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Interventional direct and indirect effects

Recall that the natural effects involve interventions that, for example,

m set A=1and M = M(1), the value M would naturally take under A = 0.

The challenge with identifying their effects is their cross-world nature.

m Intervening to set M equal to what your mediator would be under a*.

Interventional effects consider a different form of interventions. For someone with
covariates w, we

m set A = a (as usual);

m set M = M*, where M* is a random draw from M(a*) | W = w.

We are interested in the effect decomposition:

ATE = E[Y(1, M(1))] — E[Y (1, M*)] + E[Y (1, M*)] — E[Y (0, M(0))] .
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Interventional direct and indirect effects

Example: A = diabetes, M = heart disease, Y = all cause mortality, W = age at
onset of diabetes. The interventional indirect effect compares:

m set diabetes = 1 vs.

m set diabetes = 1 and set heart disease status to a random draw from the
distribution of heart disease among non-diabetics of a similar age;

m for young adults, draw from M(0) | W = young;
m for older adults, draw from M(0) | W = old;

M(0) | W = young M(0) | W = old
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Interventional direct and indirect effects

Example: A = diabetes, M = biomarker, Y = all cause mortality, W; = age at onset
of diabetes, W, = sex. The interventional indirect effect compares:

m set diabetes = 1 vs.

m set diabetes = 1 and set biomarker to a random draw from the distribution of
biomarker among non-diabetics of a similar age and sex.

)
i
m for young females, draw from
© | M(0) | Wi = young, W> = female;
S
m for older females, draw from
.%‘v M(0) | Wi = old, W» = female;
g S|
a m for young males, draw from
N M(0) | Wi = young, W» = male;
e m for older males, draw from
° M(0) | Wi = old, Wo = male.
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Interventional direct and indirect effects

Note that participant i could have M;(0) = 1 but M* = 0.

m The mediator value you get under our intervention might not be the same as the
natural value your mediator would take under A = 0.

Example: Joe is an older adult who would only develop heart disease if he were
diabetic (M0 (0) = 0); however, when implementing under our intervention, we
happen to draw M} = 1.

m In terms of natural indirect effects, Joe would contribute Y..(1,0).

m In terms of interventional indirect effects, Joe would contribute Yj,.(1,1).
However, in the population of people who are similar to Joe (i.e., older adults), the
distribution of M* = distribution of M(0) | W = W,.

m Intervention is interesting at a population level!
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Identification of interventional in/direct effects

With no exposure-induced confounders of M and Y, we require three randomization
assumptions to identify E[Y (a, M*)].

mY(am LAl W
mY(@amlM|A=a W
m M(a*) LA| W

Notably, we do not require a cross-world assumption.

We additionally require the same positivity conditions as for natural mediation effects:
m P(A=a|W =w) >0 for all w;

B PIM=m|A=a* W=w)>0implies PIM=m|A=a* W =w) >0 for
all m,w.
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Identification of interventional in/direct effects

Under these assumptions, we have the following G-formula identification:
E[Y(a,M*)] = E(E[E(Y | A= a, W, M)| A= 2% W]
=ODEY|A=a,W=w,M=mPM=m|A=a*W=wPW=w).
w m
This is exactly the same as the G-formula for identification of natural effects!
Identification of interventional effects

Identification of natural effects.

In other words, the same data analysis may be interpreted differently depending on
whether the cross-world assumption is believable.

m Is the tail wagging the dog?
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Identification of interventional in/direct effects

Proof: For a = 0,1 and M* = a random draw from the distribution of M(a*) | W,

E[Y(a, M¥)]
=D E[Y(a, M*) | W = w]P(W = w) (tower rule)
= ZZE[Y(a, m) | M¥ =m, W = w]P(M* =m | W = w)P(W = w) (tower rule)
= EZE am) | W=wlP(M@G*)=m|W=wPW=w) (definition of M*)

= ZZE (a,m) |A=a, W =w]P(M(a*)=m|W =w)P(W =w) (randomization 1)

—ZZ Y(a,m)|A=a, W = w]
x P(M(a*) =m|A=a* W=w)P(W=w)) (randomization 2)
=ZZ(E[Y(a,m) |[A=a,M=mW =w]
v X P(M(a®) = m| A=a* W =w)P(W=w)) (randomization 3)

