0_M0_Wi * PM0_A1_Wi

# E(E(Y | A = 1, M, W) | A = 0, W)

EY1M0_Wi <- EY_A1_M1_Wi * PM1_A0_Wi + EY_A1_M0_Wi * PM0_A0_Wi

# E(E(Y | A = 0, M, W) | A = 0, W)

EY0M0_Wi <- EY_A0_M1_Wi * PM1_A0_Wi + EY_A0_M0_Wi * PM0_A0_Wi
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Estimation based on the G-computation formula

Finally, we average over distribution of W to get effect estimates.

# estimate of E[Y(1, M(1))]

E_Y1M1 <- mean(EY1M1_Wi)

# estimate of E[Y(0, M(1))]

E_Y0M1 <- mean(EY0M1_Wi)

# estimate of E[Y(1, M(0))]

E_Y1M0 <- mean(EY1M0_Wi)

# estimate of E[Y(0, M(0))]

E_Y0M0 <- mean(EY0M0_Wi)

These values can be combined to estimate the desired natural direct or indirect effects.
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Estimation based on the G-computation formula

Using the data simulated previously, we demonstrate how to estimate natural direct
and indirect effects using sequential regression.

We will illustrate estimation of E [Y (1,M(0))].

Note that we have already estimated Q̄(m, a,w), and we now use Q̄n(Mi , a,Wi ) as
outcome in the sequential regression.

# estimate of E(Y | A = 1, W = W_i, M = M_i)

data_Aa_Mi_Wi <- full_data

data_Aa_Mi_Wi$A <- 1

full_data$Qbar2 <- predict(or_fit, newdata = data_Aa_Mi_Wi,

type = "response")

# estimate E(E(Y | A = 1, W, M) | A, W)

seq_or_fit <- glm(Qbar2 ~ A*W1 + A*W2, family = binomial(),

data = full_data)
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Estimation based on the G-computation formula

We then obtain the prediction from the fitted sequential regression by plugging in
(A,W ) = (0,Wi ), i = 1, 2, . . . , n, and finally average all obtained predictions.

data_A0 <- full_data; data_A0$A <- 0

Qbar1 <- predict(seq_or_fit, newdata = data_A0, type = "response")

mean(Qbar1)

## [1] 0.509928
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Multiply-robust estimation

The G-computation plug-in estimation procedures typically only provide valid inference
when simple (i.e., parametric or empirical) regression techniques are used. When
flexible learning is used instead, more sophisticated approaches are needed.

Let Q̄M(w) :=
∑

m Q̄(m, a,w)gM(m | a∗,w) and denote by Q̄M,n the estimator of
Q̄M based on Q̄n and gM,n so that

ψn,G (a, a
∗) := 1

n

∑n
i=1 Q̄M,n(Wi )

is the G-computation plug-in estimator of ψ(a, a∗) based on approach #1.

An AIPW estimator of ψ(a, a∗) is then given by

ψn,AIPW := ψn,G (a, a
∗) + Bn(Q̄n, pn, gA,n) ,

where the augmentation term is defined as

Bn(Q̄n, gM,n, gA,n) :=
1

n

n∑
i=1

I (Ai = a)

gA,n(a | Wi )

gM,n(Mi | a∗,Wi )

gM,n(Mi | a,Wi )
[Yi − Q̄n(Mi , a,Wi )]

+
1

n

n∑
i=1

I (Ai = a∗)

gA,n(a∗ | Wi )
[Q̄n(Mi , a,Wi )− Q̄M,n(Wi )] .
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Multiply-robust estimation

Properties of the AIPW estimator: (Tchetgen Tchetgen & Shpitser, 2011)

Multiply-robust consistency

ψn,AIPW (a, a∗)
P−→ ψ(a, a∗) provided at least 2 of these 3 statements hold:

(i) Q̄n ,
P−→ Q̄, (ii) gA,n

P−→ gA and (iii) gM,n
P−→ gM .

Asymptotic normality

Under certain regularity conditions (allowing some flexible learning), we have that

ψn,AIPW (a, a∗)− ψ(a, a∗) ≈
1

n

n∑
i=1

Di ,

where Di :=
I (Ai = a)

gA(a | Wi )

gM(Mi | a∗,Wi )

gM(Mi | a,Wi )
[Yi − Q̄(Mi , a,Wi )]

+
I (Ai = a∗)

gA(a∗ | Wi )
[Q̄(Mi , a,Wi )− Q̄M(Wi )] + Q̄M(Wi )− ψ(a, a∗) .

This implies asymptotic normality, but also much more. . .
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Multiply-robust estimation

Can the AIPW estimator be re-expressed in terms of the sequential regression
approach that circumvents explicit estimation of the mediator distribution?

Yes! To do so, first define the expanded treatment propensity

g̃A(m,w) := P(A = a | M = m,W = w) .

Using Bayes’ Theorem, it can be shown that

gM(m | a∗,w)

gM(m | a,w)
=

gA(a | w)

gA(a∗ | w)
·
g̃A(a

∗ | m,w)

g̃A(a | m,w)
.
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Multiply-robust estimation

This allows us to define a revised AIPW estimator with augmentation

B̃n(Q̄n, gA,n, g̃A,n) :=
1

n

n∑
i=1

I (Ai = a)

gA,n(a∗ | Wi )

g̃A,n(a
∗ | Mi ,Wi )

g̃A,n(a | Mi ,Wi )
[Yi − Q̄n(Mi , a,Wi )]

+
1

n

n∑
i=1

I (Ai = a∗)

gA,n(a∗ | Wi )
[Q̄n(Mi , a,Wi )− Q̄M,n(Wi )] ,

where g̃A,n is an estimator of g̃A.

Properties of this revised AIPW estimator and the corresponding TMLE estimator are
described in Zheng & van der Laan (2012).

In this procedure, instead of estimating gM , we estimate an additional binary
regression g̃A. This is most useful when M is multivariate and/or continuous-valued.

The medoutcon package in R has an implementation of these methods.
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