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Interventional direct and indirect effects

Recall that the natural effects involve interventions that, for example,

set A � 1 and M � Mp1q, the value M would naturally take under A � 0.

The challenge with identifying their effects is their cross-world nature.

Intervening to set M equal to what your mediator would be under a�.

Interventional effects consider a different form of interventions. For someone with
covariates w, we

set A � a (as usual);

set M � M�, where M� is a random draw from Mpa�q | W � w.

We are interested in the effect decomposition:

ATE � ErYp1,Mp1qqs � ErYp1,M�qsl jh n
interventional indirect effect

�ErYp1,M�qs � ErYp0,Mp0qqsl jh n
interventional direct effect

.
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Interventional direct and indirect effects

Example: A = diabetes, M = heart disease, Y = all cause mortality, W = age at
onset of diabetes. The interventional indirect effect compares:

set diabetes = 1 vs.
set diabetes = 1 and set heart disease status to a random draw from the
distribution of heart disease among non-diabetics of a similar age;

for young adults, draw from Mp0q | W � young;
for older adults, draw from Mp0q | W � old;
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Interventional direct and indirect effects

Example: A = diabetes, M = biomarker, Y = all cause mortality, W1 = age at onset
of diabetes, W2 � sex. The interventional indirect effect compares:

set diabetes = 1 vs.
set diabetes = 1 and set biomarker to a random draw from the distribution of
biomarker among non-diabetics of a similar age and sex.
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for young females, draw from
Mp0q | W1 � young,W2 � female;

for older females, draw from
Mp0q | W1 � old,W2 � female;

for young males, draw from
Mp0q | W1 � young,W2 � male;

for older males, draw from
Mp0q | W1 � old,W2 � male.
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Interventional direct and indirect effects

Note that participant i could have Mip0q � 1 but M�

i � 0.

The mediator value you get under our intervention might not be the same as the
natural value your mediator would take under A � 0.

Example: Joe is an older adult who would only develop heart disease if he were
diabetic (MJoep0q � 0); however, when implementing under our intervention, we
happen to draw M�

Joe � 1.

In terms of natural indirect effects, Joe would contribute YJoep1, 0q.

In terms of interventional indirect effects, Joe would contribute YJoep1, 1q.

However, in the population of people who are similar to Joe (i.e., older adults), the
distribution of M� = distribution of Mp0q | W � Wi.

Intervention is interesting at a population level!
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Identification of interventional in/direct effects

With no exposure-induced confounders of M and Y, we require three randomization
assumptions to identify ErYpa,M�qs.

Ypa,mq K A | W

Ypa,mq K M | A � a,W

Mpa�q K A | W

Notably, we do not require a cross-world assumption.

We additionally require the same positivity conditions as for natural mediation effects:

PpA � a | W � wq ¡ 0 for all w;

PpM � m | A � a�,W � wq ¡ 0 implies PpM � m | A � a�,W � wq ¡ 0 for all
m,w.
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Identification of interventional in/direct effects

Under these assumptions, we have the following G-formula identification:

ErYpa,M�qs � EpErEpY | A � a,W,Mq| A � a�,Wsq

�
¸

w

¸

m
EpY | A � a,W � w,M � mqPpM � m | A � a�,W � wqPpW � wq .

This is exactly the same as the G-formula for identification of natural effects!

Identification of interventional effects
=

Identification of natural effects.

In other words, the same data analysis may be interpreted differently depending on
whether the cross-world assumption is believable.

Is the tail wagging the dog?
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Identification of interventional in/direct effects

Proof: For a � 0, 1 and M� = a random draw from the distribution of Mpa�q | W,

ErYpa, M�qs

�
¸

w
ErYpa, M�q | W � wsPpW � wq (tower rule)

�
¸

w

¸

m
ErYpa, mq | M� � m, W � wsPpM� � m | W � wqPpW � wq (tower rule)

�
¸

w

¸

m
ErYpa, mq | W � wsPpMpa�q � m | W � wqPpW � wq (definition of M�)

�
¸

w

¸

m
ErYpa, mq | A � a, W � wsPpMpa�q � m | W � wqPpW � wq (randomization 1)

�
¸

w

¸

m

�
ErYpa, mq | A � a, W � ws

� PpMpa�q � m | A � a�, W � wqPpW � wq
�

(randomization 2)

�
¸

w

¸

m

�
ErYpa, mq | A � a, M � m, W � ws

� PpMpa�q � m | A � a�, W � wqPpW � wq
�

(randomization 3)

�
¸

w

¸

m
EpY | A � a, M � m, W � wqPpM � m | A � a�, W � wqPpW � wq

(consistency)
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Identification of interventional in/direct effects

The key difference between this identification proof and that for natural in/direct
effects happens on line 4. Two things happen here:
1. We replace PpM� � m | W � wq with PpMpa�q � m | W � wq.