=X DVEY|A=a,M=mW=w)PM=m|A=a"W=wPW=w)
w m (consistency)
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Identification of interventional in/direct effects

The key difference between this identification proof and that for natural in/direct
effects happens on line 4. Two things happen here:

1. We replace P(M* = m | W = w) with P(M(a*) = m | W = w).

m M* is a random draw from the distribution of M(a*) | W.
2. We drop M* from E[Y (a,m) | M* = m; W = w] and write E[Y(a,m) | W = w].

m M* is a random draw from M(a*) | W.

m Once we know W, the particular random value that we draw tells us nothing
about outcome. It's drawn at random — how could it?!

By its very construction M* L Y(a,m) | W.

B The needed independence is moved from a cross-world assumption to the
definition of our causal quantity of interest.

After this line, the proof continues exactly as for natural effects.
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Interventional effects with exposure-induced confounding

When we have exposure-induced confounding of M and Y, we can define an
alternative effect decomposition based on interventional effects.

m Let M* be a random draw from M(a*) | W.

m Let M° be a random draw from M(a) | W.

An effect decomposition based on interventional effects is

E[Y(a,M°)] — E[Y(a, M*)] = E[Y (a, M°)] — E[Y (a, M*)] + E[Y (a, M*)] — E[Y (a*, M*)] .

< "~ — S

~~ ~ ~-
total effect indirect effect direct effect

Note that the total effect here is not the ATE.

m Under the intervention that defines the ATE, the mediator under intervention
that, e.g., sets A = a would have distribution M(a) | Z(a), W.

m Under the intervention that defines this total effect, the mediator under
intervention that, e.g., sets A = a has distribution M(a) | W.
For an effect decomposition of the ATE in terms of interventional effects see

Vansteelandt and Daniel (2017).
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5289540/

Interventional effects with exposure-induced confounding

For this identification, we require three randomization conditions
mY(am LA W
mY(am1lM|A=a W, Z
m M(a*) LA|W

We need no unmeasured confounders of M and Y beyond W and Z.

m Unmeasured confounders of Z and Y are OK!
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Interventional effects with exposure-induced confounding

We require two positivity assumptions:
1. PA=a|W=w)>0
2. For any z, w, m such that
P(Z=z|A=a,W=w)>0and PIM=m|A=a* W=w)>0,
we need PIM=m|A=a,Z=2z, W =w) > 0.
Assumption 2 is a stronger overlap condition than before.

m Need overlap between P(M | A = a* , W = w) and
PIM=m|A=a,Z =z W = w) for every plausible value of z.
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Interventional effects with exposure-induced confounding

Example of violation of positivity condition 2:
A = vaccine, Z = asymptomatic infection, M = antibody level, Y = clinical disease.
Consider the following situation.

m Vaccine causes fever, effectively unblinding participants.

m Vaccinated people increase risk behaviors immediately and thus acquire
asymptomatic infections prior to antibody measurements.

m Unvaccinated people are more conservative and acquire no asymptomatic
infections prior to antibody measurements.

m There are some cases of vaccine failure, where no antibodies are generated.

m However, everyone produces antibodies in response to natural infection.
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Interventional effects with exposure-induced confounding

In this case, we might have overlap marginally.
m Vaccine failures with no asymptomatic infection still have low antibodies.
But, we will have no overlap conditional on Z.

m Everyone with asymptomatic infection has positive antibodies.

M| A W M|A W, Z=1
=B —— Placebo —— Placebo
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Interventional effects with exposure-induced confounding

Under these assumptions, we can identify E[Y (a, M*)] where M* ~ M(a*) | W.
Let Qi(z,mw) =E(Y |A=2a,Z=2z,M=m,W = w). Then E[Y(a, M*)] equals

ZZZQa(z,m,W)P(Z =z|A=aW=w)P(M=m|A=a* W=w)PW=w).

w m z
m First standardize the outcome regression with respect to Z | A = a, W.

m Next standardize with respect to the mediator using M | A = a*, W.

m Finally, standardize with respect to the covariates.
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Interventional effects with exposure-induced confounding

