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What is it and when is it identified?

Suppose that we are interested in quantifying the effect of a binary treatment A on
outcome Y through pathways not including the potential mediator M.

We can imagine an intervention in which we set the level of A and M at will, resulting
in the definition of the counterfactual outcome Y pa,mq. For an individual,

Y p1,mq ´ Y p0,mq

represents the (additive) effect of treatment when mediator level is fixed at m.
Averaging over the target population leads us to

CDEpmq :“ E rY p1,mq ´ Y p0,mqs ,

the controlled direct effect of A on Y controlling for M at level m.

Examples: What is the effect of. . .

. . . screen time on weight not through physical activity in children?

. . . SARS-CoV-2 infection on mortality not through modulation of IL-6 cytokine levels?

. . . a mRNA vaccine on risk of Covid not through anti-spike IgG antibody titer?
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What is it and when is it identified?

We will focus on the case in which M is discrete.

To compute the controlled direct effect, it suffices to compute the counterfactual
means E rY p1,mqs and E rY p0,mqs since

CDEpmq “ E rY p1,mq ´ Y p0,mqs “ E rY p1,mqs ´ E rY p0,mqs .

The observed data consist of O1,O2, . . . ,On
iid
„ P0, with Oi :“ pWi ,Ai ,Mi ,Yi q and

Wi “ the vector of baseline patient characteristics (i.e., potential confounders);
Ai “ the (binary) treatment/intervention received;
Mi “ the mediator value experienced;
Yi “ the outcome of interest experienced.

Fundamental question:

When and how is E rY pa,mqs identifiable (i.e., estimable)
from the observed data?
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What is it and when is it identified?

First key condition: conditional randomization (or ignorability)

To learn causal effects from observational data, we typically need to have rich enough
information recorded on patients to deconfound observed relationships.

This is formalized via the two-part conditional randomization condition:

1 Y pa,mq K A | W (conditional treatment randomization)

Within strata of W , the assignment of A gives no info about Y pa,mq.

Confounders of A ´ Y relationship must have been recorded.

Can be enforced by design.

Similar to what is needed to estimate ATE of A on Y .
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What is it and when is it identified?

First key condition: conditional randomization (or ignorability)

To learn causal effects from observational data, we typically need to have rich enough
information recorded on patients to deconfound observed relationships.

This is formalized via the two-part conditional randomization condition:

2 Y pa,mq K M | W ,A “ a (conditional mediator randomization given treatment)

Within strata of W and A “ a, the assignment of M gives no info about Y pa,mq.

Confounders of M ´ Y relationship must have been recorded.

May or may not be enforceable by design, depending on context. . .
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What is it and when is it identified?

First key condition: conditional randomization (or ignorability)

To learn causal effects from observational data, we typically need to have rich enough
information recorded on patients to deconfound observed relationships.

This is formalized via the two-part conditional randomization condition:

1 Y pa,mq K A | W (conditional treatment randomization)

2 Y pa,mq K M | W ,A “ a (conditional mediator randomization given treatment)

Without additional information, the conditional randomization condition is untestable
(or empirically unverifiable) since it does not constrain the observed data distribution.

This condition must be justified by prior knowledge and scrutinized carefully.
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What is it and when is it identified?

A M Y
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What is it and when is it identified?
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What is it and when is it identified?

A M Y
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When is identification possible?

Second key condition: positivity (or experimental treatment assignment)

We must also be able to observe treatment level a and mediator value m in each
relevant patient subpopulation.

This is formalized via the two-part positivity condition:

1 PpA “ a | W “ wq ą 0 for every possible w (treatment positivity)

2 PpM “ m | A “ a,W “ wq ą 0 for every possible w (mediator positivity)

In a randomized trial, 1 is usually true by design, but 2 may fail unless M is set as part
of the randomized intervention. In an observational study, both 1 and 2 can fail.

e.g.: patients with mild disease cannot be assigned to (risky) experimental treatment

immunosuppressed patients cannot generate high antibody levels after vaccine

The plausibility of this condition can usually be assessed empirically.
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What is it and when is it identified?