M� is a random draw from the distribution of Mpa�q | W.

2. We drop M� from ErYpa,mq | M� � m,W � ws and write ErYpa,mq | W � ws.

M� is a random draw from Mpa�q | W.

Once we know W, the particular random value that we draw tells us nothing
about outcome. It’s drawn at random – how could it?!

By its very construction M� K Ypa,mq | W.

The needed independence is moved from a cross-world assumption to the
definition of our causal quantity of interest.

After this line, the proof continues exactly as for natural effects.
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Interventional effects with exposure-induced confounding

When we have exposure-induced confounding of M and Y, we can define an
alternative effect decomposition based on interventional effects.

Let M� be a random draw from Mpa�q | W.

Let M� be a random draw from Mpaq | W.

An effect decomposition based on interventional effects is

ErYpa,M�qs � ErYpa,M�qsl jh n
total effect

� ErYpa,M�qs � ErYpa,M�qsl jh n
indirect effect

�ErYpa,M�qs � ErYpa�,M�qsl jh n
direct effect

.

Note that the total effect here is not the ATE.

Under the intervention that defines the ATE, the mediator under intervention
that, e.g., sets A � a would have distribution Mpaq | Zpaq,W.

Under the intervention that defines this total effect, the mediator under
intervention that, e.g., sets A � a has distribution Mpaq | W.

For an effect decomposition of the ATE in terms of interventional effects see
Vansteelandt and Daniel (2017).
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Interventional effects with exposure-induced confounding

For this identification, we require three randomization conditions

Ypa,mq K A | W

Ypa,mq K M | A � a,W,Z

Mpa�q K A | W

We need no unmeasured confounders of M and Y beyond W and Z.

Unmeasured confounders of Z and Y are OK!
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Interventional effects with exposure-induced confounding

We require two positivity assumptions:

1. PpA � a | W � wq ¡ 0

2. For any z,w,m such that

PpZ � z | A � a,W � wq ¡ 0 and PpM � m | A � a�,W � wq ¡ 0 ,

we need PpM � m | A � a,Z � z,W � wq ¡ 0.

Assumption 2 is a stronger overlap condition than before.

Need overlap between PpM | A � a�,W � wq and
PpM � m | A � a,Z � z,W � wq for every plausible value of z.
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Interventional effects with exposure-induced confounding

Example of violation of positivity condition 2:

A = vaccine, Z = asymptomatic infection, M = antibody level, Y = clinical disease.

Consider the following situation.

Vaccine causes fever, effectively unblinding participants.

Vaccinated people increase risk behaviors immediately and thus acquire
asymptomatic infections prior to antibody measurements.

Unvaccinated people are more conservative and acquire no asymptomatic
infections prior to antibody measurements.

There are some cases of vaccine failure, where no antibodies are generated.

However, everyone produces antibodies in response to natural infection.
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Interventional effects with exposure-induced confounding

In this case, we might have overlap marginally.

Vaccine failures with no asymptomatic infection still have low antibodies.

But, we will have no overlap conditional on Z.

Everyone with asymptomatic infection has positive antibodies.
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Interventional effects with exposure-induced confounding

Under these assumptions, we can identify ErYpa,M�qs where M� � Mpa�q | W.

Let Q̄apz,m,wq � EpY | A � a,Z � z,M � m,W � wq. Then ErYpa,M�qs equals

¸

w

¸

m

¸

z
Q̄apz,m,wqPpZ � z | A � a,W � wqPpM � m | A � a�,W � wqPpW � wq .

First standardize the outcome regression with respect to Z | A � a,W.

Next standardize with respect to the mediator using M | A � a�,W.

Finally, standardize with respect to the covariates.
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Interventional effects with exposure-induced confounding

Proof: For a � 0, 1 and M� � Mpa�q | W,

ErYpa, M�qs

�
¸

w
ErYpa, M�q | W � wsPpW � wq (tower rule)

dog �
¸

w

¸

m
ErYpa, mq | M� � m, W � wsPpM� � m | W � wqPpW � wq (tower rule)

�
¸

w

¸

m
ErYpa, mq | W � wsPrMpa�q � m | W � wsPpW � wq (definition of M�)

�
¸

w

¸

m
ErYpa, mq | A � a, W � wsPrMpa�q � m | W � wsPpW � wq (randomization 1)