Proof: For a=0,1 and M* ~ M(a*) | W,

E[Y(a, M™)]
=D E[Y(a, M*) | W = w]P(W = w) (tower rule)
=YY E[Y(am) | M* =m W = w]P(M* =m | W = w)P(W = w) (tower rule)
=D YE[Y(a,m) | W= w]P[M(a*) = m | W = w]P(W = w) (definition of M)
=YY E[Y(a,m) | A=a,W = w]P[M(a*) = m | W = w]P(W = w) (randomization 1)

=D Y E[Y(a,m) | A=a,W =w]P[Ma*) =m|A=a" W =w]P(W=w) (andomiztion 3)

=33 (E[Y(am) [A=a,Z=2,W=w]P(Z=z|A=a,W=w)

wom 2 x P[M(a*) = m| A=a%* W = w]P(W = w)) (tower rule)
=ZZZ(E[Y(a,m)|A=a,Z=z,M=m,W=w]P(Z=z\A=a,W=W)
wom x P[M(a*) = m| A= a*, W = w]P(W = w)) (randomization 2)

=33 NI[E(Y|A=a,Z=2z,M=mW=w)P(Z=z|A=a,W=w)
w.om z X P(M=m|A=a*,W= W)P(W= W)] (consistency)
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Interventional effects with exposure-induced confounding

Here, we consider estimation in the simplest setting, where M and Z are binary.
set.seed(123)

# simulate some data

n <- 5000

# treatment/outcome confounder

W1 <- rnorm(n)

# treatment/mediator confounder

W2 <- rbinom(n, 1, 0.5)

# mediator/outcome confounder

W3 <- runif(n)

A <- rbinom(n, 1, plogis(-1 + W1 / 3 + W2 / 4))

Z <- rbinom(n, 1, plogis(-2 + A / 2))

M <- rbinom(n, 1, plogis(-2 + A / 2 -2/ 2 + W2 / 4))

Y <- rbinom(n, 1, plogis(-1 +M / 2+ A/ 4 -2/ 2+ WL/ 4 - W3/ 4)
full data <- data.frame(Wl = W1, W2 = W2, W3 =W3, A=A, Z=2Z, M=M, Y =1Y)
The true values are:

m total effect = E[Y(1, MY)] — E[Y(0, M°)] = 0.050
m indirect effect = E[Y(1, M')] — E[Y(1, M°)] = 0.008

2
2

=

m direct effect = E[Y(1, M°)] — E[Y(0, M°)] = 0.042
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Interventional effects with exposure-induced confounding

To estimate the effects of interest, we need to fit three regression models:
m outcome regression = E(Y | A, Z, M, W)
m mediator regression = P(M =1 | A, W)
m confounder regression = P(Z =1 | A, W)

# outcome regression
orfit <- glm(Y ~ A+ Z + M+ Wl + W2 + W3,
family = binomial(), data = full_data)
# mediator regression
med_fit <- glm(M ~ A + W1 + W2 + W3, family = binomial(), data = full_data)
# confounder regression
zfit <- glm(Z ~ A + W1 + W2 + W3, family = binomial(), data = full_data)
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Interventional effects with exposure-induced confounding

To compute all effects of interest, we need estimates
u @,,Yl(z,m, W;) forz=0,1and m=0,1land i=1,...,n.
= (:),,Yo(z,m, W;)forz=0,1and m=0,1landi=1,...,n.

Qbar_na_zm <- function(or_fit, a, z, m, full,data){
pred.data <- full data
pred_data$A <- a; pred_data$M <- m; pred._data$Z <- z

pred <- predict(or_fit, type = "response", newdata = pred_data)
return(pred)
}
#a=1
Qbar nl_ziml <- Qbar_na zm(or_fit, a =1, z =1, m = 1, full_ data)
Qbar n1_z1m0 <- Qbar_na zm(or_fit, a =1, z = 1, m = 0, full_ data)
Qbar n1_zOm1l <- Qbar_na zm(or_fit, a = 1, z = 0, m = 1, full data)
Qbar n1_zOmO0 <- Qbar_na zm(or_fit, a = 1, z = 0, m = 0, full data)
#a=0
Qbar n0_ziml <- Qbar_na zm(or_fit, a = 0, z = 1, m = 1, full_data)
Qbar n0_z1m0 <- Qbar_na_zm(or_fit, a = 0, z = 1, m = 0, full_ data)
Qbar n0_zOm1 <- Qbar_na_zm(or_fit, a = 0, z = 0, m = 1, full_ data)
Qbar n0_zOm0 <- Qbar_na_zm(or_fit, a = 0, z = 0, m = 0, full_ data)
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Interventional effects with exposure-induced confounding

We also need estimates
B P (Z=z|A=1,W=W,)fori=1,...,n.
m P (Z=z|A=0,W=W,)fori=1,...,n.

