12th Summer Institute in Statistics and Modeling in Infectious Diseases (SISMID)


Module 7: Simulation-based Inference for Epidemiological Dynamics

Session 2: Wed Jul 15 to Fri Jul 17

Module dates/times: Live sessions will start no earlier than 8 a.m. Pacific and end no later than 2:30 p.m. Pacific, except for Wednesdays. For modules that end on Wednesday, live sessions will end by 11 a.m. Pacific. For modules that start on Wednesday, live sessions will begin no earlier than 11:30 a.m.

Prerequisites: Students are expected to have a working knowledge of the R computing environment. Programming will be in R. Students new to R should complete a tutorial before the module. This module assumes knowledge of the material in Module 1: Probability and Statistical Inference, though not necessarily from taking that module.

This module introduces statistical inference techniques and computational methods for dynamic models of epidemiological systems. The course will explore deterministic and stochastic formulations of epidemiological dynamics and develop inference methods appropriate for a range of models. Special emphasis will be on exact and approximate likelihood as the key elements in parameter estimation, hypothesis testing, and model selection. Specifically, the course will cover sequential Monte Carlo, iterated filtering, and model criticism techniques. Students will learn to implement these in R to carry out maximum likelihood and Bayesian inference.