Under the randomization and positivity conditions stated, E rY pa,mqs can generally be
identified from the observed data.

It can be calculated as a summary of the distribution P0 of the observed data unit O.

We will focus on the two most important identification formulas:

the G-computation formula; (Robins, 1986)

the inverse-probability-weighting (IPW) formula.
(Horvitz & Thompson, 1952; Robins, Hernan & Brumback, 2000)
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The G-computation identification formula

The G-computation identification formula gives an expression of CDEpmq in terms of
the observed data distribution.

Provided the randomization and positivity conditions hold for each a, it holds that

E rY pa,mqs “ E rEpY | A “ a,M “ m,W qs

“
ÿ

w

EpY | A “ a,M “ m,W “ wqPpW “ wq ,

and so, the controlled direct effect CDEpmq can be expressed as

CDEpmq “ E rEpY | A “ 1,M “ m,W q ´ EpY | A “ 0,M “ m,W qs

“
ÿ

w

rEpY | A “ 1,M “ m,W “ wq ´ EpY | A “ 0,M “ m,W “ wqsPpW “ wq .

Is it fair to compare EpY | A “ 1,M “ mq and EpY | A “ 0,M “ mq?

What about comparisons within strata of W ?
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The G-computation identification formula

The G-computation formula can be derived as follows.

E rY pa,mqs “
ÿ

w

E rY pa,mq | W “ wsPpW “ wq (law of total expectation)

“
ÿ

w

E rY pa,mq | A “ a,M “ m,W “ wsPpW “ wq (randomization property)

“
ÿ

w

EpY | A “ a,M “ m,W “ wqPpW “ wq (consistency)

For EpY | A “ a,M “ m,W “ wq to be defined, the positivity condition must hold.
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The G-computation identification formula

Special case: partially linear outcome regression model

If the partially linear model

EpY | M “ m,A “ a,W “ wq “ βMm ` βAa ` βMAma ` f pwq

holds for some unspecified function f , then

CDEpmq “ βA ` βMAm

since EpY | M “ m,A “ 1,W “ wq ´ EpY | M “ m,A “ 0,W “ wq “ βA ` βMAm.

In the presence of interactions involving W , the form typically also depends on the
distribution of W .
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The IPW identification formula

The inverse-probability-weighting (IPW) identification formula gives an alternative
means of expressing CDEpmq in terms of the observed data distribution.

Provided the randomization and positivity conditions hold, then it holds that

E rY pa,mqs “ E

„"

I pA “ a,M “ mq

PpA “ a,M “ m | W q

*

Y

ȷ

.

This is a weighted average of outcomes, with weight set according to the propensity of
having had pA,Mq “ pa,mq in the first place given W “ w .

If PpM “ 0,A “ 1 | W “ wq “ .25, a patient with W “ w had a 25% chance of
being treated and then experiencing mediator level M “ 0.

For each patient with A “ 1 and M “ 0, there are 3 similar patients with A ‰ 1 or
M ‰ 0. Each such patient must stand in for the other 3, and so, have weight

1

PpM “ 0,A “ 1 | W “ wq
“

1

0.25
“ 4 .
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The IPW identification formula
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The IPW identification formula

The IPW formula is equivalent to the G-computation formula.

By repeated use of the law of total expectation, we have that

E

„

I pA “ a,M “ mqY

PpA “ a,M “ m | W q

ȷ

“ E

„

E

„

I pA “ a,M “ mqY

PpA “ a,M “ m | W q

ˇ

ˇ

ˇ

ˇ

A,M,W

ȷȷ

“ E

„

I pA “ a,M “ mq

PpA “ a,M “ m | W q
E pY | A,M,W q

ȷ

“ E

„

I pA “ a,M “ mq

PpA “ 1,M “ m | W q
E pY | A “ a,M “ m,W q

ȷ

“ E

„

E

„

I pA “ a,M “ mq

PpA “ a,M “ m | W q
E pY | A “ a,M “ m,W q

ˇ

ˇ

ˇ

ˇ

W

ȷȷ

“ E

„

PpA “ a,M “ m | W q

PpA “ a,M “ m | W q
EpY | A “ a,M “ m,W q

ȷ

“ E rEpY | A “ a,M “ m,W qs .
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Estimation based on the G-computation and IPW formulas

Via the identification formulas, we express quantities we care about in the
counterfactual world as quantities defined in the observed data world.