�
¸

w

¸

m
ErYpa, mq | A � a, W � wsPrMpa�q � m | A � a�, W � wsPpW � wq (randomization 3)

�
¸

w

¸

m

¸

z

�
ErYpa, mq | A � a, Z � z, W � wsPpZ � z | A � a, W � wq

� PrMpa�q � m | A � a�, W � wsPpW � wq
�

(tower rule)

�
¸

w

¸

m

¸

z

�
ErYpa, mq | A � a, Z � z, M � m, W � wsPpZ � z | A � a, W � wq

� PrMpa�q � m | A � a�, W � wsPpW � wq
�

(randomization 2)

�
¸

w

¸

m

¸

z

�
EpY | A � a, Z � z, M � m, W � wqPpZ � z | A � a, W � wq

� PpM � m | A � a�, W � wqPpW � wq
�

(consistency)
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Interventional effects with exposure-induced confounding

Here, we consider estimation in the simplest setting, where M and Z are binary.
set.seed(123)
# simulate some data
n <- 5000
# treatment/outcome confounder
W1 <- rnorm(n)
# treatment/mediator confounder
W2 <- rbinom(n, 1, 0.5)
# mediator/outcome confounder
W3 <- runif(n)
A <- rbinom(n, 1, plogis(-1 + W1 / 3 + W2 / 4))
Z <- rbinom(n, 1, plogis(-2 + A / 2))
M <- rbinom(n, 1, plogis(-2 + A / 2 - Z / 2 + W2 / 4))
Y <- rbinom(n, 1, plogis(-1 + M / 2 + A / 4 - Z / 2 + W1 / 4 - W3 / 4))
full_data <- data.frame(W1 = W1, W2 = W2, W3 = W3, A = A, Z = Z, M = M, Y = Y)
The true values are:

total effect = ErYp1,M1qs � ErYp0,M0qs = 0.050

indirect effect = ErYp1,M1qs � ErYp1,M0qs = 0.008

direct effect = ErYp1,M0qs � ErYp0,M0qs = 0.042
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Interventional effects with exposure-induced confounding

To estimate the effects of interest, we need to fit three regression models:

outcome regression = EpY | A,Z,M,Wq

mediator regression = PpM � 1 | A,Wq

confounder regression = PpZ � 1 | A,Wq

# outcome regression
or_fit <- glm(Y ~ A + Z + M + W1 + W2 + W3,

family = binomial(), data = full_data)
# mediator regression
med_fit <- glm(M ~ A + W1 + W2 + W3, family = binomial(), data = full_data)
# confounder regression
z_fit <- glm(Z ~ A + W1 + W2 + W3, family = binomial(), data = full_data)
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Interventional effects with exposure-induced confounding

To compute all effects of interest, we need estimates

Q̄n,1pz,m,Wiq for z � 0, 1 and m � 0, 1 and i � 1, . . . , n.

Q̄n,0pz,m,Wiq for z � 0, 1 and m � 0, 1 and i � 1, . . . , n.

Qbar_na_zm <- function(or_fit, a, z, m, full_data){
pred_data <- full_data
pred_data$A <- a; pred_data$M <- m; pred_data$Z <- z
pred <- predict(or_fit, type = "response", newdata = pred_data)
return(pred)

}
# a = 1
Qbar_n1_z1m1 <- Qbar_na_zm(or_fit, a = 1, z = 1, m = 1, full_data)
Qbar_n1_z1m0 <- Qbar_na_zm(or_fit, a = 1, z = 1, m = 0, full_data)
Qbar_n1_z0m1 <- Qbar_na_zm(or_fit, a = 1, z = 0, m = 1, full_data)
Qbar_n1_z0m0 <- Qbar_na_zm(or_fit, a = 1, z = 0, m = 0, full_data)
# a = 0
Qbar_n0_z1m1 <- Qbar_na_zm(or_fit, a = 0, z = 1, m = 1, full_data)
Qbar_n0_z1m0 <- Qbar_na_zm(or_fit, a = 0, z = 1, m = 0, full_data)
Qbar_n0_z0m1 <- Qbar_na_zm(or_fit, a = 0, z = 0, m = 1, full_data)
Qbar_n0_z0m0 <- Qbar_na_zm(or_fit, a = 0, z = 0, m = 0, full_data)
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Interventional effects with exposure-induced confounding

We also need estimates

P̂npZ � z | A � 1,W � Wiq for i � 1, . . . , n.

P̂npZ � z | A � 0,W � Wiq for i � 1, . . . , n.