Phatn_Zl.a <- function(z_fit, a, full_data){
pred_data <- full_data
pred_data$A <- a
pred <- predict(z_fit, type = "response", newdata = pred_data)
return(pred)
}
# A =1
Phat n Z1 al <- Phatn Zl a(z_fit, a = 1, full_ data)
Phat n_Z0_.al <- 1 - Phat.n_Z1_ al
#A=0
Phat_n_Z1_a0 <- Phatn_Zl_ a(z_fit, a
Phat n Z0.a0 <- 1 - Phatn_Z1_ a0

0, full_data)
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Interventional effects with exposure-induced confounding

Finally, we need estimates of the mediator distribution
mP(M=m|A=1,W=W,)form=0,1andi=1,...,n
m P (M=m|A=0,W =W, form=0,1andi=1,...,n

PhatnMl_a <- function(med_fit, a, full_data){
pred_data <- full_data
pred_data$A <- a
pred <- predict(med_fit, type = "response", newdata = pred_data)
return(pred)
}
# A =1
Phat n M1_al <- Phat.n Ml a(med fit, a
Phat n.MO_.al <- 1 - Phatn Ml _al
#A=0
Phat_n_M1_a0 <- Phat_n_Ml_a(med_fit, a
Phat n M0_.a0 <- 1 - Phatn M1_al

1, full_data)

0, full_data)
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Interventional effects with exposure-induced confounding

Now we can compute estimates of the components of the effects of interest.

# E[Y(1, M~1)]

EY1M1 <- mean(
# terms in sum for z = 0, m = O
Qbar_ nl_zOmO * Phat n_Z0_al * Phat n MO_al +
# terms in sum for z =1, m = 0
Qbar nl_zimO * Phat n_Z1 al * Phat n MO_al +
# terms in sum for z = 0, m = 1
Qbar nl_zOm1l * Phat n_Z0_al * Phat n Ml _al +
# terms in sum for z =1, m = 1
Qbar_ nl_ziml * Phat n_Z1_al * Phat n Ml_al

EYiM1

## [1] 0.2777025
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Interventional effects with exposure-induced confounding

Now we can compute estimates of the components of the effects of interest.

# E[Y(1, M~0)]

EY1IMO <- mean(
# terms in sum for z = 0, m = O
Qbar_ nl_zOmO * Phat n_Z0_al * Phat_n MO_a0 +
# terms in sum for z =1, m = 0
Qbar nl_zimO * Phat n_Z1 al * Phat n MO_a0 +
# terms in sum for z = 0, m = 1
Qbar_nl_zOml * Phatn Z0_al * Phatn Ml a0 +
# terms in sum for z =1, m = 1
Qbar_ nl_ziml * Phat n Z1_al * Phatn Mi_a0

EY1MO

## [1] 0.2702332
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Interventional effects with exposure-induced confounding

Now we can compute estimates of the components of the effects of interest.

# E[Y(1, M~0)]

EYOMO <- mean(
# terms in sum for z = 0, m = O
Qbar_ n0_zOmO * Phat n_Z0_a0 * Phat_n MO_a0 +
# terms in sum for z =1, m = 0
Qbar n0_z1mO * Phat n_Z1 a0 * Phat n MO_a0 +
# terms in sum for z = 0, m = 1
Qbar_ n0_zOm1 * Phatn_Z0_a0 * Phatn M1l a0 +
# terms in sum for z =1, m = 1
Qbar n0_ziml * Phat n_Z1_ a0 * Phat_n M1_a0

EYOMO

## [1] 0.2421124
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Interventional effects with exposure-induced confounding

Finally, we can compute the effects of interest.

# total effect
EY1M1 - EYOMO

## [1] 0.03559014

# indirect effect
EY1M1 - EY1MO

## [1] 0.007469372

# direct effect
EY1MO - EYOMO

## [1] 0.02812076
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