This required certain causal assumptions.

Many of these are empirically unverifiable, and so cannot be relaxed for free.

Alternative assumptions exist. Otherwise, partial identification is possible under
weaker assumptions.

This is certainly progress since we can estimate quantities in the observed data world!

Practitioners make statistical assumptions of varying degrees to tackle the resulting
estimation/inference problem.

Most of these are verifiable and thus unnecessary (except for convenience).

The approach we advocate for uses modern statistical learning to reduce the risk
of misleading conclusions due to inappropriate statistical assumptions.
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Estimation based on the G-computation and IPW formulas

CAUSAL	
ASSUMPTIONS

STATISTICAL	
ASSUMPTIONS

CAUSAL	
CONCLUSIONSDATA

PRIOR	
KNOWLEDGE

WE	FOCUS	ON	RELAXING	
THESE	AS	MUCH	AS	

POSSIBLE.
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Estimation based on the G-computation and IPW formulas

Several quantities (defined in the observed data world) play a critical role in the
methods we will describe:

the outcome regression : Q̄pm, a,wq :“ EpY | M “ m,A “ a,W “ wq

the propensity scores : gMpm | a,wq :“ PpM “ m | A “ a,W “ wq

gApa | wq :“ PpA “ a | W “ wq .

The various methods we will discuss explicitly require estimates of Q̄, gM and gA.

In the following, we denote by Q̄n, gM,n and gA,n estimators of Q̄, gM and gA,
respectively.
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Estimation based on the G-computation and IPW formulas

Plug-in estimation via the G-computation formula

CDEpmq “ E rQ̄pm, 1,W q ´ Q̄pm, 0,W qs

CDEn,G pmq :“
1

n

n
ÿ

i“1

“

Q̄npm, 1,Wi q ´ Q̄npm, 0,Wi q
‰

Plug-in estimation via the IPW formula

CDEpmq “ E

„"

I pA “ 1,M “ mq

gMpm | 1,W qgAp1,W q
´

I pA “ 0,M “ mq

gMpm | 0,W qgAp0,W q

*

Y

ȷ

CDEn,IPW pmq :“
1

n

n
ÿ

i“1

"

I pAi “ 1,Mi “ mq

gM,npm | 1,W qgA,np1,Wi q
´

I pAi “ 0,Mi “ mq

gM,npm | 0,Wi qgA,np0,Wi q

*

Yi

Provided estimators Q̄n, gM,n and gA,n are obtained by fitting parametric models or
using empirical moment estimators, the standard bootstrap can be used for inference.
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Estimation based on the G-computation and IPW formulas

We illustrate the approaches using simulated data.

set.seed(1234)

n <- 5000

# confounder of A/Y

W1 <- rnorm(n)

# confounder of M/Y

W2 <- rnorm(n)

# treatment

A <- rbinom(n, 1, plogis(-1 + W1 / 2))

# binary mediator

M <- rbinom(n, 1, plogis(-2 + A / 2 + W2 / 3))

# binary outcome

Y <- rbinom(n, 1, plogis(-1 + A - M / 2 + W1 / 3 + W2 / 3))

full_data <- data.frame(W1 = W1, W2 = W2, A = A, M = M, Y = Y)

Here, we have that CDEp0q “ 0.223 and CDEp1q “ 0.200.
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Estimation based on the G-computation and IPW formulas

Suppose we are interested in estimating CDEp0q.

