6th Summer Institute in Statistics for Big Data (SISBID)


This module is currently full. Registrations are closed at this time.

Module 2: Supervised Methods for Statistical Machine Learning

Wed, July 15 to Fri, July 17
Instructor(s):

Module dates/times: Wednesday, July 15; Thursday, July 16, and Friday, July 17. Live sessions will start no earlier than 8 a.m. Pacific and end no later than 2:30 p.m. Pacific, except for Wednesdays. For modules that end on Wednesday, live sessions will end by 11 a.m. Pacific. For modules that start on Wednesday, live sessions will begin no earlier than 11:30 a.m.

In this module, we will present a number of supervised learning techniques for the analysis of Biomedical Big Data. These techniques include penalized approaches for performing regression, classification, and survival analysis with Big Data. Support vector machines, decision trees, and random forests will also be covered.

The main emphasis will be on the analysis of “high-dimensional” data sets from genomics, transcriptomics, metabolomics, proteomics, and other fields. These data are typically characterized by a huge number of molecular measurements (such as genes) and a relatively small number of samples (such as patients). We will also consider electronic health record data sets, which often contain many missing measurements.

Throughout the course, we will focus on common pitfalls in the supervised analysis of Biomedical Big Data and how to avoid them. The techniques discussed will be demonstrated in R.

This course assumes some previous exposure to linear regression and statistical hypothesis testing, as well as some familiarity with R or another programming language (see previous years materials for reference).

Recommended Reading: James et al. (2013) Introduction to Statistical Learning. Springer Series in Statistics. Available for free download at www.statlearning.com.