Phat_n_Z1_a <- function(z_fit, a, full_data){
pred_data <- full_data
pred_data$A <- a
pred <- predict(z_fit, type = "response", newdata = pred_data)
return(pred)

}
# A = 1
Phat_n_Z1_a1 <- Phat_n_Z1_a(z_fit, a = 1, full_data)
Phat_n_Z0_a1 <- 1 - Phat_n_Z1_a1
# A = 0
Phat_n_Z1_a0 <- Phat_n_Z1_a(z_fit, a = 0, full_data)
Phat_n_Z0_a0 <- 1 - Phat_n_Z1_a0

21 / 27



Interventional effects with exposure-induced confounding

Finally, we need estimates of the mediator distribution

P̂npM � m | A � 1,W � Wi) for m � 0, 1 and i � 1, . . . , n

P̂npM � m | A � 0,W � Wi) for m � 0, 1 and i � 1, . . . , n

Phat_n_M1_a <- function(med_fit, a, full_data){
pred_data <- full_data
pred_data$A <- a
pred <- predict(med_fit, type = "response", newdata = pred_data)
return(pred)

}
# A = 1
Phat_n_M1_a1 <- Phat_n_M1_a(med_fit, a = 1, full_data)
Phat_n_M0_a1 <- 1 - Phat_n_M1_a1
# A = 0
Phat_n_M1_a0 <- Phat_n_M1_a(med_fit, a = 0, full_data)
Phat_n_M0_a0 <- 1 - Phat_n_M1_a0

22 / 27



Interventional effects with exposure-induced confounding

Now we can compute estimates of the components of the effects of interest.

# E[Y(1, M^1)]
EY1M1 <- mean(

# terms in sum for z = 0, m = 0
Qbar_n1_z0m0 * Phat_n_Z0_a1 * Phat_n_M0_a1 +
# terms in sum for z = 1, m = 0
Qbar_n1_z1m0 * Phat_n_Z1_a1 * Phat_n_M0_a1 +
# terms in sum for z = 0, m = 1
Qbar_n1_z0m1 * Phat_n_Z0_a1 * Phat_n_M1_a1 +
# terms in sum for z = 1, m = 1
Qbar_n1_z1m1 * Phat_n_Z1_a1 * Phat_n_M1_a1

)

EY1M1

## [1] 0.2777025
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Interventional effects with exposure-induced confounding

Now we can compute estimates of the components of the effects of interest.

# E[Y(1, M^0)]
EY1M0 <- mean(

# terms in sum for z = 0, m = 0
Qbar_n1_z0m0 * Phat_n_Z0_a1 * Phat_n_M0_a0 +
# terms in sum for z = 1, m = 0
Qbar_n1_z1m0 * Phat_n_Z1_a1 * Phat_n_M0_a0 +
# terms in sum for z = 0, m = 1
Qbar_n1_z0m1 * Phat_n_Z0_a1 * Phat_n_M1_a0 +
# terms in sum for z = 1, m = 1
Qbar_n1_z1m1 * Phat_n_Z1_a1 * Phat_n_M1_a0

)

EY1M0

## [1] 0.2702332
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Interventional effects with exposure-induced confounding

Now we can compute estimates of the components of the effects of interest.

# E[Y(1, M^0)]
EY0M0 <- mean(

# terms in sum for z = 0, m = 0
Qbar_n0_z0m0 * Phat_n_Z0_a0 * Phat_n_M0_a0 +
# terms in sum for z = 1, m = 0
Qbar_n0_z1m0 * Phat_n_Z1_a0 * Phat_n_M0_a0 +
# terms in sum for z = 0, m = 1
Qbar_n0_z0m1 * Phat_n_Z0_a0 * Phat_n_M1_a0 +
# terms in sum for z = 1, m = 1
Qbar_n0_z1m1 * Phat_n_Z1_a0 * Phat_n_M1_a0

)

EY0M0

## [1] 0.2421124
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Interventional effects with exposure-induced confounding

Finally, we can compute the effects of interest.

# total effect
EY1M1 - EY0M0

## [1] 0.03559014

# indirect effect
EY1M1 - EY1M0

## [1] 0.007469372

# direct effect
EY1M0 - EY0M0

## [1] 0.02812076

26 / 27



References and additional reading

References:

Vansteelandt S, Daniel RM. Interventional effects for mediation analysis with multiple mediators.
Epidemiology. PMC: PMC5289540.

Additional reading:

Díaz I, Hejazi NS, Rudolph KE, van der Laan MJ. Nonparametric efficient causal mediation with
intermediate confounders. Biometrika. doi: 10.1093/biomet/asaa085.

27 / 27

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5289540/
https://doi.org/10.1093/biomet/asaa085