# fit outcome regression

or_fit <- glm(Y ~ A + M + W1 + W2, family = binomial(), data = full_data)

# new data setting A and M

data_A1_M0 <- data_A0_M0 <- full_data

data_A1_M0$A <- 1; data_A1_M0$M <- 0

data_A0_M0$A <- 0; data_A0_M0$M <- 0

# predict on new data

Qbar_A1_M0 <- predict(or_fit, newdata = data_A1_M0, type = "response")

Qbar_A0_M0 <- predict(or_fit, newdata = data_A0_M0, type = "response")

# gcomp estimate of CDE(0)

mean(Qbar_A1_M0 - Qbar_A0_M0)

## [1] 0.2515527
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Estimation based on the G-computation and IPW formulas

Here, we demonstrate the two-part estimation of the propensity scores.

# model for P(A = 1 | W)

ps_fit1 <- glm(A ~ W1 + W2, family = binomial(), data = full_data)

P_A1_W <- predict(ps_fit1, type = "response")

P_A0_W <- 1 - P_A1_W

# model for P(M = 0 | A, W)

ps_fit2 <- glm(M ~ A + W1 + W2, family = binomial(), data = full_data)

# P(M = 0 | A = 1, W)

data_A1 <- full_data; data_A1$A <- 1

P_M0_A1_W <- 1 - predict(ps_fit2, newdata = data_A1, type = "response")

# P(M = 0 | A = 0, W)

data_A0 <- full_data; data_A0$A <- 0

P_M0_A0_W <- 1 - predict(ps_fit2, newdata = data_A0, type = "response")

# ipw estimate of CDE(0)

mean( (A == 1) / P_A1_W * (M == 0) / P_M0_A1_W * Y ) -

mean( (A == 0) / P_A0_W * (M == 0) / P_M0_A0_W * Y )

## [1] 0.2553091

26 / 36



Estimation based on the G-computation and IPW formulas

In practice, which of these two approaches should we adopt?

If Q̄ is easier to estimate well, G-computation seems like a good bet. If instead the
propensity scores are easier to estimate well, the IPW approach is sensible. In reality,
we can improve upon both estimators, as we present next.

In any case, we need to estimate at least one of Q̄ or pgM , gAq.

There are many approaches possible for estimating a regression function, ranging from
very flexible (e.g., nonparametric methods) to rather rigid (e.g., parametric methods).

(nonparametric) empirical moment, kernel regression, neural networks, random forests;

(semiparametric) generalized additive models, partially linear additive models;

(parametric) linear regression, logistic regression, spline regression.

It is often a good idea to do principled ensembling (e.g, Super Learning).

Important caveat:

valid inference is difficult to achieve when using flexible learning to build
G-computation or IPW estimators.
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Doubly-robust estimation

The augmented IPW (AIPW) estimator is a hybrid estimator combining both
approaches seen so far. It is defined as

CDEn,AIPW pmq :“ CDEn,G pmq ` BnpQ̄n, gM,n, gA,nq ,

where we define the augmentation term

BnpQ̄n, gM,n, gA,nq :“
1

n

n
ÿ

i“1

I pMi “ m,Ai “ 1q

gM,npm | 1,Wi qgA,np1 | Wi q
rYi ´ Q̄npm, 1,Wi qs

´
1

n

n
ÿ

i“1

I pMi “ m,Ai “ 0q

gM,npm | 0,Wi qgA,np0 | Wi q
rYi ´ Q̄npm, 0,Wi qs .

The AIPW estimator can also be seen as an augmentation of the IPW estimator.
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Doubly-robust estimation

Properties of the AIPW estimator:

Doubly-robust consistency

CDEn,AIPW pmq
P

ÝÑ CDEpmq provided Q̄n
P

ÝÑ Q̄ or pgA,n, gM,nq
P

ÝÑ pgA, gMq.

Asymptotic normality

Under certain regularity conditions (allowing some flexible learning), we have that

?
n

“

CDEn,AIPW pmq ´ CDEpmq
‰ d

ÝÑ Np0, σ2q ,

where σ2 can be estimated consistently by σ2
n :“ 1

n

řn
i“1pDi,n ´ D̄nq2 and

Di,n :“
IpMi “ m, Ai “ 1q

gM,npm | 1,Wi qgA,np1 | Wi q
rYi ´ Q̄npm, 1,Wi qs

´
IpMi “ m, Ai “ 0q

gM,npm | 0,Wi qgA,np0 | Wi q
rYi ´ Q̄npm, 0,Wi qs ` Q̄npm, 1,Wi q ´ Q̄npm, 0,Wi q .
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Doubly-robust estimation

# aipw estimate of E[Y(1,0)]

aiptw_EY_A1_M0 <- mean(Qbar_A1_M0) +

mean( (A == 1) / P_A1_W * (M == 0) / P_M0_A1_W * (Y - Qbar_A1_M0) )

# aipw estimate of E[Y(0,0)]

aiptw_EY_A0_M0 <- mean(Qbar_A0_M0) +

mean( (A == 0) / P_A0_W * (M == 0) / P_M0_A0_W * (Y - Qbar_A0_M0) )

# aipw estimate of CDE(0)

aiptw_EY_A1_M0 - aiptw_EY_A0_M0

## [1] 0.2554265
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Doubly-robust estimation

Can we find a good estimator Q̄˚
n of Q̄ for which, given estimators gA,n and gM,n,

CDEn,G pmq “ CDEn,AIPW pmq ?

This would require, in particular, that BnpQ̄˚
n , gM,n, gA,nq “ 0.

The targeted minimum loss-based estimation (TMLE) algorithm can be used to
revise a given estimator Q̄n of Q̄ into an estimator Q̄˚

n that achieves precisely this goal.

The resulting estimator CDEn,TMLE pmq has the same large-sample properties as
CDEn,AIPW pmq but can have better small-sample performance.

Inferential approaches used for CDEn,AIPW pmq remain valid for CDEn,TMLE pmq.

A tip on implementation:

use software for estimating ATE contrasting “treatment” levels A˚ “ 1 versus
A˚ “ 0, where we define A˚ :“ I pM “ m,A “ 1q ´ I pM ‰ mq.
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What about continuous mediators?

The methods discussed so far are most relevant when M can only take a few values,
so that a sufficient number of individuals are observed with M “ m.

In many cases though, M can take many (even infinitely many) values. What then?

The G-computation (but not IPW) formula still provides a good way forward.

Some strategies for dealing with continuous mediators:

1 Consider a discretization M7 of M.

No need to change inferential procedure (except if discretization is data-driven).

If they hold with M, identifying conditions will also hold with M replaced by M7.

Definition of resulting CDE then depends on sampling distribution of M.

2 Use prior knowledge about the shape of the CDE curve.

Shape constraints (e.g., monotonicity) can be leveraged to perform valid inference
(though only at irregular rates). (Westling et al., 2020)

Smoothness constraints can also be leveraged but inference is then more challenging.

3 Focus instead on a summary of the CDE curve.

Coefficients of projection onto a parametric model is a regression-inspired approach.
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What about continuous mediators?

Example: assessing the role of antibodies in preventing COVID

Y “ COVID disease by day 126

A “ indicator of vaccination status

M “ day 29 pseudovirus ID50 neutralizing titer

Gilbert et al. (2021) introduced controlled risk and controlled vaccine efficacy curves:

CRpmq :“ E rY p1,mqs

“ risk of COVID by day 126 in participants given vaccine

and set to have antibody level m

CVEpmq :“ 1 ´
E rY p1,mqs

E rY p0qs

“ relative reduction in risk of COVID by day 126 comparing participants given

vaccine and set to have antibody level m vs participants given placebo.

In a randomized vaccine trial, the denominator E rY p0qs is easy to estimate, but the
numerator E rY p1,mqs remains challenging. . .
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What about continuous mediators?
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What about continuous mediators?
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